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Roa et al. showed that quantum state discrimination between two nonorthogonal quantum states does
not require quantum entanglement but quantum dissonance only. We find that quantum coherence can
also be utilized for unambiguous quantum state discrimination. We present a protocol and quantify the
required coherence for this task. We discuss the optimal unambiguous quantum state discrimination
strategy in some cases. In particular, our work illustrates an avenue to find the optimal strategy for
discriminating two nonorthogonal quantum states by measuring quantum coherence.
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1 Introduction

A fundamental result in quantum mechanics is the impossibility to perfectly distinguish two or more
nonorthogonal states. Quantum state discrimination (QSD) consists in devising strategies to discrimi-
nate nonorthogonal quantum states as accurately as possible. QSD has various useful applications in
quantum information processing [1, 2, 3], and it branches out into two important streams: minimal-
error deterministic quantum state discrimination (DQSD) [1] and unambiguous quantum state dis-
crimination (UQSD) [4]. In DQSD, one always has an answer but with a probability of being wrong.
On the other hand, in UQSD, one is guaranteed to never be wrong, but there are occasions when one
does not have an answer. In UQSD, the task is to minimize the probability of no answer. Though
several strategies exist to discriminate quantum states in the literature, optimal strategies of QSD are
yet to be figured out in all the cases [5]. The study of minimization of error in state discrimination was
pioneered by Helstrom [1] who provided a lower bound on the error probability for distinguishing two
quantum states. It has been enriched further by presenting an upper bound of success probability for
distinguishing arbitrary number of quantum states [6], and many studies have focused on achieving
that bound [7, 8, 9, 10, 11, 12]. In addition, the protocol for unambiguous discrimination of linear-
ly independent pure quantum states, assisted by an auxiliary system, is of fundamental interest [13].
While quantum entanglement [14] is regarded as a key resource in quantum information processing
[15], other non-classical correlations such as quantum discord and quantum dissonance [16, 17, 18])
are also very useful. The assisted unambiguous discrimination for two nonorthogonal states that re-
quires only quantum dissonance (zero entanglement and nonzero discord) was introduced by Roa et
al. [19], and its generalization and various applications have been studied thereafter [20, 21]. An
optical implementation of unambiguous discrimination of the two finite ensembles of coherent states
was also proposed by Sedlák [22]. In this paper, we find a UQSD protocol that requires only quantum
coherence as a resource.

Although those have intrinsically the same origin, viz. the superposition principle, more attention
has been paid on the effects of entanglement and other quantum correlations than on the impact of
quantum coherence [23, 24] on quantum advantages in devices and protocols. The fact that quantum
correlations such as entanglement and dissonance are required to discriminate quantum states, a natu-
ral question arises: is coherence sufficient for UQSD and is there any relation between the degree of
coherence and the efficiency of discrimination?

In this paper, we answer these questions affirmatively. In particular, we design a method to find
the optimal UQSD by controlling the coherence in a protocol that discriminates two nonorthogonal
quantum states. In line with this, we compute the amount of coherence for the optimal UQSD and
determine whether this optimality is achieved by the generated coherence in some circumstances.

In our study, we consider a qudit system S that is randomly prepared in one of the d nonorthogonal
but linearly independent pure quantum states. The system S is coupled to a (d + 1)-dimensional
auxiliary systemA by a joint unitary operatorUSA. We give a protocol to construct theUSA for d ≥ 2.
We find that the quantum states post the joint unitary operation do not contain any quantum correlation
such as entanglement or quantum discord between the system S and the auxiliary systemA. However,
quantum coherence is always generated in the auxiliary system A except when the quantum states to
be discriminated are mutually orthogonal. The joint unitary thus converts nonorthogonality on the
original system S into coherence on the auxiliary system A, and this coherence can be consumed for
the discrimination of nonorthogonal states.
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2 UQSD with coherence

Quantum coherence [23, 24] is defined with respect to a fixed orthonormal basis {|i〉} of a system
represented by a Hilbert space H. The set of “incoherent” or free states is conceptualized as a set
of perfectly distinguishable pure states and their mixtures. Precisely, it is defined by I =

