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The signaling dimension of a given physical system quantifies the minimum dimension
of a classical system required to reproduce all input/output correlations of the given sys-
tem. Thus, unlike other dimension measures - such as the dimension of the linear space
or the maximum number of (jointly or pairwise) perfectly discriminable states - which
examine the correlation space only along a single direction, the signaling dimension does
not depend on the arbitrary choice of a specific operational task. In this sense, the sig-
naling dimension summarizes the structure of the entire set of input/output correlations
consistent with a given system in a single scalar quantity. For quantum theory, it was
recently proved by Frenkel and Weiner in a seminal result that the signaling dimension
coincides with the Hilbert space dimension.

Here, we derive analytical and algorithmic techniques to compute the signaling di-
mension for any given system of any given generalized probabilistic theory. We prove
that it suffices to consider extremal measurements with ray-extremal effects, and we
bound the number of elements of any such measurement in terms of the linear dimen-
sion. For systems with a finite number of extremal effects, we recast the problem of
characterizing the extremal measurements with ray-extremal effects as the problem of
deriving the vertex description of a polytope given its face description, which can be
conveniently solved by standard techniques such as the double description algorithm.
For each such measurement, we recast the computation of the signaling dimension as a
linear program, and we propose a combinatorial branch and bound algorithm to reduce
its size. We apply our results to derive the extremal measurements with ray-extremal
effects of a composition of two square bits (or squits) and prove that their signaling
dimension is five, even though each squit has a signaling dimension equal to two.

Keywords: signaling dimension, generalized probabilistic theory, GPT, square bit, squit,
extremal measurements

1 Introduction

Generalized probabilistic theories [1, 2, 3], of which classical and quantum theories represent
particular instances, represent the most general mathematical description of a physical theory.
A generalized probabilistic theory is specified in terms of the set of states and the set of effects
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of its systems. The former correspond to the admissible preparation procedures for the system,
while the latter represent the admissible building blocks of measurements. A rule to generate
composite systems and their allowed dynamics can be specified, further enriching the structure
of the theory.

Within any given generalized probabilistic theory, an operationally relevant problem is to
quantify the dimension of any given system. Several different quantifiers [4, 5] of dimension
had been introduced, including the dimension of the linear space of the states and effects of
the system, or the maximum number of (jointly or pairwise) perfectly distinguishable states of
the system. On the one hand, the former quantifier lacks a direct operational interpretation in
terms of the input/output correlations achievable by the system; on the other hand, the latter
quantifier is dependent on the arbitrary choice of an operational task, and hence investigates
the space of input/output correlations along a single direction only.

In stark contrast with that, the signaling dimension [6] does not depend on the arbitrary
choice of a specific operational task, and hence summarizes the structure of the entire set of
input/output correlations that is consistent with a given system in a single scalar quantity.
Formally, the signaling dimension of the system quantifies the minimum dimension of any
simulating classical system, that is, any classical system that can reproduce all the input-
output correlations of the given system.

For quantum theory, it was recently proved [7] by Frenkel and Weiner in a groundbreaking
result that the signaling dimension coincides with the Hilbert space dimension. Subsequently,
the problem of computing the signaling dimension in different contexts has drawn considerable
attention, for instance in the case [8, 9, 10, 11, 12] of arbitrary classical and quantum channels,
as well as in the case [13, 14, 15, 16] of channels in generalized probabilistic theories.

In this work, we derive analytical and algorithmic techniques to compute the signaling
dimension for any given system of any given generalized probabilistic theory. We split the
problem of computing the signaling dimension in two steps: i) the characterization of the
extremal measurements of any given system, that is relevant in its own right for optimization
problems other than the signaling dimension, and ii) the actual computation of the signaling
dimension given the characterization of extremal measurements.

Concerning the first step, we prove that, when computing the signaling dimension, it
suffices to consider extremal measurements with ray-extremal effects, and we show that the
number of elements of any such a measurement is upper bounded by the dimension of the
linear space. For systems whose set of admissible effects is a polytope, we recast the problem
of characterizing the extremal measurements with ray-extremal effects as the problem of
deriving the vertices description of a polytope given its faces description. Such a problem can
be conveniently solved by standard techniques such as the double description algorithm.

