Editorial Board
Guidelines for Authors
QIC Online

Subscribers: to view the full text of a paper, click on the title of the paper. If you have any problem to access the full text, please check with your librarian or contact qic@rintonpress.com   To subscribe to QIC, please click Here.

Quantum Information and Computation     ISSN: 1533-7146      published since 2001
Vol.9 No.11&12  November 2009 

Robust cryptography in the noisy-quantum-storage model (pp0963-0996)
          
Christian Schaffner, Barbara Terhal, and Stephanie Wehner
         
doi: https://doi.org/10.26421/QIC9.11-12-4

Abstracts: It was shown in [42] that cryptographic primitives can be implemented based on the assumption that quantum storage of qubits is noisy. In this work we analyze a protocol for the universal task of oblivious transfer that can be implemented using quantumkey-distribution (QKD) hardware in the practical setting where honest participants are unable to perform noise-free operations. We derive trade-offs between the amount of storage noise, the amount of noise in the operations performed by the honest participants and the security of oblivious transfer which are greatly improved compared to the results in [42]. As an example, we show that for the case of depolarizing noise in storage we can obtain secure oblivious transfer as long as the quantum bit-error rate of the channel does not exceed 11% and the noise on the channel is strictly less than the quantum storage noise. This is optimal for the protocol considered. Finally, we show that our analysis easily carries over to quantum protocols for secure identification.
Key words:  quantum cryptography, noisy-storage model

กก