{
σ =∑

i pi|i〉〈i| : pi ≥ 0,
∑
i pi = 1

}
. The “incoherent” or free operations keep the free states within the

set of free states. Precisely, they are completely positive maps, Φ, given by Φ(σ) =
∑
k EkσE

†
k, for

a set of incoherent Kraus operators, {Ek}, so that Φ(σ) ⊆ I for all σ ⊆ I. A measure of coherence
(with respect to the von Neumann measurement Π = {Πi = |i〉〈i|}), C(ρ|Π), satisfies

(C1) C(ρ|Π) ≥ 0 with equality if and only if ρ ∈ I,
(C2) C(ρ|Π) is nonincreasing under incoherent operations, i.e., C(ρ|Π) ≥ C(Φ(ρ)|Π) with

Φ(I) ⊆ I,
(C3) C(ρ|Π) is convex in ρ.
There are many important coherence measures [23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37]. In this paper, we will use two coherence measures. The first coherence measure is an
improved version of K coherence [25] based on the Wigner-Yanase skew information I(σ,K) =

− 1
2 tr([

√
σ,K]2), proposed by Luo et al. and defined as [26]

CI(ρ|Π) =
∑
i

I(ρ,Πi), (1)

where I(σ,Πi) = − 1
2 tr([

√
σ,Πi]

2).
For pure states |ψ〉 =

∑
i ψi |i〉, this measure is equivalent to the coherence measures such as l2

norm of coherence Cl2 and fidelity of coherence Cf [23, 29]:

CI(|ψ〉〈ψ||Π) =
∑
i,j,i 6=j

|ψi|2|ψj |2 = Cf (|ψ〉〈ψ||Π)

= Cl2(|ψ〉〈ψ||Π).

The second coherence measure C can be either robustness of coherence CR or l1 norm of coher-
ence Cl1 because these measures have the same expression for pure states [23, 34].

The axiomatic formulation of the coherence measures paves the way for using any measure with-
out significant digressions in the physics content. Quantum coherence has been detected experimen-
tally [25, 38, 39, 40]. Further interesting developments in quantum coherence theory can be explored
in Refs. [36, 37, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53].

In UQSD, one seeks for the best quantum measurement to discriminate between the nonorthogonal
states |φi〉 ∈ H of the ensemble {pi, |φi〉}di=1 with the least possible “error”. An upper bound on the
success probability (Ps) of UQSD is given by [6]

Ps ≤ 1− 1

d− 1

∑
i,j 6=i

√
pipj |〈φi|φj〉|. (2)

This has an operational meaning in the context of duality between the quantum coherence and the path
distinguishability [28].

Let us consider a qudit that is randomly prepared in one of the d nonorthogonal but linearly inde-
pendent quantum states |φi〉 in quantum system S, i = 1, 2, ..., d , with probabilities pi. The system
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S is coupled to a (d + 1)-dimensional auxiliary system A by a joint unitary operator USA such that

USA |φi〉 |0〉A =
√

1− |αi|2 |ϕi〉 |i〉A + αi |ϕi〉 |0〉A , (3)

where α∗iαj〈ϕi|ϕj〉 = 〈φi|φj〉 for i 6= j. A protocol for constructing the USA for d ≥ 2 is discussed
in the Appendix A. After the joint unitary operation USA, the average quantum state is given as a
mixed state ρ =

∑d
i=1 piρi =

∑d
i=1 pi |ϕi〉 〈ϕi| ⊗ ρAi , where ρi = USA(|φi〉 〈φi| ⊗ |0〉A 〈0|)U

†
SA

and ρAi = (1− |αi|2) |i〉A 〈i|+ |αi|2 |0〉A 〈0|+
√

1− |αi|2
(
αi |0〉A 〈i|+ α∗i |i〉A 〈0|

)
. Note that ρAi

is pure for each i. If we perform the local measurement M = {|j〉A 〈j|}dj=0 on the auxiliary system,
the success probability to discriminate the state is given by

Ps = 1− tr(I⊗ |0〉A 〈0| ρ) =

d∑
i=1

pi(1− |αi|2), (4)

where I is the unit operator for the system S. Also, since ρAi are pure for all i, the quantum states
post the unitary operation do not contain any quantum correlation such as entanglement or quantum
discord between the system S and the auxiliary system A. This process only generates and consumes
quantum coherence in the auxiliary system A.