Regarding the second step, that is, the actual computation of the signaling dimension given
the characterization of extremal measurements, we recast it as a series of linear programs, one
for each extremal measurement. We propose a combinatorial, branch and bound algorithm
to reduce such a size and make it practically tractable. We provide an implementation [17]
of the such an algorithm, as well as of the other algorithms discussed in this work, released
under a free software license.

As a running example thorough our work, we consider a composition of two systems. For
each of such systems, the set of admissible states is geometrically represented by a square,
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hence such systems are also known as square bits, or squits. Square systems have been
originally introduced as an implementation of the Popescu-Rohrlich [18, 19, 2, 20] correlations.
In that case, the composition includes all the entangled states consistent with the squit local
structure, leaving no room for entangled effects, a trade-off first noticed in Ref [21]. However,
alternative composition rules can be considered with a richer set of entangled effects, thus
allowing for a richer characterization of extremal measurement and a non-trivial computation
of the signaling dimension.

Incidentally, we show that alternative compositions, such as the one considered in Ref. [22],
are inconsistent, that is, they contain well-formed experiments that nonetheless give rise to
negative probabilities. We classify all the consistent composition rules of two squits and
focus on the instance considered in Ref. [13], a “dual version” of the Popescu-Rohrlich boxes
that includes all possible entangled effects but only local preparations. We apply the present
algorithmic techniques to derive the extremal measurements with ray-extremal effects of such
a model and prove that its signaling dimension five. Incidentally, this shows the tightness of
the lower bound in Ref. [13] for the signaling dimension of such a model.

The paper is structured as follows. In Section 2.1 we formalize the problem of comput-
ing the signaling dimension as an optimization problem. In Section 2.2 we introduce our
running example by discussing the completely positive compositions of two square bits. In
Section 3.1 we derive analytical and algorithmic results on the characterization of the extremal
measurements with ray-extremal effects of any given system. In Section 3.2 we provide a com-
binatorial, branch and bound algorithm for the exact, closed-form computation of the signal
dimension. We summarize our results and discuss possible future developments in Section 4.

2 Formalization

In this section we introduce the object of study of this work, that is, the signaling dimension,
and the running example given by the composition of two squit systems.

2.1 Signaling dimension

A physical system S of linear dimension `(S) ∈ N can be represented by a pair (S, E), where
S ⊆ R` and E ⊆ R` are the sets of admissible states and effects, respectively. The probability
of measuring the effect e ∈ E given the state ω ∈ S is given by e ·ω, and the effect e that gives
unit probability for any deterministic preparation is called unit effect. This effect is unique
in causal theories [3], and it corresponds to the identity operator in the quantum case. For
any given system S, let Pm→nS denote the set of m-input/n-output conditional probability
distributions that can be generated by system S with shared randomness. That is, p is an
element of Pm→nS if and only if there exists states {ωx|λ}x,λ and measurements {Ey|λ}y,λ such
that

py|x =
∑
λ

qλωx|λ · Ey|λ,

for some probability distribution {qλ}λ. The signaling dimension [13] κ of a system S is
the minimum dimension d of a classical system Cd that can reproduce the input/output
correlations attainable by S, that is

κ (S) := min
d∈N

d s.t. Pm→nS ⊆ Pm→nCd
,
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for any m,n ∈ N. In particular, for a classical system Cd of dimension d, the sets S and E
of admissible states and effects, respectively, are known to be represented by regular d − 1

simplices in a linear space of dimension `(Cd) = d. For instance, for the (classical) bit, trit,
and quart, the states are represented by a segment, a triangle, and a tetrahedron, respectively,
and so are the effects.

The signaling dimension was originally introduced [13] in connection with the no-hyper-
signaling principle, which is a scaling rule stipulating that the signaling dimension of the
composition of any given systems cannot be larger than the product of the signaling dimension
of each system. In other words, the no-hypersignaling principle constraints the time-like
correlations that any given system can exhibit, and allows to rule out as unphysical even
systems whose space-like correlations are instead compatible with quantum or even classical
theory. In particular, the fact that quantum theory satisfies such a scaling rule follows only
as a consequence of the aforementioned recent result [7] by Frenkel and Weiner.

