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We consider a range of “theories” that violate the uncertainty relation for anti-commuting

observables derived in [JMP, 49, 062105 (2008)]. We first show that Tsirelson’s bound

for the CHSH inequality can be derived from this uncertainty relation, and that relaxing
this relation allows for non-local correlations that are stronger than what can be obtained

in quantum mechanics. We continue to construct a hierarchy of related non-signaling

theories, and show that on one hand they admit superstrong random access encodings
and exponential savings for a particular communication problem, while on the other hand

it becomes much harder in these theories to learn a state. We show that the existence of

these effects stems from the absence of certain constraints on the expectation values of
commuting measurements from our non-signaling theories that are present in quantum

theory.
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1 Introduction

In any physical theory, we may consider measurements M that when applied to a state ρ result
in some measurement outcome k with probability P (k|M), depending on ρ. A crucial element
in characterizing the power of any physical theory lies in understanding what probability
distributions are indeed possible. Quantum theory, for example, imposes strict limits on such
distributions, which greatly affects our ability to perform information processing tasks [1].
One of these limitations is commonly known as an uncertainty relation. We may for example
ask whether for some fixed choice of measurements M1 and M2 there even exists any state
such that both distributions can be arbitrarily well defined. That is, is it possible that there
exist outcomes k1 and k2 such that P (k1|M1) = P (k2|M2) = 1? Curiously, it turns out
that in quantum theory there do indeed exist pairs of measurements M1 and M2 for which
this is impossible. Another limitation is known as the strength of non-local correlations,
which are restrictions on the joint probability distributions we can obtain when performing
measurements on spatially separated systems. Classically, these limitations are known as
Bell inequalities, and the corresponding limitations in the quantum case are referred to as
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802 Relaxed uncertainty relations and information processing

Tsirelson bounds.
Since quantum mechanics imposes very stringent restrictions on the possible distribu-

tions [2], we would much like to understand their extent and implications. To this end, it is
instructive to remove some of these restrictions and investigate how our ability to perform
information processing tasks changes as a result. In this work, we will relax an uncertainty
relation, which greatly affects our ability to solve communication and coding tasks. We will
also see that the different kinds of restrictions are very closely related and show that for ex-
ample Tsirelson’s bound for the CHSH inequality is a consequence of the uncertainty relation
of [3].

1.1 Previous work

Previous work has focused on investigating one particular restriction imposed by quantum
mechanics, namely its limits on non-local correlations. Indeed, the existence of non-local cor-
relations in quantum mechanics that are stronger than those allowed by local realism [4], but
yet strictly weaker than those consistent with the no-signaling principle [5] poses an enigma to
the understanding of the foundations of quantum physics. What are the properties of quan-
tum mechanics that disallow these stronger correlations [6]? And, what possibilities would
be opened by the existence of these correlations? Much of the work exploring these questions
has focused on the “box paradigm” that was initially inspired by the CHSH inequality [7].
This particular Bell inequality [4] can be cast into a form of a simple game between two play-
ers, Alice and Bob. When the game starts, Alice and Bob are presented with randomly and
independently chosen questions s ∈ {0, 1} and t ∈ {0, 1} respectively. They win if and only
if they manage to return answers a ∈ {0, 1} and b ∈ {0, 1} such that s · t = a⊕ b. Alice and
Bob may thereby agree on any strategy before the game starts, but may not communicate
afterwards. Classically, that is in any model based on local realism, this strategy consists of
shared randomness. It has been shown [7] that for any such strategy we have

γ :=
1
4

∑
s,t∈{0,1}

Pr[s · t = as ⊕ bt] ≤
3
4
,

where Pr[s · t = as ⊕ bt] is the probability that Alice and Bob return winning answers as and
bt when presented with questions s and t. Quantumly, Alice and Bob may choose any shared
quantum state together with local measurements as part of their strategy. This allows them
to violate the inequality above, but curiously only up to a value

γ ≤ 1
2

+
1

2
√

2
,

known as Tsirelson’s bound [8, 9]. We will see later that there exists a state |Ψ〉AB shared
by Alice and Bob that achieves this bound when Alice and Bob perform measurements given
by the observables A0 = B0 = X and A1 = B1 = Z where we use As and Bt to denote the
measurement corresponding to questions s and t respectively. The non-signaling principle
that disallows faster than light communication between Alice and Bob alone does not impose
such a restrictive bound. Hence, Popescu and Rohrlich [5, 10, 11] raised the question why
nature is not more ’non-local’? That is, why does quantum mechanics not allow for a stronger
violation of the CHSH inequality up to the maximal value of 1? To gain more insight into
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this question, they constructed a toy-theory based on so-called PR-boxes [5]. Each such
box takes inputs s, t ∈ {0, 1} from Alice and Bob respectively and simply outputs randomly
chosen measurement outcomes as,bt such that s · t = as ⊕ bt. Each such box can be used
exactly once, and no notion of post-measurement states exists. Note that Alice and Bob
still cannot use this box to transmit any information. However, since we have for all s and
t that Pr[s · t = as ⊕ bt] = 1, Tsirelson’s bound is clearly is violated. It is interesting to
consider how our ability to perform information processing tasks changes, if PR-boxes indeed
existed. For example, it has been shown that Alice and Bob can use such PR-boxes to
compute any Boolean function f : {0, 1}2n → {0, 1} of their individual inputs x ∈ {0, 1}n and
y ∈ {0, 1}n by communicating only a single bit [1], which is even true when the boxes have
slight imperfections [12].

Much interest has since been devoted to the study of such PR-boxes and their general-
izations known as non-local boxes [13, 14, 15, 16, 17, 18, 19]. In particular, they have been
incorporated in a very nice way into generalized non-signaling theories (GNST) due to Bar-
rett [20] (the relation of such theories to generalizations of quantum theory is due to Hardy [6])
as a means of exploring foundational questions in quantum information. Intuitively, such the-
ories allow for “boxes” involving many more inputs for one or more players/systems, and also
allow for some transformations between such boxes. Both theories seek out physically moti-
vated properties that single out quantum mechanics from other theories such as the classical
world. These theories have also found interesting applications in deriving new bounds for
quantum mechanics itself, e.g., monogamy of entanglement [21].

In such a theory, n-partite states are characterized by the probabilities of obtaining cer-
tain outcomes when performing a fixed set of local fiducial measurements on each system.
For example, to describe a non-local box, consider a bipartite system, where Alice holds
the first and Bob the second system. We will label both Alice and Bob’s measurements
using X and Z in analogy to the quantum setting. For convenience we will also label
the outcomes using a, b ∈ {0, 1}, where the actual outcomes of X and Z in the quantum
setting could be recovered as (−1)a, and use p(A|M) to denote the probability of obtain-
ing outcomes A for measurements M . A non-local box is now given by the probabilities
p(0, 0|X, X) = p(0, 0|X, Z) = p(0, 0|Z,X) = 1/2, p(1, 1|X, X) = p(1, 1|X, Z) = p(1, 1|Z,X) =
1/2, p(0, 1|Z,Z) = p(1, 0|Z,Z) = 1/2 and p(A|M) = 0 otherwise. We will describe such
theories in more detail in section 4. We will also refer to GNST using the commonly used
term “box-world”.

1.2 Relaxed uncertainty relations

Even when allowing more than two measurements and outcomes, such boxes remain very
artificial constructs and it is not quite clear how they relate to quantum theory. In this note,
we hope to provide a more intuitive understanding by showing that superstrong correlations
can indeed be obtained by relaxing an uncertainty relation known to hold in quantum theory.
Consider any anti-commuting observables Γ1, . . . ,Γ2n satisfying

{Γj ,Γk} = 0

whenever j 6= k and
Γ2

j = I,
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Fig. 1. p-norm unit circles in dimension 2 for p = 1, 2, 3, 10, 10000

for any j ∈ [2n], and let Γ0 = iΓ1 . . .Γ2n (see section 2 on how to construct such operators).
It was shown in [3] that any quantum state obeys

2n∑
j=0

Tr (Γjρ)2 ≤ 1, (1)

which also lead to several entropic uncertainty relations for such observables. To see why
Eq. (1) itself can be understood as an uncertainty relation note that Tr(Γjρ) is the expectation
value of measuring the observable Γj on ρ. The probability of obtaining a measurement
outcome b ∈ {±1} can furthermore be written as p(b|Γj) = 1/2+b Tr(Γjρ)/2. Hence, Tr(Γjρ)
can also be understood as the bias towards a particular measurement outcome. Eq. (1) now
tells us that this bias cannot be arbitrarily large for all measurements Γj . Note that we could
rewrite the condition of Eq. (1) as ||v||22 ≤ 1 where v = (Tr(Γ1ρ), . . . ,Tr(Γ2nρ)). Whereas the
uncertainty relations of [3] may appear unrelated to the problem of determining the strength
of non-local correlations, we will see later that Tsirelson’s bound for the CHSH inequality
is in fact a consequence of Eq. (1), when we use the fact that local anti-commutation and
maximal violations of the CHSH inequality are closely related [8, 21, 22]. Thus, as one might
intuitively guess, bounds for the strength of non-local correlations are indeed closely related to
uncertainty relations, and such connections have been observed in a different form by [16, 20].

What happens if we merely ask for ||v||pp ≤ 1, where || · ||p is the p-norm of the vector
v? Since Eq. (1) must hold for any quantum state, that is for any positive semi-definite
matrix ρ with Tr(ρ) = 1, it is clear that this allows operators ρ which are no longer positive
semi-definite. In the spirit of Barrett’s GNST, we will however restrict ourselves to allowing
a particular set of fiducial measurements only, for which the probabilities will remain positive
and thus well-defined. In section 3, we will describe a hierarchy of such “theories” in detail,
and investigate their power with respect to non-local correlations and information processing
problems. In particular, we will see that

• For the CHSH inequality, we can obtain at most

γ =
1
2

+
1

2(2)1/p
for ||v||pp ≤ 1.

where in the limit of p → ∞ the right-hand side becomes 1, and we have a state that
acts analogous to a non-local box.