Now, we compute the mean of coherence in the basis {|j〉A}di=0 of the auxiliary system using the
measure of coherence defined in equation (1) with the measurement ΠA = {ΠA

j = |j〉A 〈j|}. We

define the mean of coherence as Cmean :=
∑
i piCI(ρ

A
i |ΠA) =

∑d
i=1 pi

[∑d
j=0 I(ρAi ,Π

A
j )
]

which
reduces to

Cmean = 2

d∑
i=1

pi|αi|2
(
1− |αi|2

)
, (5)

and C̃mean :=
∑d
i=1 piC(ρAi |ΠA) which reduces to

C̃mean := 2

d∑
i=1

pi|αi|
√

1− |αi|2, (6)

where C can be either robustness of coherence CR or l1 norm of coherence Cl1 .
This shows that the success probability is lower bounded by the quantum coherence generated in

the auxiliary system, i.e., we have Ps ≥ 1
2Cmean. Another important observation here is that coher-

ence is always generated except when the quantum states to be discriminated are mutually orthogonal
(see Fig.1).

The joint unitary thus converts nonorthogonality on the original system S into coherence on the
auxiliary system A, and this coherence can be consumed for the discrimination of nonorthogonal
states (see Ref. [54]).

Also from the point of view of each i, not the mean of coherence, Eqs. (5) and (10) provide us
with a heretical relationship between the probability of success 1− |αi|2 and the generated coherence
|αi|2

(
1− |αi|2

)
for each i (see Fig. 2).

Let us assume that the quantum states {|φi〉}di=1 satisfy the condition |〈φi|φj〉| ≥ 1√
2

for all i 6= j,
then we have |αi|2 ≥ 1

2 for all i, because |αi|2|αj |2 ≥ |αi|2|αj |2|〈ϕi|ϕj〉|2 = |〈φi|φj〉|2 ≥ 1
2 . In this

case, we see from Fig. 2 that 1 − |αi|2 decreases when |αi|2
(
1 − |αi|2

)
decreases. This means that
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Fig. 1. (a) The UQSD strategy for orthogonal quantum states does not require any coherence. (b) On the con-
trary, coherence is essential for the UQSD strategy in the case of nonorthogonal quantum states. The degree of
nonorthogonality between the quantum states is closely related to the degree of the generated coherence.

if the coherence of i-th quantum state after the joint unitary operation is decreased, then the success
probability for result i is also decreased. Conversely, if |〈φi|φj〉| is small enough for all i 6= j and
|αi|2 is not greater than 1

2 , then we can increase the probability of success for the result i by adjusting
the i-th coherence to be sufficiently small, as seen in Fig. 2. However, this is possible only with
independent relationship for each result i, and it is difficult to find a numerical relationship with the
optimal UQSD average above.

3 Mean of coherence for optimal unambiguous discriminations

Here we consider in detail the two-dimensional case. Recall the UQSD protocol in Eq. (3) for d = 2.
Because it is always possible to make the nonorthogonal quantum states |ϕ1〉 , |ϕ2〉 in Eq. (3) the
same (see Appendix A), we have α∗1α2 = 〈φ1|φ2〉 ≡ γ.

If p1 = p2 = 1
2 , we have an interesting fact that the extreme values of the success probability Ps

and the mean of coherence Cmean (or C̃optmean) are obtained at the same point |α1|2 = |α2|2 = γ; see
Appendix for the detailed calculation. It follows that we can implement the optimal UQSD strategy by
adjusting the mean of coherence to the maximum value in a defined interval |γ|2 ≤ |α2|2 ≤ 1 when
|γ| ≥ 1

4 (see the red lines of (b), (c) and (d) in Fig. 3). Conversely, when |γ| < 1
4 , we can implement

the optimal discrimination by adjusting the mean of coherence to the local minimum value (see the
red line in Fig. 3(a)). Furthermore, the same behaviour is observed for C̃mean (see the green lines
of Fig. 3). Hence, the mean of coherence for the optimal UQSD reduces to Coptmean ≡ 2|γ|

(
1 − |γ|

)
[Eq. (5)] and C̃optmean ≡ 2

√
|γ|
(
1− |γ|

)
[Eq. (6)] because it has the highest probability of success

at |γ| = |α1|2 = |α2|2. Note that Coptmean (or C̃optmean) is the value of mean coherence for the optimal
UQSD protocol. Thus, a discrimination strategy or protocol will be an optimal UQSD if the value of
mean coherence equals Coptmean (or C̃optmean).