2.2 Compositions of square bits

Here we introduce a toy model theory, i.e. the square bit (or squit) and its compositions, that
will serve as a running example across all this work. The squit system S has linear dimension
`(S) = 3, namely its states ω and effects e are described by vectors in R3. We now specify
the convex sets S and E . The extremal states of the squit (that is, the four vertices of the
square) are given by the four vectors {ωk = Uskω0}k, with ω0 = (1, 0, 1)T . Here, {Usk}k,s are
the reversible transformations of the system (that is, the symmetries of the square or, more
generally, the transformation that leave the set of admissible states invariant, as opposed to
those transformations that shrink it) given by the following rotations and reflections

Usk =

cos πk2 −s sin πk
2 0

sin πk
2 s cos πk2 0

0 0 1

 ,

with k ∈ {0, 1, 2, 3} and s = ±1.
By explicit computation, the effect space dual to such a state space (that is, the set of

effects e such that e · ω ≥ 0) is given (up to a positive scaling factor) by the convex hull of
{ek = Uske0}k, with e0 = (1, 1, 1)T .

Any composition of two squits necessarily includes the factorized extremal states and
effects, that is

Ω4i+j := ωi ⊗ ωj , (1)

and

E4i+j := ei ⊗ ej , (2)

respectively, where i, j ∈ {0, 1, 2, 3}, so that the model has to include at least the bipartites
states Ω0, . . .Ω15 and the bipartite effects E0, . . . E15. Additionally, by explicit computation
the set of effects dual to Eq. (1) includes [20, 21] the eight entangled effects E16 up to E23
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given by the columns of

−1 −1 1 1 −1 1 1 −1
1 −1 −1 1 1 1 −1 −1
0 0 0 0 0 0 0 0
1 −1 −1 1 −1 −1 1 1
1 1 −1 −1 −1 1 1 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1


,

respectively. Analogously, the state space dual to Eq. (2) includes [20, 21] the eight entangled
states Ω16 up to Ω23 given (up to a positive scaling factor) by the columns of

−1 −1 1 1 −1 1 1 −1
1 −1 −1 1 −1 −1 1 1
0 0 0 0 0 0 0 0
1 −1 −1 1 1 1 −1 −1
1 1 −1 −1 −1 1 1 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2


,

respectively. Notice that the bipartite system S⊗S has linear dimension `(S ⊗ S) = `(S)
2

= 9.
However, it is well known that not all of the eight entangled states and the eight entangled

effects can be included in the same composite system. Indeed, composite systems must be
completely positive, that is, they must generate non-negative probabilities when connected in
any possible way allowed by the (reversible) dynamics of the system. In general, to find the
reversible dynamics of the composite system (that is, the symmetries of their sets of admissible
states and effects), one can use the algorithm introduced in the appendix of Ref. [23]. In the
particular case of two squits, it is known from Ref. [24] that the only non-trivial bipartite
reversible dynamics is the swap operator.

In Ref. [22], Janotta considered a theory including the following four entangled states:
Ω16, Ω18, Ω22, and Ω23 [see Eqs. (10), (11), (12), and (9) therein], as well as the following
four entangled effects (up to a positive scaling factor): E17, E19, E20, and E21 [see Eqs. (18),
(19), (17), and (20) therein]. Such a theory is not even positive, and therefore not completely
positive, that is, it includes events whose probability of occurrence is strictly negative. As
an example, take the following event, obtained by wiring (the Swap gate represents the swap
operator) the entangled state Ω23 with the entangled effect E20 (both included in Janotta’s
model), and whose probability is strictly negative:

Ω22 Swap E20 < 0.

To find the completely positive compositions of two squits, we first observe that the fol-
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lowing relations hold

Swap Ω20 = Ω23, (3)

Swap Ω21 = Ω22, (4)

SwapE20 = E23, (5)

SwapE21 = E22. (6)

Moreover, any such a composition must satisfy

Ωx
Un0

EyEy

Ωx
Un1

Un2

≥ 0, (7)

where U is given by

U ∝
Ey

Ωx
,

and ni = 0, 1 with i ∈ {0, 1, 2}.
By explicit computation, Eqs. (3), (4), (5), (6), and 7 above imply that the only possible

compositions are:

PR model all eight entangled states, no entangled effect, free local dynamics, so called since
it produces Popescu-Rohrlich correlations;

HS model no entangled state, all eight entangled effects, free local dynamics, so called since
it violates the no-hypersignaling principle [13];

four frozen models only one entangled state Ωx and one entangled effect Ex, with x ∈
{16, 17, 18, 19}, no non-trivial local dynamics (hence the name of the models).