• Furthermore, any unique XOR-game can be played with perfect success for p →∞.

It is instructive to consider what our relaxed uncertainty relation means in the case of a single
qubit. Note that for quantum mechanics we have p = 2 in which case Eq. (1) corresponds
to the statement that v must lie inside the Bloch sphere. Allowing different values of p now
constraints us to the corresponding p-spheres as depicted in Figure 1. It is interesting to
consider that even though for p > 2 we obtain non-local correlations that are stronger than
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what quantum theory allows, we now have a weaker uncertainty relation than in quantum
theory. It has previously been noted by Barrett [20] that GNST has no uncertainty relations
for particular measurements. Our work makes this relation very intuitive. In particular, for
the case of p → ∞ corresponding to a non-local box we essentially place no restrictions on
the bias Tr(Γjρ) at all. Since Eq. (1) leads to the entropic uncertainty relations on which the
security of the protocols in the bounded-quantum-storage model [23, 24, 25] is based, it may
be worth considering how certain cryptographic tasks change in the setting of non-local boxes.
Indeed, it has recently been shown [26] that privacy amplification fails in a world based on
non-local boxes. Whereas it is known that cryptographic tasks such as bit commitment and
oblivious transfer are compatible with the no-signaling principle [14], little is known about
them in general theories [27].

It should be noted that except for a single qubit, Eq. (1) is of course only a necessary
and not a sufficient condition for ρ ≥ 0. In higher dimensions, such relations are much more
involved, but have been obtained for certain operators [28, 29, 30] and also some operators
relating more closely to unbiased measurements [31]. Relaxing this particular uncertainty
relation is thus only one way to go. Yet, due to the rich structure of the Clifford algebra
of operators Γ1, . . . ,Γ2n and their central importance for entropic uncertainty relations and
so-called XOR non-local games (also known as two-party correlation inequalities) with 2
measurement outcomes, this small relaxation allows us to gain some insights into their role
in quantum information processing tasks.

1.3 Information processing in generalized non-local theories

Inspired by these relaxations in terms of an operator ρ, we then construct a hierarchy of
p-GNST theories exhibiting similar constraints. For such theories, we identify a single gbit
(defined in [20]) with a single qubit obeying the relaxed uncertainty relations above. That
is, we will think of a single gbit as allowing three fiducial measurements labeled X, Z and Y

in analogy to the quantum case. Whereas this choice is of course again quite arbitrary, and
heavily inspired by the quantum setting, it will allow us to gain a slightly better understanding
of the relation of “box-world” and quantum theory later on. We show that the states we allow
above, as well as states in p-GNST’s have several properties that set them apart from quantum
theory. In particular, we will see that

• In p-GNST, there exists superstrong random access encodings. For example, there exists
an encoding of N = 3n bits into (2n + 1)3/pn gbits such that we can retrieve any bit
with probability 1− ε for ε = 2 exp(−(2n + 1)1/p/2). Quantumly on the other hand it
is known that we require at least (1− h(1− ε))N qubits to encode N classical bits with
the same recovery probability, where h denotes the binary Shannon entropy.

• As a consequence, in p-GNST there exist single server PIR scheme with O(polylog(N))
bits of communication for an N bit database with large N , whereas quantumly Ω(N)
bits are needed.

• On the other hand, we show that in GNST it becomes much harder to learn a state in
the sense of [32]. In fact, unlike in the quantum setting, we can essentially not ignore
even a small part of the information we are given about a state.
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Note that we thereby compare units of information, gbits vs. qubits, irrespective of a physical
dimension, where gbits were previously defined in [20]. It may not be surprising that such
effects exist for Hermitian operators ρ, when all we essentially demand is that the condition
||v||pp ≤ 1 is obeyed for any set of anti-commuting measurements. However, it will be interest-
ing to consider why for example the superstrong random access code encodings we find above
are disallowed in quantum theory, but allowed in GNST.

1.4 Commuting measurements

Although the results of local measurements suffice to describe quantum states [6], our results
suggest that building a toy-theory around local measurements acting on fixed systems alone
(such as GNST) may miss part of the flavor when considering some applications. Quan-
tum mechanics has a rich structure of commuting and anti-commuting measurements built
in which make no particular reference to locality. Uncertainty relations impose restrictions
for non-commuting measurements, such as for example the anti-commuting measurements
Γ1, . . . ,Γ2n. However, we will see in section 2.4 that also certain sets of commuting measure-
ments cannot have arbitrary expectation values when measured on a particular state ρ. As a
simple example, consider a 2 qubit system shared between Alice and Bob, and consider the
measurement X⊗I, I⊗X and X⊗X. Suppose that we have Tr((X⊗I)ρ) = Tr((I⊗X)ρ) = 1.
This tells us that when Alice and Bob measure X locally, they obtain an outcome of ‘1’ each
with probability 1. However, the measurement of X ⊗ X can very intuitively be viewed as
Alice and Bob performing a local measurement of X and taking the product of their outcomes.
Hence, we do not expect a simultaneous assignment of Tr((X ⊗X)ρ) = −1 to be consistent
with the previous two expectation values. We will formalize this intuition in section 2.4,
where we will derive a series of conditions such expectation values must obey which in spirit
is similar to [2].

GNST does satisfy these conditions for measurements that commute because they act on
different subsystems. It does not exhibit any inconsistencies otherwise, as no commutation
relations are defined for measurements on the same system. The issue of such inconsistencies
is further circumvented by the simple fact that a non-local box can only be used once, and
there is no notion of subsequent measurements on the same system. This of course is perfectly
adequate for studying the strength of non-local correlation between two space-like separated
systems for example, and led to such perplexing results as [1]. We will however see that it
is essentially this lack of additional constraints that allows us to form superstrong random
access codes for example, and may indicate that using “box-world” to investigate the role of
the strength of non-local correlations within quantum theory itself is possibly doomed to fail.
It also indicates why defining a consistent notion of ’post-measurement’ states for non-local
boxes is quite difficult, since many constraints that would allow such a task to succeed are
simply not present in box-world.

To see how box-world differs from quantum theory consider the measurements M1 = X⊗Z,
M2 = Z ⊗ X and M3 = −XZ ⊗ XZ. These are related in exactly the same way as the
measurements we considered above, except that in GNST there is no notion that M1 and M2

commute. Yet, we intuitively expect similar conditions to hold as for the measurements above
when trying to form an analogy to the quantum setting. Indeed, one can easily construct a
unitary transformation that maps the measurements M1,M2 and M3 into a form analogous
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to the above, where two of the measurements act on different systems. aIn GNST, however,
the separation into different systems is always a given, which may lead to difficulties when
examining some problems which are not really concerned with correlations among two distant
systems alone, but to information processing in general.

1.5 Outline

Whereas we only examine a very small piece of the puzzle, our work hopes to shed some light
on the relation between uncertainty relations, non-local correlations and the role of above
mentioned consistency constraints in information processing. In section 2 we first explain the
basic concepts we need to refer to. commuting measurements in more detail. In section 3
we then define a range of simple “theories” obtained by relaxing the uncertainty relation
for anti-commuting observables. To highlight the analogy with non-local boxes, we then
define a range of similar GNST-like theories in section 4. In sections 5, 6, and 7 we then
investigate the power of such theories with respect to non-local correlations, random access
codes, and information processing problems respectively. In section 2.4 we then investigate
why such effects are possible within GNST, but not in quantum theory. Table 7.4 summarizes
similarities and differences among theories.

2 Preliminaries

2.1 Basic concepts

In the following, we write [n] := {1, . . . , n} and use X, Z and Y to denote the well-known
Pauli matrices [33]. We also speak of a string of Paulis to refer to a matrix of the form

Sab := Xa1Zb1 ⊗ . . .⊗XanZbn , (2)

with a = (a1, . . . , an), b = (b1, . . . , bn) and aj , bj ∈ {0, 1}. We sometimes write the Pauli
operator acting on subsystem j, with identity on the other subsystems as

Xj = I⊗j−1 ⊗X ⊗ I⊗n−j−1

The Pauli basis expansion of a density matrix ρ is given by ρ = (I+
∑

a,b sabSab)/d, where
we call sab the coefficient of Sab. Consider the form f(a, b, a′, b′) = (a, b′) + (a′, b), where we
write (a, b) =

∑
j ajbj mod 2. It it straightforward to convince yourself that for any pair

Sab and Sa′b′ either [Sab, Sa′b′ ] = 0 if f(a, b, a′, b′) = 0 or {Sab, Sa′b′} = 0 if f(a, b, a′, b′) = 1.
Whereas Eq. (1) holds for any choice of anti-commuting measurements, it is worth noting
that in dimension d = 2n we can find at most 2n + 1 anti-commuting operators given by

Γ2j−1 = Y ⊗(j−1) ⊗X ⊗ I⊗(n−j)

Γ2j = Y ⊗(j−1) ⊗ Z ⊗ I⊗(n−j),

for j = 1, . . . , n and Γ0 = iΓ1 . . .Γ2n. Note that for n = 1 we have Γ1 = X, Γ2 = Z, Γ0 = Y

and Eq. (1) is equivalent to the Bloch sphere condition. We will also need the notion of a
p-norm of a vector v = (v1, . . . , vn) ∈ Rn which is defined as

||v||p :=

 n∑
j=1

|vj |p
1/p

.

aConsider U = (I⊗H)CNOT(I⊗H)
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Note that for p = 2 this is just the Euclidean norm. Of particular interest to us will also be
the ∞-norm defined as ||v||∞ := limp→∞ ||v||p which can also be written as

||v||∞ = max(|v1|, . . . , |vn|).