If p1 6= p2, we can measure the coherence for each result i and compare it to 2
√

p2
p1
|γ|(1−

√
p2
p1
|γ|)
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Fig. 2. (Color online) The solid red line is the graph of 1 − |αi|2 and the blue dashed line is the graph of
|αi|2

(
1− |αi|2

)
.

for i = 1 and 2
√

p1
p2
|γ|(1−

√
p1
p2
|γ|) for i = 2 to determine the optimality of UQSD (see Appendix B).

If the measured values of coherence equal the values above, one can implement the optimal strategy
to discriminate the given quantum states.

The above discussion can also be extended to general d described in Eq. (3). As in Eq. (2),
with γij = 〈φi|φj〉, the upper bound for the success probability of the UQSD is given by Ps ≤
1 − 1

d−1
∑
i,j 6=i

√
pipj |γij |. This inequality can be saturated provided p1|α1|2 = p2|α2|2 = · · · =

pd|αd|2, because |αi|2 =
√

pj
pi
|γij | for all i 6= j, therefore,

Ps = 1−
∑
i

pi|αi|2 = 1−
∑
i

[ 1

d− 1

∑
j 6=i

pi

√
pj
pi
|γij |

]
= 1− 1

d− 1

∑
i,j 6=i

√
pipj |γij |.

Thus, for any i ∈ {1, 2, ..., d}, for example, i = 1, we have d p1|α1|2 = 1
d−1

∑
i,j 6=i

√
pipj |γij | ≡ B.

Therefore, the mean of coherence is

Cmean = 2B
(

1− B

d2

∑
i

1

pi

)
. (7)

However, since this upper bound of success probability is not always achievable, it cannot in
general be regarded as an optimal success probability. Likewise, we cannot be certain that the mean
of coherence in Eq. (7) is for an optimal discrimination. It is only possible to estimate how similar
or close our UQSD is to the optimal UQSD by comparing the computed mean value with that in Eq.
(7). However, when the quantum states {|φi〉} satisfy the following two conditions, we can obtain the
optimal result.

Condition 1. |γij ||γik||γjk| = |γil||γim|
|γlm| for unequal i, j, k, l,m. This makes it possible for all |ϕi〉 to

be equal in Eq. (3), i.e., USA |φi〉 |0〉A =
√

1− |αi|2 |ϕ〉 |i〉A + αi |ϕ〉 |0〉A , where α∗iαj = 〈φi|φj〉.
Then |γ1j ||γ1k||γjk| = |α1|2 for any j 6= k.
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Fig. 3. (Color online) Plots of Ps|x=|α1|2 (dashed blue), Cmean|x=|α1|2 (solid red) and C̃mean|x=|α1|2 (thin
green), when p1 = p2 = 1

2
, against x for different values of |γ|.

Condition 2. pi|γki|2 = pj |γkj |2 for unequal i, j, k. This allows us to design a strategy which
satisfies p1|α1|2 = p2|α2|2 = · · · = pd|αd|2.

Therefore, when the above two conditions are satisfied, we can verify that the UQSD is optimal
by comparing the mean value of the measured coherence with Eq. (7).