Any other composition of two squits is necessarily not completely positive and possibly not
even positive, as Janotta’s model. Finally, it is very easy to see that such models are com-
pletely positive, by observing that for each of them one has

Ωx

Ex

Ωx

∝ Ωx ,

as well as

Ex

Ωx

Ex

∝ Ex ,
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and finally

Swap Ωx = Ωx,

SwapEx = Ex,

for any x ∈ {16, 17, 18, 19}.

3 Main results

In this section we introduce our main results, that is, analytical and algorithmic techniques
for the carachterization of all the extremal measurements with ray-extremal effects of any
given system, as well as for the computation of its signaling dimension.

3.1 Extremal measurements with ray-extremal effects

It is well-known [25, 26] that extremal quantum measurements can comprise effects that are
not ray-extremal (that is, they are not rank-one projectors). However, it is also known [27]
that, whenever optimizing an objective function that is convex in the measurement, one can
restrict to extremal measurements with ray-extremal effects. In the following we extend this
result to generalized probabilistic theories.

Before proceeding, let us give a convenient definition of measurement. To do so, we first
stipulate to normalize effects so that any measurement of the system can be expressed as
a probability distribution p over the effects such that

∑
y pyey = e, the unit effect with

unit probability over any state. As a comparison, in quantum theory such a choice would be
equivalent to defining effects as operators with trace equal to the Hilbert space dimension (the
same normalization as the identity operator), so that finite positive operator-valued measures
would actually be uniquely identified by the corresponding probability distributions. Hence,
for instance, in quantum theory rank-one projectors are the only ray-extremal effects. Any
other projector, while an extremal effect, is not ray-extremal.

The relevance of extremal measurements with ray-extremal effects (or, equivalently, ex-
tremal normalized effects) is made clear by the following two trivial observations: i) the
maximum of any convex objective function of the measurement is attained by an extremal
measurement, and ii) the maximum of any given objective function of the measurement that
is non-decreasing under fine graining is attained by a measurement with extremal normalized
effects. It is thus important to characterize those measurements with ray-extremal effects
that are extremal: this is achieved by the following lemma, which was first proved in the
supplemental material of Ref. [13].
Lemma 1 (Characterization of extremal measurements with ray-extremal effects). For any
measurementM = {py > 0, ey} with extremal normalized effects {ey}, the following conditions
are equivalent:

1. M is extremal,

2. {ey} are linearly independent.

Proof. Let us first prove by contradiction that 1 implies 2. We start by assuming that there ex-
ists an extremal measurement {py, ey} with p > 0 such that {ey} are not linearly independent,
i.e. |{ey}| > dim span({ey}). Since {ey} are normalized, they belong to an affine subspace of
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dimension dim span({ey})−1. Thus, applying Caratheodory’s theorem, the unit effect e, that
belongs to span({ey}) by hypothesis, can be decomposed in terms of a subset of {ey} with
cardinality dim span({ey}). In other words, there exists a probability distribution p′y, whose
support has cardinality not greater than dim span({ey}), such that

∑
y p
′
yey = e. By taking

λ > 0 such that p−λp′ ≥ 0 (such a λ always exists since p > 0) and p′′y := (1−λ)−1(py−λp′y),
it immediately follows that also {p′′y , ey} is a measurement. Then measurement M = {py, ey}
can be decomposed as λ{p′y, ey} + (1 − λ){p′′y , ey}, i.e. it is not extremal, thus leading to a
contradiction.

Let us now prove that 2 implies 1. Since {ey} are extremal, they cannot be further
decomposed, so any convex decomposition of M would necessarily involve a subset of the
effects {ey}. Since such effects {ey} are linearly independent, the decomposition of e is
unique and, since p > 0, no subset of {ey} can be a measurement. Therefore, the statement
follows.