2.2 Probability distributions

Unlike previous descriptions of general probabilistic theories, our notation must be versatile
enough to accommodate arbitrary choices of simultaneous commuting measurements, even if
they do not act on separate subsystems. In quantum mechanics we may choose to measure
X ⊗X along with either X ⊗ I, I⊗X, or Z ⊗ Z,XZ ⊗XZ. We will see that including this
flexibility in a more general theory leads to new constraints.

First, we want to consider some finite set of measurements O = {M1, . . . ,MN} where with-
out loss of generality we assume that each measurement has the same finite set of outcomes
A and the O is ordered lexiocraphically. Although we initially impose no structure on O,
in analogy to quantum mechanics we consider certain collections of measurements C ⊆ O to
have some property which directly corresponds to simultaneous measurability. In particular,
we will consider the set of possible experiments

E := {C ⊆ O ∧ ∀Mi,Mj ∈ C sim(Mi,Mj) = 0},

where “sim” is a predicate indicating simultaneous measurability that remains to be specified.
Of particular concern to us will be the probability distributions p over the outcomes A ∈ A×|C|
of some set of simultaneously performed measurements C ∈ E . We use p(A|C) to denote the
probability of obtaining outcomes A = (A1, A2, . . . , A|C|) ∈ A×|C| for measurements C ⊆ O
where we wlog take C to be ordered lexicographically. For simplicity, we will also write
p(A1, . . . , An|M1, . . . ,Mn) := p((A1, . . . , An)|{M1, . . . ,Mn}).

What conditions do the functions p : A×|C|×C → [0, 1] have to fulfill be a valid probability
distribution for any experiment C ∈ E? We require that the following conditions need to be
satisfied for any probability distribution

(1) Normalization: ∀C ∈ E ,
∑

A∈A×|C| p(A|C) = 1.

(2) Positivity: ∀C ∈ E ,∀A ∈ A×|C|, p(A|C) ≥ 0.

The next condition may appear unfamiliar at first glance. Intuitively it says that the distri-
butions of outcomes we obtain for commuting measurements are independent of what other
commuting measurements we perform.

(3) Independence:

∀C,C ′ ∈ E with C ⊆ C ′, p((A1, . . . , A|C|)|C)

=
∑

A|C|+1,...,A|C′|∈A×|C′|

p((A1, . . . , A|C′|)|C ′),

where, without loss of generality, we take the first |C| outcomes to be associated with the
measurements in C.

Throughout this text, we explore the result of choosing two different ways of choosing si-
multaneous measurements. First, we consider simultaneous measurements on distinct systems
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as reflected in the construction of non-local boxes. Second, we consider a more general notion
of such measurements based on commutation relations as in quantum mechanics. Note that
in the quantum case such sets of mutually commuting measurements induce a partitioning of
the Hilbert space into different systems in the finite-dimensional setting [34, 2].

Consider the set of measurements OP to be strings of Paulis on n-partite systems as
defined in section 2.1. The two different notions of simultaneous measurements can now be
expressed in two different choices of sim(Mi,Mj), leading to two different sets of realizable
experiments. To capture the first notion, we let

EL := {C ⊆ OP ∧ ∀Mi,Mj ∈ C local(Mi,Mj) = 0},

where local(Mi,Mj) = 0 if and only if Mi and Mj act on different subsystems. For example,
we have local(X ⊗ I, I⊗ Z) = 0. Second, we let

EC := {C ⊆ OP ∧ ∀Mi,Mj ∈ C [Mi,Mj ] = 0},

where all commuting measurements are simultaneously observable, as in quantum mechanics.
Clearly, EL ⊆ EC , since two measurements acting on two different subsystems commute.

When we restrict ourselves to EL we can express the independence condition from above
in the more familiar form of no-signaling:

(3’) No-signaling: ∀C,C ′ ∈ EL with C ⊆ C ′,

p((A1, . . . , A|C|)|C) =
∑

A|C|+1,...,A|C′|∈A×|C′|

p((A1, . . . , A|C′|)|C ′).

Intuitively, the no-signaling condition just dictates that the marginal distribution of a par-
ticular subset of systems is independent of the measurement choices on a disjoint subset of
systems. Therefore, we can simplify our description of marginals of no-signaling distributions
to just p(A ∈ A×|C||C ′) = p(A|C), where the measurement choices on other parties are ar-
bitrary. We will later see that imposing only the special case of the no-signaling condition,
versus the full independence condition of (3), makes a crucial difference in the power of the
resulting theory with respect to encoding information.
Example 1 Consider the set of local experiments for two parties with A = {−1, 1},O =
{X1, Z1, X2, Z2}. Let the probability distribution p(A|C) be described by the following table.

A

(1, 1) 1
2

1
2

1
2 0

(1,−1) 0 0 0 1
2

(−1, 1) 0 0 0 1
2

(−1,−1) 1
2

1
2

1
2 0

{X1, X2} {X1, Z2} {Z1, X2} {Z1, Z2} C

Clearly, we have positivity, and the sum over each measurement setting (column) is 1.
Finally, note that the marginal probability distribution for either party is constant, ∀C ∈
EL,∀A1 ∈ A,

∑
A2∈A p((A1, A2)|C) = 1

2 , therefore this distribution is no-signaling.
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2.3 Moments

Any finite, discrete probability distribution has a dual representation in terms of a finite
number of moments [35]. We define the product of the outcomes A = (A1, . . . , A|C|) ∈ A×|C|

of a collection of measurements C ∈ E as A∗ =
∏|C|

i=1 Ai. The moment for this measurement
is defined as

m(C) :=
∑

A∈A×|C|

p(A|C)A∗. (3)

Note that for the identity measurement this means m(I) = 1 because of normalization. Also, if
you consider the moment for some subset of C, by the independence principle this definition
gives a unique value which does not depend on the choice of other measurements made
simultaneously.

Since we will only be concerned with measurements with two outcomes A = {±1}, we
now restrict ourselves to this case for simplicity. For the measurement of a single observable
C = {M1} with outcome A1 ∈ A, we can easily recover the probabilities from the moments
as

p((A1)|{M1}) =
1
2

(1 + A1 m({M1})) . (4)

In subsequent notation, we will drop the brackets within parentheses when it increases read-
ability.

Note that we can recover the probability for a specific set of outcomes Â ∈ A×|C| and
measurements C ∈ E from these moments. Without loss of generality, let C = {M1, . . . ,Mn}.

1
2n

∑
C′⊆C

m(C ′)
∏

i,Mi∈C′

Âi

=
1
2n

∑
C′⊆C

 ∑
A∈A×|C′|

p(A|C ′)
∏

i,Mi∈C′

Ai

 ∏
i,Mi∈C′

Âi

=
1
2n

∑
A∈A×|C|

p(A|C)
∑

C′⊆C

∏
i,Mi∈C′

AiÂi

The second line simply uses the definition of m(C ′) and the third line uses the independence
principle to write p(A|C ′) in terms of p(A|C), allowing us to move the sum over C ′ inside.
Now note that the sum over C ′ can be broken into n sums over whether or not Mi ∈ C ′. For
each Mi, if it is in C ′ we get a factor of AiÂi, otherwise a factor of 1.

=
1
2n

∑
A∈A×|C|

p(A|C)
n∏

i=1

(1 + AiÂi)

Because the outcomes can only be ±1, the sum can give us only 0 or 2.

=
1
2n

∑
A∈A×|C|

p(A|C)
n∏

i=1

2δAi,Âi

=
1
2n

∑
A∈A×|C|

p(A|C) 2nδA,Â

= p(Â|C)
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2.4 Consistency constraints

We are now ready to investigate the constraints that arise due to simultaneous measurement
of commuting observables and that will play a crucial role in understanding the differences
between quantum theory and p-GNST. Imagine two commuting measurements [Mi,Mj ] = 0,
and their product Mk = MiMj . In quantum mechanics the outcome of the measurement
Mk is the same as the product of the outcomes of Mi and Mj , which can be verified by
expanding Mk in terms of Mi and Mj and using the fact that they have a joint eigenbasis.
What happens if we take this to be true in any theory? If we are only allowed to make local
measurements, then this is a moot point. We can only get X ⊗X by measuring X ⊗ I and
I⊗X and multiplying the results.

But if we are allowed to make any combination of commuting measurements, this will
impose some interesting conditions. For example, in the quantum case we may have M1 =
X ⊗ X, M2 = Z ⊗ Z and M3 = XZ ⊗ XZ. To see that this has consequences in terms of
the moments, consider the simple example where m(M1) = 1 and m(M2) = 1, which means
that we will deterministically observe outcomes A(M1) = A(M2) = 1. Hence, m(M3) = −1
should intuitively not be compatible with these two moments for M1 and M2.

How can we formalize these conditions? For example, Eq. (3) gives us that

m(M1M2) = m(M1,M2),

if we insist that outcomes of products of measurements equal the product of outcomes of
individual measurements. For a given set of commuting measurements C = {M1, . . . ,Mm}
with M2

j = I, let s(M) be the 2m element vector whose k-th entry is given by

s := [s(C)]k := Mk1
1 Mk2

2 . . .Mkm
m , (5)

with k ∈ {0, 1}m in lexicographic order. We now define the moment matrix Ks by letting the
entry in the i-row and j-th column be given by

[Ks]ij := m(sisj)/2m.

Claim 2 (Adapted from Wainwright and Jordan [35]) Let C = {M1, . . . ,Mm} be a
set of commuting measurements. Then Ks ≥ 0 if and only if p is a probability distribution
(satisfying constraints (1) and (2)).