4 The protocol with noise

Next, we try to understand how the UQSD protocol using quantum coherence is affected when the
input state is subject to noise. This noise can be modelled in a variety of ways, and depends on the
actual implementation of the relevant devices. In the literature, arguably the most popular theoretical
model of noise is admixture with white noise. But as in our protocol of UQSD there is already a
bias in the input state, it is plausible that the environmental noise will thereby be biased as well. We
restrict ourselves, in the noisy scenario, to the case where there are two inputs to the distinguishing
device, and they are respectively |0〉 and |+〉, where 〈+|0〉 = 1/

√
2. We assume the noise model

where the density matrices corresponding to the states |0〉 , |+〉 become ρ0 = p|0〉〈0| + 1−p
2 Ĩ2 and

ρ+ = p|+〉〈+| + 1−p
2 Ĩ2, where Ĩ2 = |0〉〈0| + |+〉〈+|. Calculating the final state after the unitary

transformation, we see that no entanglement or discord is generated. And, for various values of the
noise parameter (1 − p), we have calculated the value of quantum coherence. Please refer to the
Appendix C for the detailed analysis. We also explicitly show that the reliability of the distinguishing
protocol decreases from 1 to 1+p

2 in the presence of noise, where (1− p) is the strength of the noise.
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5 Conclusion

Identifying resources for quantum state discrimination is of fundamental importance. Use of quantum
correlations as a resource for the same has been studied extensively. In this paper, we have investigated
the role of quantum coherence in unambiguously discriminating nonorthogonal but linearly indepen-
dent pure quantum states, assisted by an auxiliary system. We provide a relationship between the
success probability of the discriminating strategy and the mean coherence generated on the auxiliary
system for several important coherence measures. The degree of the generated coherence depends on
the nonorthogonality between the input quantum states. We can effectively use the mean of coherence
to improve the efficiency of the strategy for each individual result of the performed measurement.
Finally, we compute the coherence that is generated when an optimal unambiguous discrimination
strategy is implemented in some situations. In these cases, we can use the mean of coherence to
determine whether the discrimination strategy is optimal or not. In particular, for unambiguous dis-
crimination between two pure qubit states, we show that the receiver can obtain the optimal strategy by
controlling the mean coherence to the maximum or minimum value without feedback from the sender.
Our result will open up new investigations in the use of coherence in quantum state discrimination.
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6 Appendix

6.1 The joint unitary operators for d ≥ 2 quantum states

We construct a unitary operator USA in the UQSD strategy that discriminates between two quantum
states |φ1〉 and |φ2〉. Let 〈φ1|φ2〉 = γ and {|i〉A}2i=0 be an orthonormal basis of the auxiliary system
A. We assume that the system S is 2 dimensional. Take a vector |φ+1 〉 ∈ S such that 〈φ1|φ+1 〉 = 0 and
|φ2〉 = γ |φ1〉 +

√
1− |γ|2 |φ+1 〉. Then {|φ1〉 |i〉A , |φ

+
1 〉 |i〉A}i is an orthonormal basis of the whole

system SA. Let 0 < |α| ≤ 1, |υα,1〉A =
√

1− |α|2 |1〉A + α |0〉A and |υα,2〉A = γ(1−|α|2)
α∗
√

1−|γ|2
|0〉A −
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γ
√

1−|α|2√
1−|γ|2

|1〉A +

√
|α|2−|γ|2

|α|
√

1−|γ|2
|2〉A. Then it is easy to see that 〈υα,1|υα,2〉A = 0. Moreover, let us

take a unit vector |υα,0〉A ∈ A such that {|υα,j〉A}
2
j=0 is an orthonormal basis of the auxiliary system

A, and take two unit vectors |ϕ〉 , |ϕ+〉 in S such that 〈ϕ|ϕ+〉 = 0. Let Uγ,α be a transform from
the orthonormal basis {|φ1〉 |i〉A , |φ

+
1 〉 |i〉A}i to the orthonormal basis {|ϕ〉 |υα,j〉A , |ϕ

+〉 |υα,j〉A}j
that satisfies Uγ,α |φ1〉 |0〉A = |ϕ〉 |υα,1〉A and Uγ,α |φ+1 〉 |0〉A = |ϕ〉 |υα,2〉A . Then Uγ,α is a unitary
transformation on the system SA such that:

Uγ,α |φ1〉 |0〉A =
√

1− |α|2 |ϕ〉 |1〉A + α |ϕ〉 |0〉A ,

Uγ,α |φ2〉 |0〉A =

√
1− |γ|

2

|α|2
|ϕ〉 |2〉A +

γ

α∗
|ϕ〉 |0〉A .