As an immediate consequence of Lemma 1, for any extremal measurement with ray-
extremal effects one has that the number n of such effects is upper bounded by the linear
dimension of the system, a result that generalizes a theorem by Davies [27] to generalized
probabilistic theories.

If the extremal normalized effects are finite in number and given by the columns of matrix
E, a probability distribution p is a measurement on the extremal normalized effects if and
only if it satisfies the following linear equalities

Ep = e, (8)

as well as following the linear inequalities

p ≥ 0. (9)

Therefore, probability distribution p is an extremal measurement on the extremal normalized
effects if and only if it is a vertex of such a polytope. Notice that Eqs. (8) and (9) characterize
such a polytope by giving its faces description. The extremal measurements with extremal
normalized effects can therefore be found by passing from the faces description to the ver-
tices description, a standard problem that can be solved e.g. with the double description
method [28]. This is summarized by the following proposition.
Proposition 1. For any system with a finite number of extremal normalized effects given by
the columns of matrix E, the extremal measurements with extremal normalized effects are the
vertices of the polytope given (in faces description) by Eqs. (8) and (9), and can be found by
the double description method.

As an application, let us go back to our running example given by the HS model, consisting
of the composition of two squits that includes eight entangled effects. The aforementioned
procedure produces in this case a set of 408 extremal measurements with extremal normalized
effects. Such a set can be partitioned according to the equivalence class induced by the
reversible transformations of the system, so that two such measurements belong to the same
class if and only if they are equivalent up to a reversible transformation. By taking a single
representative for each equivalence class, the reduced set of extremal measurements with
extremal normalized effects is left with 15 elements only, as reported in Table 1.
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M # E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23

0 2 120 120

1 4 60 60 60 60
2 4 60 60 60 60

3 6 30 30 30 30 60 60
4 6 30 30 30 30 60 60
5 6 40 40 40 40 40 40

6 7 30 30 30 30 30 30 60

7 8 20 20 20 40 20 40 40 40
8 8 20 20 40 20 20 40 40 40
9 8 40 20 20 20 40 20 40 40
10 8 30 30 30 30 30 30 30 30

11 9 20 20 20 20 20 20 40 40 40
12 9 15 15 15 30 30 45 30 30 30
13 9 20 20 20 20 20 20 20 20 80
14 9 24 24 24 48 24 24 24 24 24

M # E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23

Table 1. Set of all extremal measurements (up to reversible transformations) for the composition
of two squits named HS model with eight entangled effects. Measurements are labelled by M

and represented by a probability distribution p over the set of extremal normalized effects {Ej}
(rescaled by a factor of 240 so that each entry is an integer). The number of non-null values of p is
also reported for convenience in the column indicated by the symbol #. We recall that factorized
effects are those from E0 to E15 (included), while the other effects are entangled.

3.2 The signaling dimension

We have already shown that, in order to compute the signaling dimension of any given system,
it suffices to consider the m-input/n-output conditional probability distributions generated
by the extremal measurements with ray-extremal effects upon the input of all the states of
the system. Here and in the following we take any such a conditional probability distribution
p arranged as an m × n stochastic matrix, where x and y label the row and the column,
respectively. For any such a p, it suffices to compute the minimal dimension d of the classical
polytope Pm→nd that contains p. The maximum over such p’s of the minimal dimension d

constitutes the signaling dimension of the given system.
The straightforward way of achieving this would be to check p against all the inequalities

that characterize the facets of Pm→nd . However, known algorithms for the characterization
of such facets require as input the vertices of Pm→nd , which are too many to make this
approach feasible for the instances of the problem we are interested in. This includes standard
algorithms such as the double description method [28], as well as fine-tuned algorithms such
as the adjacency decomposition algorithm by Doolittle and Chitambar of Ref. [10], that can
exploit the symmetries of Pm→nd in order to reduce the number of facets they output by
producing one representative facet for each equivalence class under symmetry. For instance,
for m = 16 (the number of extremal states in the HS composition of the squit), n = 9 (the
maximum number of elements of extremal measurements, attained by four such measurements
as per Table 2), and d = 5 (the minimum value we are interested in), the number of such
vertices is ∼ 2.4 · 1013 (see Lemma 2 below). From this issue, the need arises to devise
techniques that do not requrire the explicit enumeration of all the vertices of Pm→nd , as done
in the following.