Proof. In addition to Ks, we define two more 2m × 2m matrices, whose components are
labeled by vectors i, j ∈ {0, 1}m in lexicographic order as

[P ]ij = δijp(A = ((−1)i1 , . . . , (−1)im)|C).

[B]ij =
1

2m/2
(−1)i·j ,

It is easily verified that B is a unitary matrix. Note that B is an example of a Hadamard
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matrix. Now we will show that Ks = BPB>.[
BPB>]

ij
=

1
2m

∑
k,l∈{0,1}m

(−1)i·k δkl p(((−1)k1 , . . . , (−1)km)|C)(−1)l·j

=
1

2m

∑
k∈{0,1}m

(−1)k·(i⊕j)p(((−1)k1 , . . . , (−1)km)|C)

=
1

2m

∑
k∈{0,1}m

m∏
t=1

((−1)kt)(it⊕jt)p(((−1)k1 , . . . , (−1)km)|C)

=
1

2m

∑
A∈A×|C|

m∏
t=1

Ait
t Ajt

t p(A|C)

=
1

2m
m(sisj) = [Ks]ij

Clearly, if the probabilities p(A|C) are non-negative (2), then P ≥ 0 if and only if K ≥ 0 since
B is unitary. Similarly, the fact that m(I) = 1, B is unitary and the trace is cyclic ensures
that p satisfies condition (1) .
Example 3 As an example, consider the case of two commuting measurement M1 and M2

with M3 = M1M2. We have s = (I,M1,M2,M3) and

Ks =


m(I) m(M1) m(M2) m(M1M2)

m(M1) m(I) m(M3) m(M2)
m(M2) m(M3) m(I) m(M1)
m(M3) m(M3) m(M1) m(I)

 ≡


1 a b c
a 1 c b
b c 1 a
c b a 1


Demanding that the eigenvalues of this matrix, λ = ((1+a−b−c), (−1+a+b−c), (−1+a−b+
c), (1+a+b+c)), be non-negative is enough to ensure that Ks � 0. Using the Sylvester criteria,
we get the alternate constraints that each moment |a, b, c| ≤ 1 and 1−a2− b2− c2 +2abc ≥ 0,
and λ1λ2λ3λ4 ≥ 0.

Our examples are reminiscent of the examples considered in the setting of contextual-
ity [36]. Note that our constraints are related, but nevertheless of a different flavor since we
only consider such constraints for measurements which all commute. It may be interesting to
consider such a moment matrix in order to determine how “non-contextual” quantum theory
is. In section 4.1 and 3 we will develop classes of states which are restricted by imposing
specific relationships among various moments. In particular, it will be of crucial importance
whether we merely impose such constraints for measurements acting on different systems, or
include such constraints for all commuting measurements.

3 p-nonlocal theories and their properties

We now define a series of so-called p-nonlocal “theories”, each one more constrained than
the previous. Our definition is thereby motivated by the uncertainty relations of [3] stated
above. We later relate our definitions to Barrett’s GNST [20] and what are commonly known
as non-local boxes. Our aim by constructing this series of simple theories is thereby merely
to gain a more intuitive understanding of superstrong non-local correlations due to non-local
boxes.
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3.1 A theory without consistency constraints

We start with the simplest of all p-theories, which forms the basis of all subsequent definitions.
In essence, we will simply allow states violating the uncertainty relation in 1 without worrying
about anything else. In the spirit of Barrett [20] we start by defining the states which are
allowed in our theory, and then allow all linear transformations preserving the set of allowed
states. For simplicity, we will only consider the case of d = 2n.

Definition 1 A d-dimensional p-bin state is a d× d complex Hermitian matrix

ρ =
1
d

I +
∑
a,b

sabSab


satisfying

1. for all a, b, −1 ≤ sab ≤ 1.

2. for any set of mutually anti-commuting strings of Paulis A1, . . . , Am ∈ Cd×d∑
j

|Tr(Ajρ)|p ≤ 1.

It remains to be specified what operations and measurements we are allowed to perform
on p-bin states. We define
Definition 2 A d-dimensional p-bin theory consists of

1. states ρ ∈ Sd
p where Sd

p is the set of d-dimensional p-bin states,

2. linear operations T : Sd
p → Sd

p ,

3. measurements described by observables Sab = S0
ab−S1

ab where S0
ab and S1

ab are projectors
onto the positive and negative eigenspace of Sab respectively. As in the quantum case
we let

p0 = Tr(ρS0
ab) and p1 = Tr(ρS1

ab).

Starting from a state, we may apply any set of operations T followed by a single measurement.
Note that by virtue of Eq. (1) any quantum state is a p-bin state. Note that the converse

however does not hold, since the conditions given above do not imply that a p-bin state ρ is
positive semi-definite. It seems very restrictive to limit ourselves to a single measurement at
the end. The reason for this is that for some p, there exist p-bin states to start with, valid
operations and measurements, followed by another operation that give us a states that are
no longer a p-bin states [37]. We return to this question, when we consider the set of allowed
operations below.

Note that the above definition is well-defined. First, we want that for any measurement
Sab, {p0, p1} forms a valid probability distribution. A small calculation gives us that any
p-nonlocal state ρ we have

pv = Tr(ρSv
ab) =

1
2

(1 + (−1)vsab) ,
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and thus 0 ≤ pb ≤ 1 and p0 + p1 = 1. Second, we want the non-signaling conditions to hold.
When measuring Sab ⊗ Sa′b′ on a bipartite state

ρAB =
1
d

I +
∑

`,m,`′,m′

S`,m ⊗ S`′,m′


we have that the probability to obtain outcome u for the measurement on the first system is
given by

Pr[u|ab, a′b′] =
∑

v∈0,1

Tr (ρAB(Su
ab ⊗ Sv

a′b′)) =
1
2
(I + (−1)usa,b,0,0),

and hence Pr[u|ab, a′b′] = Pr[u|ab, a′′b′′] for all a′, b′, a′′, b′′ as desired. A similar argument
can be made to show that the more general independence condition is satisfied.

3.1.1 Basic Properties

We now state some basic properties of this theory, which will also hold for a more restricted
p-nonlocal theory as outlined below.

Claim 4 If ρ is a p-bin state, then ρ is also a q-bin state for p, q ∈ Z with q ≥ p.

Proof. This follows immediately from the fact that for any r ∈ [0, 1] we have rq ≤ rp .

Below, we will apply circuits consisting of the Clifford gates {CNOT,X,Z, Y, H} and I.
It is easy to see that such unitary operations are allowed transformations taking p-bin states
to p-bin states.

Claim 5 Let ρ ∈ Sd
p . Then for any circuit U consisting solely of the gates {CNOT,X,Z, Y, H, I}

we have UρU† ∈ Sd
p .

Proof. Note that U is composed of single unitaries Uj = Ij−1 ⊗ V ⊗ In−j with V ∈
{X, Z, Y,H} and unitaries U ′

j = Ij−1 ⊗CNOT⊗ In−j−1. First, it is straightforward to verify
that for any a, b ∈ {0, 1}n, there exist a′, b′ ∈ {0, 1}n such that UjSabU

†
j = Sa′b′ , and similarly

for U ′
j . Second, applying a unitary to any set of anti-commuting operators again gives us anti-

commuting operators. Hence, since we have
∑

j |Tr(Ajρ)|p ≤ 1 for any set of anti-commuting
strings of Paulis, the resulting state will also have this property .

It will also be useful to know that

Claim 6 Let ρ1, . . . , ρn ∈ S2
p . Then

⊗n
i=1 ρi ∈ S2n

p .

Proof. We proceed by induction. By assumption, ρ1 ∈ S2
p . We will show that for any states

ρ ∈ S2n

p , σ ∈ S2
p , the state ρ⊗ σ ∈ S2n+1

p .

We need to prove that for any set of mutually anti-commuting Pauli’s Aj ∈ C2n+1×2n+1∑
j |Tr(Ajρ ⊗ σ)|p ≤ 1. Each Aj can always be written in terms of a Pauli, Bj acting on ρ,

plus a Pauli {I, X, Y, Z} on σ. We separate the Aj into groups according to which Pauli is
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appended to Bj . Then we can rewrite this as∑
jI

|Tr((BjI ⊗ I)(ρ⊗ σ))|p +
∑
jX

|Tr((BjX
⊗X)(ρ⊗ σ))|p

+
∑
jY

|Tr((BjY
⊗ Y )(ρ⊗ σ))|p +

∑
jZ

|Tr((BjZ
⊗ Z)(ρ⊗ σ))|p

=
∑
jI

|Tr(BjIρ)|p +
∑
jX

|Tr(BjX
ρ)|p|Tr(Xσ)|p

+
∑
jY

|Tr(BjY
ρ)|p|Tr(Y σ)|p +

∑
jZ

|Tr(BjZ
ρ)|p|Tr(Zσ)|p ≤ 1

Since all the Aj mutually anti-commute, then for different j, j′, {Bj⊗X, Bj′⊗X} = 0 implies
{Bj , Bj′} = 0, while {Bj ⊗X, Bj′ ⊗ Y } = 0 implies [Bj , Bj′ ] = 0. Then because ρ ∈ S2n

p and
{BjX

, Bj′X
} = 0, and, for similar reasons {BjX

, BjI} = {Bj′I
, BjI} = 0, we know∑

jI

|Tr(BjIρ)|p +
∑
jX

|Tr(BjX
)|p ≤ 1

Now we will shorten our notation by writing

aX = |Tr(Xσ)|p bX =
∑

jX
|Tr(BjX

ρ)|p
aY = |Tr(Y σ)|p bY =

∑
jY
|Tr(BjY

ρ)|p
aZ = |Tr(Zσ)|p bZ =

∑
jZ
|Tr(BjZ

ρ)|p
bI =

∑
jI
|Tr(BjIρ)|p

This allows us to write inequalities implied by the uncertainty relation like:

aX + aY + aZ ≤ 1

bX + bI ≤ 1

bY + bI ≤ 1

bZ + bI ≤ 1

We can also see that aX , aY , aZ , bX , bY , bZ , bI ≥ 0. The task at hand is to show that these
inequalities imply the one required of a state in S2n+1

p , which we can now rewrite as

aXbX + aY bY + aZbZ + bI ≤ 1.