Next, let us find out about the case of d ≥ 3. For d linearly independent quantum states |φi〉 with
〈φi|φj〉 = γij , the unitary operator USA of (3) can be achieved by expanding and repeating similar
tasks as above, but it must include more complex process. We first find the following orthonormal
basis {|φ′i〉} of the system S sequentially from the states |φi〉:

|φ′1〉 = |φ1〉 and |φ′i〉 =
|φi〉 −

∑i−1
j=1 γ

′
ji |φ′j〉√

1−
∑i−1
j=1 |γ′ji|2

(8)

with 〈φ′j |φi〉 = γ′ji for 2 ≤ i ≤ d. For this we also know that |φi〉 can be represented as a combination
of {|φ′i〉}, i.e.,

|φi〉 =

i−1∑
j=1

γ′ji |φ′j〉+

√√√√1−
i−1∑
j=1

|γ′ji|2 |φ
′
i〉 (9)

for 2 ≤ i ≤ d. Our aim here is to find states |ϕ′i〉 and |υαi〉A with 〈υαi |υαj 〉A = 0 for i 6= j that
satisfy the Eq. (3) when USA |φ′i〉 |0〉A = |ϕ′i〉 |υαi

〉A. These states can be found sequentially, starting
with |ϕ′1〉 = |ϕ1〉 and |υα1〉 =

√
1− |α1|2 |1〉 + α1 |0〉. Of course, α∗iαj〈ϕi|ϕj〉 = 〈φi|φj〉 means

that the inner products between states before and after the unitary USA are preserved, and therefore
the existence of USA satisfying the Eq. (3) is guaranteed.

In addition, if αi are satisfied with α∗iαj = 〈φi|φj〉 for i 6= j, we can find USA in a simpler way.
Here we also use the orthonormal basis {|φ′i〉} of the system S in (8), and find quantum states |υαi

〉
with 〈υαi |υαj 〉 = 0 for (i 6= j) satisfying that

i−1∑
j=1

γ′ji |υαj
〉+

√√√√1−
i−1∑
j=1

|γ′ji|2 |υαi〉 =
√

1− |αi|2 |i〉+ αi |0〉 .

In the above equation, the part before the equal sign is the same as the form for |φ′i〉 in (9) and thereby
we can find the states |υαi〉 in sequence, starting with |υα1〉 =

√
1− |α1|2 |1〉 + α1 |0〉. Then the

joint unitary operator USA that result in USA |φ′i〉 |0〉A = |ϕ〉 |υαi
〉A for any state |ϕ〉 satisfy Eq. (3).

6.2 Relation of Ps, Cmean and C̃mean for two quantum states

The success probability to discriminate between two quantum states |φ1〉 and |φ2〉 is

Ps = 1− tr(I⊗ |0〉A 〈0| ρ) =

2∑
i=1

pi(1− |αi|2). (10)
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Note that for the USA in the above section, we have |α1|2|α2|2 = |γ|2. Denoting x = |α1|2,
Ps(x) = p1(1 − x) + p2

(
1 − |γ|

2

x

)
. For the optimal success probability, we require P ′s(x) = −p1 +

p2
|γ|2
x2 = 0. This yields p1|α1|2 = p2|α2|2. That is, if |α1|2 =

√
p2
p1
|γ|, then we can distinguish |φ1〉

and |φ2〉 with the optimal success probability

P opts = 1− 2p1|α1|2 = 1− 2
√
p1p2|γ|.

Since p1p2|γ|2 = p21|α1|4 = p22|α2|4, the mean of coherence, Cmean = 2
∑d
i=1 pi|αi|2

(
1 − |αi|2

)
,

for the optimal UQSD is
Coptmean = 2|γ|(2√p1p2 − |γ|).

When p1 = p2 = 1
2 , we have

Cmean(x) =
[
x(1− x) +

|γ|2

x

(
1− |γ|

2

x

)]
,

and its first-order derivative with respect to x

C ′mean(x) = − 1

x3
(x− |γ|)(x+ |γ|)(2x2 − x+ 2|γ|2).