For any given conditional probability distribution p and any classical dimension d, in order
to prove that d is the minimum dimension such that p belongs to the classical polytope Pm→nd ,
one needs to provide:

• an explicit convex decomposition x of p in terms of the vertices of Pm→nd , and

• an explicit linear witness (or game, or separating hyperplane) g such that p · g > q · g



420 The signaling dimension in generalized probabilistic theories

for any q ∈ Pm→nd−1 .

To obtain a convex decomposition x of p in terms of the vertices of Pm→nd , whenever
it exists, one can proceed as follows. The problem can be framed as the feasibility of the
following linear program

min
Ax=b
x≥0

c · x, (10)

where A is the (mn) × V matrix whose columns are the V vertices of Pm→nd rearranged as
vectors with m×n entries (the particular rearranging is irrelevant as long as used consistently
across the protocol); b is the vector with mn entries obtaining rearranging the conditional
probability distribution p; c is the vector with V entries all equal to zero since, as said earlier,
we are interested in the feasibility of the problem only (an alternative option is to take c to
be the vectors with all entries equal to one, which also gives a constant objective function
since x is constrained to be a probability distribution).

In turn, the number V of vertices of Pm→nd (equivalently, the number of columns of matrix
A) can itself be expressed in terms of m, n, and d. To see this, let us denote with(

n

k

)
:=

n!

k!(n− k)!

the binomial coefficient and with{
m

k

}
:=

k∑
j=0

1

k!
(−1)k−j

(
k

j

)
jm

the Stirling number of the second kind, i.e. the number of partitions of a set of m elements
in k non-empty classes. Then the following result, first proved in the supplemental material
of Ref. [13], holds.
Lemma 2. The number V of vertices of Pm→nd is given by

V =
d∑
k=1

k!

(
n

k

){
m

k

}
.

Proof. The statement follows by a a simple counting argument. First, one chooses k ≤ d

non-null columns (as stated earlier, different columns correspond to different effects); since
the matrix has a n columns, there are

(
n
k

)
such possible choices. Then, for each such a choice

one has to assign a single one to each row within the k columns that were chosen; in other
words, one has to assign each row (playing here the role of the element of a set) to a column
(playing here the role of an element of a partition of such a set). There are exactly k!

{
m
k

}
possible assignments, where the factorial k! comes from the fact that here the elements of the
partition are labeled, while the definition of the Stirling number of the second kind does not
take this into account.

In typical instances of the problem (see our running example on the composition of two
squits, discussed later on), V is too large for matrix A to be practically tractable. In this
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case, the following steps can reduce the complexity of the problem. First, observe that any
row of p (as stated earlier, different rows correspond to different states) that is the convex
combination of other rows can be eliminated without altering the result, thus reducing the
effective value of m (and thus V ) without loss of generality. Also, in typical applications
the conditional probability distributions p’s are rather sparse, a fact that can be exploited as
follows. Any vertex of Pm→nd that contains an entry equal to one where p contains a zero
will not contribute to the convex decomposition of p; hence can be discarded without loss
of generality, thus helping to further reduce the number V of vertices. In the following, we
denote with v such a reduced number of vertices, and we refer to it as the number of effective
vertices. We have then the following proposition.
Proposition 2. Any given m×n conditional probability distribution p belongs to the polytope
Pm→nd if and only if q belongs to the polytope Qm′→n

d , where q is m′ × n and is the same as
p where any row that is the convex combination of rows is removed, and Qm′→n

d is the same
as Pm′→n

d where any vertex that has an entry equal to one where q has an entry equal to zero
has been removed.

The process to reduce the number of vertices from V to v can be efficiently implemented
as a combinatorial, branch and bound algorithm. The algorithm starts on the first row of
matrix p, cycles over any choice of non-null entries of that row, and for each choice recursively
calls itself on the second row. At each call, the bounding procedure consists of verifying if
the number of columns from which an entry has been chosen so far is larger than d; if so, the
branch is pruned. Any pre-determined branching strategy can be adopted.