We do this by writing down a sum of products of non-negative quantities like 1−aX−aY −aZ

and noting that the result is non-negative.

aX(1− bX − bI) + aY (1− bY − bI) + aZ(1− bZ − bI) + (1− bI)(1− aX − aY − aZ) ≥ 0

That equation can be rewritten as 1− (aXbX + aY bY + aZbZ + bI) ≥ 0, which is what we set
out to show. Therefore, ρ⊗ σ is a valid state, and, by induction, so is

⊗n
i=1 ρi ∈ S2n

p for any
n .
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3.2 An analogue to box-world

Note that in the above definition we have not placed any constraints at all on the expectation
values of commuting measurements. This was not necessary, as we had allowed a single
measurement only, where by the above definition I ⊗ X formed such a single measurement.
Now consider a two-qubit system, i.e., d = 4. Suppose that we have for a particular ρ that

Tr ((X ⊗ I)ρ) = Tr ((I⊗X)ρ) = Tr ((X ⊗X)ρ) = −1.

Note that ρ can be a perfectly valid state with respect to the definition given above, but yet we
would not consider this to be consistent behavior, if we were allowed to perform subsequent
measurements. We now introduce additional constraints that eliminate this inconsistency.
It should be clear from section 2.3 that that to achieve full consistency we would have to
introduce certain constraints for commuting observables in general. Yet, we will first restrict
ourselves to observables on different systems in analogy to “box-world”. We will show in
section 4.1 that Barrett’s GNST and non-local boxes essentially correspond to this definition.
We will also see in section 6 and 7.1 that these additional constraints play a crucial role in
the power of our model with respect to information processing tasks.
Definition 3 A p-box state is a p-bin state ρ, where in addition we require that for any set
C ∈ EL of measurements acting on different systems and s(C) as defined in Eq. (5) we have
that the corresponding moment matrix Ks defined in section 2.4 satisfies

Ks ≥ 0.

Note that claims 4 and 6 holds analogously for p-box states. It is important to note though
that claim 5 does not hold in this case, since for example the CNOT operation can lead to
states violating the definition.

3.3 A theory with consistency constraints

Finally, we will impose all constraints required from our consistency considerations of sec-
tion 2.3.
Definition 4 A p-nonlocal state is a p-box state ρ, where in addition we require that for any
set of commuting measurements C ∈ EC and s(C) as defined in Eq. (5) we have that the
corresponding moment matrix Ks as defined in section 2.4 satisfies

Ks ≥ 0.

Again claims 4 and 6 hold analogous to the above. When we include all consistency
considerations, it is also easy to see that claim 5 holds for p-nonlocal states, since for any
allowed unitary U we already have by the above that ρ satisfies the constraints given by the
set C ′ = {U†M1U, . . . , U†MmU} and hence UρU† remains a valid p-non-local state.

4 Generalized non-local theories

To create a closer analogy between our “theories” derived from relaxed uncertainty relations
and non-local boxes, we now consider a related class of theories called generalized no-signaling
theories (GNST) [20], for which we will consider similar relaxations. As already sketched in
the introduction, states in a GNST are defined operationally. Consider a laboratory setup
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where we have a device which prepares a specific state. We then use a measuring device
which has a choice of settings allowing us to measure different properties of the system.
The measuring device gives us a reading specifying the outcome of the measurement. A
particular state in GNST is described completely by means of the probabilities of obtaining
each outcome when performing a fixed set of fiducial measurements. For example, for a set
of fiducial measurements O = {X, Z, Y } with outcomes A = {±1}, the probabilities p(A|C)
for all A ∈ A and C ∈ O form a description of the state. Hence, we will simply use p to
refer to a state given by said conditional probabilities. The idea behind considering fiducial
measurements stems from the idea that there exists a set of measurement choices that suffice
to fully describe the system. In classical mechanics, for instance, we can always in principle
make a single measurement which outputs all the information necessary to describe a state.
For a qubit, on the other hand, we would need results from at least three different incompatible
measurement settings, e.g., spin in three orthogonal directions. We refer to [20] for a definition
of GNST and its allowed operations. For us it will only be important to note that similar to
the setting of non-local boxes, we can make only one measurement on each system, and there
is no real notion of post-measurement states defined.

In the following, we will be interested in the special case of multi-partite systems where
on each system we can perform one of three fiducial measurements with outcomes ±1. Using
our notation from section 2.2 we write the set of realizable experiments for GNST as

EG = {∀k ∈ {1, 2, 3}n : {W1,k1 , . . . ,Wn,kn}},

with Wi,ki
denoting a choice of the kith measurement on the ith system. Later we will connect

these measurement choices with Pauli measurements via the relation Wi,1 = Xi,Wi,2 =
Zi,Wi,3 = XiZi. A key point of this definition will be that the partitioning of measurements
into n systems will be fixed. We also demand that probability distributions should satisfy
an independence principle. As we pointed out, when restricted to partitions over disjoint
parties, this just reduces to the no-signaling principle. That is, the choice of measurement on
one subset of particles can not be used to send a signal to a disjoint subset.

In analogy to the quantum setting [20], we let one gbit refer to a single system on which
we can perform our set of fiducial measurements given above. Our definition of a gbit thereby
slightly differs from the definition given in [20], which only allows two fiducial measurements
X and Z on a single gbit. Yet, in order to compare the hierarchy of GNST-like theories we will
construct below to the p-box states from above we adopt this slightly more general definition
in analogy to a single qubit in the quantum case. Note that for the set of measurements
C ∈ EG specified above, an n-gbit state, specified by p : A×n × C → [0, 1], is in GNST if p

satisfies constraints (1), (2), and (3’) in section 2.2.
Example 7 Consider the following state of one particle in GNST (or one gbit):

p(A = +1|M = X) = sx = 1− p(A = −1|M = X)
p(A = +1|M = Z) = sy = 1− p(A = −1|M = Z)

p(A = +1|M = XZ) = sz = 1− p(A = −1|M = XZ)

This state is normalized, and positivity requires sx, sy, sz ∈ [0, 1]. The state would be equivalent
to the state of an arbitrary qubit if and only if s2

x + s2
y + s2

z ≤ 1, that is, if we are constrained
to the Bloch sphere.
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For multi-partite states the difference between constraints on qubits and gbits becomes more
complicated. We now turn to describing a hierarchy of constraints on GNST theories which
will be analogous to uncertainty conditions in p-nonlocal theories and quantum mechanics.

4.1 p-GNST

Even though states in GNST are defined without any particular structure to their measure-
ments embedded, we will now impose a physically motivated structure. In particular, we will
simply imagine in analogy to the quantum setting that measurements X, Z and Y obey the
same anti-commutation relations as the Pauli matrices {X, Z} = {Z, Y } = {X, Y } = 0. In
our definition below, we will for simplicity write {·, ·} to indicate that we imagine such an
anti-commutation constraint to hold exactly when the string of Paulis

∏
i Wi,ki

associated
with each C would anti-commute.

First of all, this will allow us to artificially impose an uncertainty relation just like Eq. (1).
Definition 5 A state is in p-GNST if it is in GNST and for any set of measurements S =
{C ∈ EG} satisfying that for all C,C ′ ∈ S, {C,C ′} = 0 we have∑

C∈S

|m(C)|p ≤ 1. (6)

Note that for p → ∞ this condition no longer restricts the states, because we get
maxC∈S |m(C)| ≤ 1, which is true for the original GNST, and non-local boxes. If we would
actually add such commutation and anti-commutation constraints we could now again dis-
tinguish between adding the consistency constraints of section 2.3 only for measurements
acting on different systems, or for all commuting measurements in analogy to the p-box and
p-nonlocal theories. In analogy to GNST, where commutation relations were only defined for
measurements acting on different systems however, we will stick to this setting, even when
considering p < ∞. A p-GNST state is thus essentially analogous to a p-box state, except we
are allowed to make simultaneous measurements of locally disjoint systems.

5 Superstrong non-locality

Before we show that relaxing the uncertainty equation of Eq. (1) leads to superstrong non-
local correlations, let’s take a look at what effect this uncertainty relation actually has on
quantum strategies for the CHSH inequality. For this purpose, we will rewrite Tsirelson’s
bound for the CHSH inequality in its more common form as

|〈A0 ⊗B0〉+ 〈A0 ⊗B1〉+ 〈A1 ⊗B0〉 − 〈A1 ⊗B1〉| ≤ 2
√

2,

where we use A0, A1 and B0, B1 to denote Alice’s and Bob’s observables respectively where
A2

0 = A2
1 = B2

0 = B2
1 = I. We will use the fact that in order to achieve the maximum

possible quantum violation we must have {A0, A1} = 0 and {B0, B1} = 0 [8, 21, 22]. For
M1 = A0 ⊗ B0, M2 = A0 ⊗ B1, M3 = A1 ⊗ B0 and M4 = A1 ⊗ B1 this means that we
have {M1,M2} = {M1,M3} = {M2,M4} = {M3,M4} = 0. Using the uncertainty relation of
Eq. (1) proving Tsirelson’s bound is equivalent to solving the following optimization problem
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maximize 〈M1〉+ 〈M2〉+ 〈M3〉 − 〈M4〉
subject to 〈M1〉2 + 〈M2〉2 ≤ 1

〈M1〉2 + 〈M3〉2 ≤ 1
〈M2〉2 + 〈M4〉2 ≤ 1
〈M3〉2 + 〈M4〉2 ≤ 1

By using Lagrange multipliers, it is easy to see that for the optimum solution we have 〈M1〉2 =
〈M4〉2 and 〈M2〉2 = 〈M3〉2. By considering all different possibilities, we obtain that with
x = 〈M1〉 = −〈M4〉 and y = 〈M2〉 = 〈M3〉 our optimization problem becomes

maximize 2(x + y)
subject to x2 + y2 ≤ 1

Again using Lagrange multipliers, we now have that the maximum is attained at x = y = 1/
√

2
giving us Tsirelson’s bound.