Thus C ′mean(x) = 0 has three roots: x1 = γ, x2 =
1+
√

1−16|γ|
4 , and x3 =

1+
√

1−16|γ|
4 , where

|γ| ≤ 1
4 .

Moreover, from the second-order derivative of Cmean(x) with respect to x

C ′′mean(x) = −2 + 2
|γ|2

x3
− 6
|γ|4

x4
,

it follows that

C ′′mean(x)
∣∣∣
|γ|=x

{
≤ 0 when |γ| ≥ 1

4 ,
> 0 when |γ| < 1

4 .

Therefore, there is only one extreme point at x = |γ| = |α1|2 when |γ| ≥ 1
4 .

Furthermore, for the second-type mean of coherence C̃mean(x) when p1 = p2 = 1
2 , we have

C̃mean(x) =
√
x− x2 + |γ|

√
1

x
− |γ|

2

x2

and

C̃ ′mean(x) =
1

2

[ 1− 2x√
x− x2

− |γ|(x− 2|γ|2)

x2
√
x− |γ|2

]
.

Thus, C̃mean also has an extreme value at x = |γ| = |α1|2.

6.3 UQSD using quantum coherence in presence of noise

Suppose that the states to be distinguished using UQSD are |0〉 and |+〉. We consider the noise model
where the density matrices corresponding to the states |0〉 , |+〉, become

ρ0 = p|0〉〈0|+ 1− p
2

Ĩ2, and ρ+ = p|+〉〈+|+ 1− p
2

Ĩ2, (11)
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where Ĩ2 = |0〉〈0|+ |+〉〈+|. It is possible to calculate the degree of quantum coherence of a quantum
state if its spectral decomposition is known. Therefore, we first obtain the spectral decomposition of
the above quantum states for any noise 1− p (0 ≤ p ≤ 1) as follows:

ρ0 = q|ψ+〉〈ψ+|+ (1− q)|ψ−〉〈ψ−| and ρ+ = q|φ+〉〈φ+|+ (1− q)|φ−〉〈φ−|,

where

|ψ+〉 = a0 |0〉+
√

1− a20 |1〉 , |ψ−〉 =
√

1− a20 |0〉 − a0 |1〉 ,

|φ+〉 = a+ |0〉+
√

1− a2+ |1〉 , |φ−〉 =
√

1− a2+ |0〉 − a+ |1〉

with a20 = 1
2 +

√
2(1+p)

4
√

1+p2
, a2+ = 1

2 +
√
2(1−p)

4
√

1+p2
and q = 1

2 +
√
2
√

1+p2

4 . If USA is a joint unitary

transformation on the system SA such that:

|Φ0〉 = USA |0〉 |0〉A =
√

1− α2 |ϕ0〉 |1〉A + α |ϕ0〉 |0〉A ,

|Φ+〉 = USA |+〉 |0〉A =

√
1− γ2

α2
|ϕ+〉 |2〉A +

γ

α
|ϕ+〉 |0〉A ,

where γ = 〈0|+〉 =
√
2
2 , then the action of the unitary operator USA on the states ρ0 and ρ+ is

USA(ρ0 ⊗ |0〉A 〈0|)U
†
SA =

(1 + p)

2
|Φ0〉〈Φ0|+

1− p
2
|Φ+〉〈Φ+|, (12)

USA(ρ+ ⊗ |0〉A 〈0|)U
†
SA =

(1 + p)

2
|Φ+〉〈Φ+|+

1− p
2
|Φ0〉〈Φ0|, (13)

respectively. The unitary transformations in Eq. (12) and Eq. (13) can be rewritten as

USA(ρi ⊗ |0〉A 〈0|)U
†
SA = |ϕi〉〈ϕi| ⊗ ρAi

= |ϕi〉〈ϕi| ⊗
{
q |Φi,+〉A 〈Φi,+|+ (1− q) |Φi,−〉A 〈Φi,−|

}
,

(14)

where

|Φi,+〉A =
[{
αai − (α− 1

α
)
√

1− a2i
}
|0〉+

√
1− α2(ai −

√
1− a2i ) |1〉+

√
(2− 1

α2
)(1− a2i ) |2〉

]
A

and

|Φi,−〉A =
[{
α(ai +

√
1− a2i )−

ai
α

}
|0〉+

√
1− α2(ai +

√
1− a2i ) |1〉 − ai

√
2− 1

α2
|2〉
]
A
,

for i = 0,+. We can see that no quantum entanglement or discord is generated after the unitary
transformation for any noise 1− p.