If the above steps do not suffice to make the linear program in Eq. 10 tractable, the
technique known as delayed column generation [29, 30, 31, 32] can be adopted, by observing
that it is possible to efficiently generate the vertex of the classical polytope Pm→nd that
minimizes the inner product with any given vector; this immediately gives the reduced cost
to be used in delayed column generation.

To obtain a linear witness g that separates the classical polytope Pm→nd from p, whenever
it exists, one can proceed as follows. The problem can be framed as the following linear
program, dual of the one in Eq. 10 except for the inclusion of a bounding box around variable
y:

max
ATy=c
−u≤y≤u

b · y, (11)

where matrix A and vectors b and c are defined as above, and vector u is the vector with
mn entries all equal to one. Notice that, if c has been taken to be the vector with all entries
equal to one, then one does not need to include the bounding box condition. The witness (or
game, or separating hyperplane) g is thus recovered by rearranging the entries of vector y as
a matrix.

As noticed above for the primal problem in Eq. (10), the dual problem in Eq. (11) too is
typically intractable, that is, there are too many constraints. In addition to the techniques
discussed above to reduce the size of matrix A, one can in this case adopt the ellipsoid
method [29, 30, 31, 32] or the cutting plane method [29, 30, 31, 32], by using as a separation
oracle the aforementioned function that efficiently returns the vertex of the classical polytope
Pm→nd−1 that minimizes the inner product with any given vector.
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As an application of the discussion of this section, let us return to our running example by
considering the extremal measurements with ray-extremal effects for any composition of two
squits given in Table 1. Considering the composition named HS-model that includes all eight
entangled effects (and therefore no entangled state), upon the input of the 16 (factorized)
extremal states each such measurement gives rise to a conditional probability distribution
with 16 rows and a number of columns equal to the number of effects. Notice that, when
computing the signaling dimension, it suffices to consider extremal measurements with at
least four ray-extremal effects, that is, measurements number 3 up to 14 in Table 1.

The two steps discussed above (that is, the derivation of the convex decomposition of p or
of the separating witness g) have been implemented in function decompose.m, and the results
are summarized in Table 2. Hence, the following corollary follows.

M # d g · b v V

3 6 4 128 ∼ 9 · 1010

4 6 4 64 ∼ 9 · 1010

5 6 4 465 ∼ 9 · 1010

6 7 5 2 672 ∼ 4 · 1012

7 8 5 1/3 60752 ∼ 1013

8 8 5 8/3 7616 ∼ 1013

9 8 5 2 10040 ∼ 1013

10 8 4 576 ∼ 3 · 1011

11 9 5 4/3 37136 ∼ 2 · 1013

12 9 5 2 107504 ∼ 2 · 1013

13 9 5 2/3 8704 ∼ 2 · 1013

14 9 5 8/5 488092 ∼ 2 · 1013

M # d g · b v V
Table 2. Set of all extremal measurements as in Table 1. The two columns labeled with d and
g · b denote the minimal dimension d of the classical polytope Pm→n

d such that the conditional
probability distribution p obtained by the measurement upon the input of the 16 extremal states
belongs to Pm→n

d , and (whenever such a d is larger than 4) the maximum value attained by any
witness g separating p from the classical polytope Pm→n

d−1 , respectively. The two columns labeled
with v and V represent the number of effective vertices for such a measurement and the total
number of vertices of the classical polytope Pm→n

d . Even in the worst case, corresponding to
the last row of the table, the protocol described here reduces the size of the problem by a factor
V/v ∼ 4 · 107.

Corollary 1. The signaling dimension of the composition of two squits named HS model,
including all eight possible entangled effects, is five.

Incidentally, our results proves the tightness of the lower bound on the signaling dimension
of such a model given in Ref. [13].

4 Conclusion

In this work we derived analytical and algorithmic techniques to characterize the extremal
measurements and compute the signaling dimension of any given system of any given gener-
alized probabilistic theory. As an example, we applied our results to the composition of two
square bits. The algorithmic techniques we derived here, and whose implementation is made



Michele Dall’Arno, Alessandro Tosini, and Francesco Buscemi 423

available online [17], can be directly applied to other system whose states and effects form
polytopes, such as polygonal and polyhedral theories.
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