Tsirelson’s bound can hence be understood as a consequence of the uncertainty relation
of [3]. Thus, we intuitively expect that relaxing this relation affects the strength of non-
local correlations. In a similar way, one can view monogamy of non-local correlations as a
consequence of Eq. (1) [38].

5.1 CHSH inequality

5.1.1 In p-theories

To see what is possible in p-theories, we first construct the equivalent of a maximally entangled
state. Let

ρp =
1
2

[
I +

(
1
2

) 1
p

(X + Y )

]
.

Note that for p →∞ this gives us

ρ∞ =
1
2

[I + X + Y ] .

We now proceed analogously to the quantum case to construct

η1 = CNOT(ρp ⊗ |0〉〈0|)CNOT†,

which by claim 5 is a valid p-bin and p-nonlocal state. It can also be verified that η1 forms a
valid p-box state.
Claim 8 Let A1 = X, A2 = Y , B1 = X and B2 = Y be Alice and Bob’s observables
respectively. Then

〈CHSHp〉 = Tr(η1(A1 ⊗B1 + A1 ⊗B2 + A2 ⊗B1 −A2 ⊗B2)) = 4
1

21/p
,

for all p-theories.
Proof. This follows immediately by noting that

η1 =
1
4

(
I +

1
21/p

(X ⊗X + X ⊗ Y + Y ⊗X − Y ⊗ Y ) + Z ⊗ Z

)
.
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We can also phrase this statement in terms of probabilities as stated in the introduction,
by noting that the maximum probability that Alice and Bob win the CHSH game is given by

1
2

+
〈CHSHp〉

8
=

1
2

+
1

2 · 21/p
.

It is important to note that this violation can be obtained even when imposing the additional
consistency constraints from section 2.3.

5.1.2 In p-GNST

We already saw in the introduction that GNST admits states analogous to a non-local box,
allowing for a maximal violation of the CHSH inequality. We now show that similar states exist
for p-GNST theories analogous to p-box states. We first phrase the CHSH inequality in terms
of probabilities. In particular, consider the GNST state specified by p((A1, A2)|{M1,M2}) =
1
4 (1+ (−1)δM1,Z1δM2,Z2 A1A2λ) for some λ to be chosen below. If each party measures X or Z

on their state and outputs the result ±1, the probability that Alice and Bob win the CHSH
game is given by

1
4
(p(1, 1|X1, X2) + p(−1,−1|X1, X2) + p(1, 1|X1, Z2) + p(−1,−1|X1, Z2)

+p(1, 1|Z1, X2) + p(−1,−1|Z1, X2) + p(1,−1|Z1, Z2) + p(−1, 1|Z1, Z2)) =
1 + λ

2

In terms of the moments, m(X1, X2) = m(X1, Z2) = m(Z1, X2) = −m(Z1, Z2) = λ, and this
becomes

1
4
(2 +

1
2
(m(X1, X2) + m(X1, Z2) + m(Z1, X2)−m(Z1, Z2))) =

1 + λ

2

Now we can consider the maximum value of λ that is a valid state in p-GNST. The require-
ments listed in example 3 only restrict |λ| ≤ 1. Eq. (6) requires |m(X1, X2)|p+|m(X1, Z2)|p =
|m(Z1, X2)|p + |m(Z1, Z2)|p = 2|λ|p ≤ 1 → λ = ( 1

2 )
1
p . Therefore in a p-GNST it is possible

to win the CHSH game with probability 1/2 + 1/(2 · 21/p).

5.2 XOR games

We now investigate the case of general 2-player XOR-games for p → ∞. In such a game we
have an arbitrary (but finite) set of questions S and T from which Alice’s and Bob’s questions
s ∈ S and t ∈ T are chosen according to a fixed probability distribution π : S × T → [0, 1].
Yet, the set of possible answers remain A = B = {0, 1} for Alice and Bob respectively. The
game furthermore specifies a predicate V : A × B × S × T → {0, 1} that determines the
winning answers for Alice and Bob. In an XOR game, this predicate depends only on the
XOR c = a⊕b of Alice’s answer a and Bob’s answer b. We thus write V (c|s, t) = 1 if and only
if answers a ⊕ b satisfying a ⊕ b = c are winning answers for questions s and t. We will also
restrict ourselves to unique games, which have the property that for any s, t, b, there exists
exactly one winning answer a for Alice (and similarly for Bob).

First of all, note that in the quantum case we may write the probability that Alice and
Bob return answers a and b with a⊕ b = c as

p(c|s, t) =
1
2
(1 + (−1)c〈Ψ|As ⊗Bt|Ψ〉),
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where we again use As and Bt to denote Alice’s and Bob’s observable corresponding to
questions s and t respectively and |Ψ〉 denotes the maximally entangled state. Note that we
again have (As)2 = (Bt)2 = I from the fact that both measurements have only two outcomes.
The probability that Alice and Bob win the game can then be written as∑

s,t

π(s, t)
∑

c

V (c|s, t)p(c|s, t).

Let vst = 〈Ψ|As ⊗Bt|Ψ〉. First of all note that for p →∞

1
d

(
I +

∑
st

vstΓs ⊗ Γt

)
(7)

with d = 2max |S|,|T | and Γs,Γt anti-commuting observables as defined in section 2 is a valid
state for any |vst| ≤ 1. Hence, we can immediately see that

Corollary 1 In any ∞-theory, there exists a strategy for Alice and Bob to win a unique XOR
game with certainty.

Proof. Consider the state given in Eq. (7) with vst = ±1 such that p(c|s, t) = 1 whenever
V (c|s, t) = 1. Let Alice and Bob’s measurements be given by Γs and Γt for questions s and
t respectively, which are valid measurements for all p-theories with Γs,Γt constructed as in
section 2 .

We leave it as an open question to examine the case of p < ∞ for XOR games, since
our aim was merely to show that superstrong correlations can exist, if we allow for relaxed
uncertainty relations. We can see that letting vst = ±1/(max |S|, |T |)1/p makes Eq. (7) a
valid state for any choice of p, but this may not generally be the optimal choice. The case of
GNST is similar, and it has been shown that any non-local correlations can (approximately)
be simulated by such boxes [13]. Optimal bounds for p-GNST with p < ∞ can be obtained
using techniques analogous to [2].

6 Superstrong random access encodings

The existence of superstrong non-local correlations is by no means the only difference we can
observe when moving from quantum theory to p-GNST or p-nonlocal theories. In particu-
lar, we now show that we can obtain so-called random access encodings which, depending
on the theory, can be exponentially better than those realized by quantum mechanics. We
then investigate how uncertainty relations and the restrictions imposed by simultaneous mea-
surements affect this encoding. The existence of such random access encodings will play a
crucial role when considering the power of p-GNST theories for communication complexity in
section 7.1. In section 7.2 we also use this random access code to prove a lower bound on the
sample complexity of learning states in GNST.

6.1 In p-GNST

Intuitively, a random access code [39, 40] allows us to encode N bits into a physical system
of size n such that we can decode any one bit of the original string with probability at least
q. More formally,
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Definition 6 A [N,n, q]-random access code (RAC) is an encoding of a string x ∈ {0, 1}N

into an n-gbit state px, such that there exist measurements C ∈ EG with outcomes A ∈ A×n,
and a decoding algorithm D : A×n → {0, 1} satisfying

Pr(D(A) = xk) =
∑

A∈A×n

δD(A),xk
px(A|C) ≥ q,

where px(A|C) is the probability of obtaining outcome A when performing the measurement
C.
It has been shown [39, 40] that in the quantum case, we must have n ≥ (1 − h(q))N , where
h denotes the binary entropy function. There also exist classical encodings for which n =
(1 − h(q))N + O(log N) [39]. Hence, quantum states offer at most a modest advantage over
classical mechanics and, for q = 1, no advantage at all. We now proceed to the surprising
result that general no-signaling states lead to extremely powerful random access codes.

Claim 9 In GNST, there exists a [3n, n, 1]-random access code.

Proof. An n gbit state in GNST is completely characterized by the probabilities of outcomes
for a fixed set of measurements. Recall that a single gbit is a two-level system on which we
allow three possible measurements with two possible outcomes each. Also recall that each
C ∈ EG can be represented as EG = {∀k ∈ {1, 2, 3}n : {W1,k1 , . . . ,Wn,kn}}, with Wi,1 =
Xi,Wi,2 = Zi,Wi,3 = XiZi. Note that each measurement C is associated with one of N = 3n

vectors k = (k1, . . . , kn). Let f : C → {1, . . . , N} be a one-to-one function. For each of the
N = 3n bits we wish to encode, we must specify one measurement C that we can use to
extract the jth-bit. Let that measurement be denoted by f−1(j).

We are now ready to define our encoding of the string x ∈ {0, 1, 2}N into an n-gbit GNST
state px via the probabilities

px(A|C) :=
1
2n

(1 + A∗(−1)xf(C)),

where we use the previously defined notation A∗ =
∏|C|

i=1 Ai. It is straightforward to verify
that the state is normalized, positive, and satisfies the no-signaling condition.

