Editorial Board
Guidelines for Authors
QIC Online

Subscribers: to view the full text of a paper, click on the title of the paper. If you have any problem to access the full text, please check with your librarian or contact qic@rintonpress.com   To subscribe to QIC, please click Here.

Quantum Information and Computation     ISSN: 1533-7146      published since 2001
Vol.24 No.5&6 April 2024

The signaling dimension in generalized probabilistic theories (pp0411-0424)
         
Michele Dall'Arno, Alessandro Tosini, and
 
         
Francesco Buscemi
         
doi: https://doi.org/10.26421/QIC24.5-6-2

Abstracts: The  signaling  dimension  of   a  given  physical  system  quantifies  the minimum  dimension of  a classical  system  required to reproduce all input/output correlations of the  given system. Thus, unlike other dimension measures - such  as the dimension of the linear space or the maximum number  of (jointly or pairwise)  perfectly discriminable states -  which examine  the correlation  space only along  a single  direction, the signaling dimension  does not depend on the  arbitrary choice  of a specific operational  task. In this  sense, the signaling dimension summarizes the structure of  the  entire set  of  input/output correlations  consistent  with  a given  system in  a single  scalar quantity.   For  quantum  theory, it  was  recently proved  by Frenkel  and  Weiner in  a seminal  result that the  signaling dimension  coincides with the Hilbert space dimension.  Here, we  derive analytical and algorithmic  techniques to  compute the  signaling dimension  for any given  system of  any given generalized probabilistic theory.  We prove that  it  suffices   to  consider  extremal   measurements  with  ray-extremal effects, and we  bound the number of elements  of   any  such   measurement  in   terms  of   the  linear  dimension. For  systems with  a finite number  of extremal  effects,  we  recast  the problem  of  characterizing  the  extremal  measurements with  ray-extremal  effects as  the  problem of  deriving the vertex description  of a polytope  given  its face  description,  which  can be  conveniently  solved  by   standard  techniques   such  as   the  double  description  algorithm.   For  each such  measurement,  we  recast  the computation  of the  signaling dimension  as a  linear program, and we  propose a combinatorial branch and  bound algorithm to reduce its  size.  We apply our results  to  derive  the  extremal measurements  with  ray-extremal  effects of  a composition of  two square bits  (or squits)  and  prove that  their signaling  dimension is  five, even  though each squit has a signaling dimension equal to two.
Key Words:
signaling  dimension,   generalized  probabilistic  theory, GPT, square bit, squit, extremal measurements

กก