Next, we calculate quantum coherence with respect to measurement Π = {|0〉A 〈0| , |1〉A 〈1| , |2〉A 〈2|}
on system A,

CI(ρ
A
i ) =

2∑
j=0

[
q
{

(+)2i,j − (+)4i,j
}

+ (1− q)
{

(−)2i,j − (−)4i,j
}
− 2
√
q(1− q)(+)2i,j(−)2i,j

]
,
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where (+)i,j = 〈Φi,+|j〉A, (−)i,j = 〈Φi,−|j〉A for i = 0,+ and j = 0, 1, 2. In addition, with some
tedious calculation, we can predict the value of noise 1 − p from the measured values of quantum
coherence when α is fixed.

For example, when p = 1 (the case of no noise), we have

CI(ρ
A
0 ) = 2α2(1− α2), CI(ρ

A
+) =

1

α2
(1− 1

2α2
).

This is the measured value of quantum coherence in the absence of noise. If α2 = γ =
√
2
2 , then we

have

p = 1 : CI(ρ
A
0 ) = CI(ρ

A
+) ≈ 0.414,

p = 0.5 : CI(ρ
A
0 ) = CI(ρ

A
+) ≈ 0.287,

p = 0.2 : CI(ρ
A
0 ) = CI(ρ

A
+) ≈ 0.271,

p = 0 : CI(ρ
A
0 ) = CI(ρ

A
+) ≈ 0.269.

Now, if we happen to know that the probability of the measurement outcome is |0〉, we can calcu-
late the probability with which the input state |0〉 was sent. We call this probability reliability when
|0〉 clicks in measurement M , and denote it by R0 (see Ref. [22]). The expression for R0 is given by

R0 = Pr
(
|0〉
∣∣|0〉) =

Pr
(
|0〉
)
× Pr

(
|0〉
∣∣|0〉)

Pr
(
|0〉
)
× Pr

(
|0〉
∣∣|0〉)+ Pr

(
|+〉
)
× Pr

(
|0〉
∣∣|+〉) , (15)

where Pr(|·〉) denotes the probability that |·〉 was sent, Pr(|∗〉 | |◦〉) denotes the probability that the
outcome of M is |∗〉 when |◦〉 was sent, and the Bayes rule [55, 56] is used in Eq. (15). Assuming
that the states |0〉 and |1〉 were chosen with equal probabilities, we get

R0 =
1
2 × p0

1
2 × p0 + 1

2 × p+
=

p0
p0 + p+

, (16)

where

p0 = A〈0|TrS

(
1 + p

2
|Φ0〉〈Φ0|+

1− p
2
|Φ+〉〈Φ+|

)
|0〉A,

p+ = A〈0|TrS

(
1 + p

2
|Φ+〉〈Φ+|+

1− p
2
|Φ0〉〈Φ0|

)
|0〉A.

Since TrS |Φ0〉〈Φ0| = P[(1 − |α0|2)|0〉 + α0|2〉] and TrS |Φ+〉〈Φ+| = P[(1 − |α+|2)|1〉 + α+|2〉],
where P(·) denotes the projector of the vector in the argument, we can write

p0 =
1 + p

2
(1− |α0|2), p+ =

1− p
2

(1− |α0|2). (17)

Substituting these in Eq. (16), we get

R0 =
1 + p

2
. (18)

Performing a similar analysis for the reliability R+, when |+〉 clicks in M , we obtain

R+ = R0 =
1 + p

2
, (19)
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which can be called the “reliability of the entire distinguishing process”. Hence, we can say that the
reliability of the distinguishing process decreases from 1 to 1+p

2 , when noise acts on the system, where
1 − p (0 ≤ p ≤ 1) is strength of the noise for the noise model under consideration. Note that the
reliability is lower bounded by 1/2.
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