We now show that any bit of the original string can be decoded perfectly. If we choose
to retrieve bit j, we measure C = f−1(j). That means that we get result A with probability
1
2n (1 + A∗(−1)xj ) = 1

2n 2δA∗,(−1)xj . And we get the result A∗ = (−1)xj with probability:

∑
A∗=(−1)xj

px(A|C) =
∑

A∗=(−1)xj

1
2n

2δA∗,(−1)xj = 1.

where the last equality follows from the fact that we sum over exactly half the 2n possible
outcomes A1, . . . , An. Hence the decoder D(A) = 1

2 (1 − A∗) will return xj with perfect
probability .

What happens if we impose the uncertainty relation in p-GNST? For convenience sake,
note that we could rewrite the encoding above in terms of moments, where we let an encoding
of a string x be determined by the moment representation of px as

mx(C = f−1(k)) := (−1)xk
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with all other moments set to 0.
To construct an encoding for p-GNST, we consider

mx(C = f−1(k)) := (−1)xkλ.

What’s the largest λ that satisfies the uncertainty relation? As we noted earlier the maximum
number of anti-commuting Pauli operators is 2n+1, so the most restrictive condition we could
get from the uncertainty relation is (2n + 1)|λ|p ≤ 1. We thus obtain

Claim 10 In p-GNST, there exists a [3n, n, 1
2 + 1

2

(
1

2n+1

)1/p

]-random access code.

Proof. Let λ = (2n + 1)1/p, and note that this satisfies the uncertainty relation. Our
encoding is now

px(A|C) =
1
2n

(1 + (−1)xf(C) λ A∗).

And our probability of getting the correct sign from our measurement goes down to

Pr(D(A) = xk) =
1 + |λ|

2
=

1
2

+
1
2

(
1

2n + 1

)1/p

.
If p < ∞ we get an encoding that gets asymptotically worse for large n. This should be

compared to the bound on the number of qubits for a quantum random access encoding of
N = 3n bits into k qubits with recovery probability q = 1/2 + 1/2(1/(2n + 1))1/p. From
the bound of [39, 40], we have that the encoding uses exponentially fewer physical bits than
what can be obtained in the quantum setting and hence even p-GNST has a powerful coding
advantage over quantum mechanics. Note that we are always free to split the N bits into
smaller pieces first, and encode each piece independently to keep the recovery probability q

constant. This is analogous to the quantum setting where we can encode each 3 bits into one
qubit to obtain a random access code with n = N/3. Alternatively, we can form a simple
repetition code, where we have k copies of the random access codes constructed above. We
then have
Claim 11 In p-GNST, there exists a [3n, (2n + 1)3/pn, 1 − ε]-random access code with ε =
2 exp(−(2n + 1)1/p/2).
Proof. We take k copies of the RAC defined in Claim 10, and decode by taking the majority
of the individual encodings. Let Yj = 1 if the decoding was successful for the j-th copy, and
Yj = 0 otherwise. From the Hoeffding inequality we immediately obtain that for Y =

∑k
j=1 Yj

and q as defined above
Pr [|Y − qk| ≥ t k] ≤ 2e−2t2k,

If we set t = q− 1/2 = 1/2(1/(2n + 1))1/p, that gives us Pr [Y ≤ k/2] ≤ 2e−
1
2 ( 1

2n+1 )
2/p

k. Now
if we set k = (2n + 1)3/p, we have used a total of (2n + 1)3/pn gbits and will succeed with
probability 1− 2e−(2n+1)1/p/2 as promised .

Whereas (2n + 1)3/pn is still quite large, note that it is nevertheless only polynomial in
n. The length of the RAC is hence still poly-logarithmic in our original input size, where
we achieve (near) perfect recovery for large n. Finally, we will need to use one more related
result.
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Claim 12 In p-GNST, for γ ∈ (0, 1/2) and n̂ ≥ 22/p ln(4/(1/2− γ)2), there exists a

[3n(n̂,p,γ), n̂, 1
2 + γ]-random access code with n(n̂, p, γ) = b

(
n̂ 2−2/p

ln(4/(1/2−γ)2)

) 1
2/p+1 c.

Proof. Again we take k copies of the RAC defined in Claim 10, and decode by taking the
majority of the individual encodings. The probability to decode correctly in that case was
1−2e−

1
2 ( 1

2n+1 )2/pk. Now we want to adjust k and n to get a code with a fixed success rate and
that uses no more than n̂ gbits. We need that (i) kn ≤ n̂, that is, our encoding uses at most n̂

physical bits and (ii) 1−2e−
1
2 ( 1

2n+1 )2/pk ≥ 1/2+γ, which forces our probability of success to be
at least 1/2+γ. We can satisfy (ii) if we set k = ln(4/(1/2−γ)2)(2n+1)2/p, then (i) tells us that
kn = ln(4/(1/2− γ)2)(2n + 1)2/pn, from which we have ln(4/(1/2− γ)2)22/pn2/p+1 ≤ kn ≤ n̂

and thus

n ≤
(

n̂ 2−2/p

ln(4/(1/2− γ)2)

) 1
2/p+1

.

Since the smallest system we can encode into is n = 1, this tells us that n̂ must be at least
22/p ln(4/(1/2− γ)2) .

Note that although this may not be the best encoding, it suffices to give us the asymptotic
behavior for n̂.

6.2 In p-nonlocal theories

It is instructive to consider such superstrong encodings in the language of p-nonlocal theories
to see how such superstrong encodings would look like in terms of Pauli matrices. This will
also allow us to compare the consequences of restrictions due to the consistencies of moments
from section 2.3 to random access encodings. For the least restrictive p-theory, the p-bin
theory, we can construct the following very simple encoding.

Claim 13 In p-bin theories, there exists a [22n − 1, n, 1
2 + 1

2

(
1

2n+1

)1/p

]-random access code.

Proof. Consider the encoding of a string x ∈ {0, 1}N with N = 22n−1 into an n p-bit state
given by

ρx :=
1
d

I +
1

(2n + 1)1/p

22n−1∑
k=1

(−1)x
kSk

 ,

where Sk = Sab is a string of Pauli matrices, where we simply relabeled the indices ab. To
decode the kth-bit, we measure Sk. A straightforward calculation shows that the probability
to obtain outcome xk is given by

Pr[xk] =
1
2

Tr [(I + Sk) ρx] =
1
2

+
1

2(2n + 1)1/p
,

as promised. Clearly, the uncertainty relation is satisfied .
Similarly, we obtain the following encoding for p-box theories, which is in one-to-one

correspondence with the encodings in p-GNST above.

Claim 14 In p-box theories, there exists a [3n, n, 1
2 + 1

2

(
1

2n+1

)1/p

]-random access code.
Proof. Our encoding is analogous to the one above, but we restrict ourselves to including
only such strings of Pauli matrices formed by taking tensor products of {X, Y, Z}, excluding
the identity .
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Clearly, we can again obtain an encoding that is poly-logarithmic in the length of the
original input analogous to Claim 11 that has perfect recovery for large n.

6.3 The effect of consistency

When viewing such encodings in terms of density matrices, it becomes clear why such en-
codings do not exist in a quantum setting: all such encodings are in gross violation of the
consistency conditions of section 2.3. Even when we restrict ourselves to p = 2, we can ob-
tain such encodings whereas in the quantum case we cannot. It is interesting to note that
for p = 2, the violation we can obtain for e.g. the CHSH game is exactly the same as in
the quantum setting. Thus it is perfectly possible to have such superstrong encodings, while
simultaneously being restricted to Tsirelson’s bound in the CHSH game for a 2 qubit state.
This clearly shows how limited our p-bin, p-nonlocal, but also p-GNST theories really are.
Since GNST is equivalent to a theory based on non-local boxes, this also shows that consid-
ering such boxes is somewhat limiting, and possibly ignores some aspect present in quantum
theory that are of importance for information processing.

7 Implications for information processing

We now turn to a number of interesting implications of p-GNST and p-theories to information
processing. In particular, we will see that both allow us to save significantly on the amount of
data we need to transmit to solve certain communication problems. In fact, we will see that
there exists a task for which there exists an exponential gap between the amount of communi-
cation required when compared with quantum theory. Other information tasks on the other
hand become more difficult. We will see that when trying to learn states approximately we
need to perform exponentially more measurements in the case of GNST.

7.1 Communication complexity

Imagine two (or more) parties, Alice and Bob, who each have an input x ∈ {0, 1}n and
y ∈ {0, 1}n respectively, unknown to the other party. Their goal is to compute a fixed
function f : {0, 1}2n → {0, 1}m by communicating over a channel. The central question of
communication complexity is how many bits they need to transmit in order to compute f .
Typically, we thereby only require one party (Bob) to learn the result f(x, y). To help them
reduce the amount of communication, Alice and Bob may possess additional resources such as
shared randomness, entanglement, non-local boxes or communicate over a quantum channel,
and may impose different measures of success. For example, they could be interested in
computing f only with a certain probability instead of computing it exactly. It is well-known
that if Alice and Bob can share non-local boxes, they can compute any Boolean function
f : {0, 1}2n → {0, 1} perfectly by communicating only a single bit [1], which is even true
when the non-local boxes have slight imperfections [12]. Here, we consider the case where
Alice and Bob have no a-priori resources, however, we they are able to exchange p-GNST or
p-nonlocal states over a suitable channel.

