Editorial Board
Guidelines for Authors
QIC Online

Subscribers: to view the full text of a paper, click on the title of the paper. If you have any problem to access the full text, please check with your librarian or contact qic@rintonpress.com   To subscribe to QIC, please click Here.

Quantum Information and Computation     ISSN: 1533-7146      published since 2001
Vol.22 No.15&16 November 20212

Quantum approximate counting for Markov chains and collision counting (pp1261-1279)  
          
Francois Le Gall and Iu-Iong Ng
          
doi: https://doi.org/10.26421/QIC22.15-16-1

Abstracts: In this paper we show how to generalize the quantum approximate counting technique developed by Brassard, H{\o}yer and Tapp [ICALP 1998] to a more general setting: estimating the number of marked states of a Markov chain (a Markov chain can be seen as a random walk over a graph with weighted edges). This makes it possible to construct quantum approximate counting algorithms from quantum search algorithms based on the powerful ``quantum walk based search'' framework established by Magniez, Nayak, Roland and Santha [SIAM Journal on Computing 2011]. As an application, we apply this approach to the quantum element distinctness algorithm by Ambainis [SIAM Journal on Computing 2007]: for two injective functions over a set of $N$ elements, we obtain a quantum algorithm that estimates the number $m$ of collisions of the two functions within relative error $\epsilon$ by making $\tilde{O}\left(\frac{1}{\epsilon^{25/24}}\big(\frac{N}{\sqrt{m}}\big)^{2/3}\right)$ queries, which gives an improvement over the $\Theta\big(\frac{1}{\epsilon}\frac{N}{\sqrt{m}}\big)$-query classical algorithm based on random sampling when $m\ll N$.
Key words: quantum algorithm, approximate counting, phase estimation, approximate collision counting

กก