Editorial Board
Guidelines for Authors
QIC Online

Subscribers: to view the full text of a paper, click on the title of the paper. If you have any problem to access the full text, please check with your librarian or contact qic@rintonpress.com   To subscribe to QIC, please click Here.

Quantum Information and Computation     ISSN: 1533-7146      published since 2001
Vol.22 No.11&12 September 20212

Synchronous games with *-isomorphic game algebras (pp924-946)
          
Samuel J. Harris
         
doi: https://doi.org/10.26421/QIC22.11-12-2

Abstracts: We establish several strong equivalences of synchronous non-local games, in the sense that the corresponding game algebras are $*$-isomorphic. We first show that the game algebra of any synchronous game on $n$ inputs and $k$ outputs is $*$-isomorphic to the game algebra of an associated bisynchronous game on $nk$ inputs and $nk$ outputs. As a result, we show that there are bisynchronous games with equal question and answer sets, whose optimal strategies only exist in the quantum commuting model, and not in the quantum approximate model. Moreover, we show that there are bisynchronous games with equal question and answer sets that have non-zero game algebras, but no winning quantum commuting strategies, resolving a problem of V.I. Paulsen and M. Rahaman. We also exhibit a $*$-isomorphism between any synchronous game algebra with $n$ questions and $k>3$ answers and a synchronous game algebra with $n(k-2)$ questions and $3$ answers.
Key words: synchronous game, bisynchronous game, and game algebra

กก