7.1.1 One-way communication

We first of all make a very modest statement and show that in any one-way communication
protocol, where Alice sends a single message to Bob, we are able to save a constant number
of bits, when computing a Boolean function f . These savings are an immediate consequence
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of the existence of superstrong random access codes that we discussed in section 6. To
communicate with Bob, Alice constructs the string

m = f(x, 0), . . . , f(x, 2n − 1)

and encodes m ∈ {0, 1}2n

into a random access code ρm. To retrieve the correct answer,
Bob simply retrieves bit xy = f(x, y) from ρm. Evidently, this type of saving is particularly
interesting in the case where Alice and Bob would need to communicate n bits to compute f ,
which is the case classically and quantumly if f = IP is the inner product [41]. By Claims 9,
10, 14 and 13 we immediately obtain that
Claim 15 Let p →∞. Then in to compute the inner product Alice needs to transmit at most
k bits to Bob, where

k =
{

(1/ log 3)n for p-GNST and p-nonlocal theories
n/2 for p-bin theory

7.1.2 Private information retrieval

More striking though are the possibilities of p-GNST or p-theories for the task of private
information retrieval: Here, one (or more) database servers each hold a copy of the database
string x ∈ {0, 1}n. A database user should be able to retrieve any bit xi of his choosing, while
the servers should not learn the desired index i. A protocol that satisfies these parameters is
the trivial one, where the server simply sends the entire string x to the user. The question
is thus, whether it is possible to perform this task by communicating less than n bits. If
only a single server is used, it is known that the trivial protocol is optimal and we need to
communicate Θ(n) bits, even if we are allowed quantum communication [42]. It is clear that
the superstrong encodings from above, allow us to beat this bound trivially, by asking the
server to encode x into a superstrong random access code. Hence we have as an immediate
consequence of Claims 9, 11, 13, and 14 we have
Claim 16 In any p-GNST, p-bin, and p-box theory, there exists a single server private in-
formation retrieval scheme requiring O(polylog(n)) bits of communication for large n.

7.2 Learnability

We consider a scenario in which there is an unknown state for which we are trying to learn an
approximate description. In particular, imagine some arbitrary probability distribution over
possible two-outcome measurements. We are given the expectation value for each measure-
ment in a finite set picked according to this distribution. We then construct an approximate
description of the state which agrees with all the expectation values we have observed so far.
This description is considered to be good if it predicts the correct results for most future mea-
surements drawn from the same distribution. The central question is how many measurement
results we need to be able construct a good description.

The existence of strong random access codes has implications for state learning. Aaron-
son [32] used an upper bound on the number of bits that can be encoded into an n qubit RAC
to upper bound the number of measurements needed to learn an approximate description of an
n qubit state. He took solace in the fact that, despite the exponential number of parameters
describing a quantum state, a linear (in the number of qubits) number of measurements suffice
to learn an approximate description of the state. If an exponential number of measurements
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were really required, we could never hope to do enough measurements to verify the identity
of quantum states of a few hundred particles.

We show the converse for states in p-GNST. We use our constructions of random access
codes to lower bound the number of measurements needed to learn an approximate description
of the state. We find that an exponential number of measurements is required to find such
a description and therefore one could never hope to do enough measurements to learn a
description of a state with a modest number of particles, even approximately. This holds
even for theories where p = 2 and the violation of the CHSH inequality is the same as for
quantum mechanics. This demonstrates an unusually powerful theory which starkly contrasts
with quantum mechanics and the p-nonlocal theory.

We begin with a section defining the relevant tools: a definition of the learning scenario,
and a measure of state complexity known as the “fat shattering dimension.” We then restate
a known lower bound on the number of samples needed for learning in terms of the fat
shattering dimension. In the next section, we derive lower bounds on learnability for p-GNST
theories. First, we use our random access codes to lower bound the fat shattering dimension
for p-GNST states. Then we can use this result to lower bound the number of samples needed
to learn p-GNST states.

7.3 Tools

We begin by introducing some terminology from statistical learning theory. Let the set S
denote the sample space, which will correspond to the space of possible measurements in
our case. A probabilistic concept over S is just a function F : S → [0, 1], and is equivalent
to a state which maps measurement choices to expectation values. A set of such concepts
is referred to as the concept class C over S and corresponds to the set of all states. We
consider the learning situation in which you are given the value of the target concept (state)
over some samples drawn independently according to an arbitrary distribution. The goal
is to output a hypothesis concept that will give values close to the target concept for most
samples drawn from the same distribution. A sample size that is large enough to allow this
to be accomplished with high probability is said to be sufficient. To restate the connection, in
GNSTs we will say that a state corresponds to a concept, and a measurement on the state to
a sample. We will make these notions precise before we demonstrate the connection between
RACs and fat-shattering dimension in 1.

We adopt our definition of probabilistic concept learning from Anthony and Bartlett[43].
Definition 7 (Anthony and Bartlett [43]) Let S be a sample space, let C be a probabilis-
tic concept class over S, and let D be a probability measure over S. Fix an element ρ ∈ C, as
well as error parameters ε, η, γ > 0 with γ > η. Let k0(η, γ, ε, δ) be some function of the error
parameters. Suppose we draw a training set of k samples T = (s1, . . . , sk) independently
according to D, and then choose any hypothesis σT ∈ C such that |σT (si)− ρ (si)| ≤ η for all
si ∈ S. Then if for k ≥ k0(η, γ, ε, δ)

Pr
s∈S

[|σT (s)− ρ (s)| > γ] ≤ ε

with probability at least 1− δ over T , we say that k0 is a sufficient sample size to learn C.
This says that if the size of the training set, k, is bigger than k0, then with probability
1− δ, the training set T , that we pick according to D will be a good training set. That is, a
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hypothesis concept σ which matches the target state on the training set will only be different
from the target state on some other sample with small probability, ε.

To define a lower bound on k0, we will need a measure of complexity called the fat-
shattering dimension.
Definition 8 (Aaronson [32]) Let S be a sample space, let C be a probabilistic-concept class
over S, and let γ > 0 be a real number. We say a set {s1, . . . , sk} ⊆ S is γ-fat-shattered
by C if there exist real numbers α1, . . . , αk such that for all B ⊆ {1, . . . , k}, there exists a
probabilistic concept ρ ∈ C such that for all i ∈ {1, . . . , k},

(i) if i /∈ B then ρ (si) ≤ αi − γ, and

(ii) if i ∈ B then ρ (si) ≥ αi + γ.

Then the γ-fat-shattering dimension of C, or fatC (γ), is the maximum k such that some
{s1, . . . , sk} ⊆ S is γ-fat-shattered by C. (If there is no finite such maximum, then fatC (γ) =
∞.)

The fat-shattering dimension lower bounds the number of samples needed to learn a prob-
abilistic concept.
Lemma 1 (Anthony and Bartlett [43]) Suppose C is a probabilistic concept class over S
and set 0 < γ < η < 1, ε, δ ∈ (0, 1). Then if fatC(γ) ≥ d ≥ 1 and γ2 ≥ 4d2−

√
d/6, any sample

size m0 sufficient to learn C satisfies

m0(η, γ, ε, δ) ≥ max

(
1

32ε

(
d

2 ln2(4d/γ2)
− 1
)

,
1
ε

ln
1
δ

)
This concludes the results we will need from statistical learning theory.

7.4 Lower bounds on sample complexity

Our next step is to show that the existence of random access codes lower bounds the fat-
shattering dimension. First we have to carefully define what “concept” we will be learning
and what constitutes our sample space. For the purposes of learning in GNSTs, the sample
space is just the set of possible measurements, where we allow general measurements by first
making some fiducial measurement on the state, and then post-processing the result using
some decoding function. So we can define SGNST := {(C,D)|C ∈ EG, D : A×n → {0, 1}}.
For some sample (C,D) ∈ SGNST , a concept is specified by the state ρx in a GNST via the
the probability ρx(C,D) :=

∑
A∈A×n D(A)px(A|C), where px is an n-partite state in some

GNST. Then the concept class CGNST is the set of concepts specified by all the states in
GNST.

Note that a “sample” is stronger than a typical notion of measurement. Usually we say
that the measurement gives a result with some probability, but given some sample, the concept
ρ actually returns the probability of that outcome occurring. This stronger notion of sampling
is all we consider here since we are only lower bounding the number of samples needed.
Claim 17 Let the concept class CGNST over SGNST consist of all ρx(C,D) =∑

A∈A D(A)px(A|C), where px describes any n-partite states in a GNST, over the sample
space {(C,D)|C ∈ EG, D : An → {0, 1}}. For integers n, N(p, n) and γ ∈ (0, 1), if there exists
an [N(p, n), n, 1

2 + γ]-RAC then fatCGNST
(γ) ≥ N .
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Proof. By the RAC definition, there exist a set of measurements {(C,D), . . . , (C(N), D(N))}
and states specified by (the concepts) ρx for x ∈ {0, 1}N so that

(i) if xi = 0 then ρx(C(i), D(i)) ≤ 1
2 − γ

(ii) if xi = 1 then ρx(C(i), D(i)) ≥ 1
2 + γ

Therefore, this set of samples is γ fat-shattered by CGNST . Since fatCGNST
is the size of the

largest sample set shattered, fatCGNST
≥ N(p, n) .

Combining Claims 12 with 17 and 1, we get the following result.
Corollary 2 For n̂-partite concepts in Cp−GNST and error parameters ε, η, γ, δ > 0 with
γ > η, if n̂ ≥ 22/p ln(4/(1− γ)2) and

k < max

(
1

32ε

(
3n(n̂,p,γ)

2 ln2(4 · 3n(n̂,p,γ)/γ2)
− 1
)

,
1
ε

ln
1
δ

)

for n(n̂, p, γ) = b
(

n̂ 2−2/p

ln(4/(1−γ)2)

) 1
2/p+1 c, then k is not a sufficient sample size to learn states in

Cp−GNST .

That is, we need O(3n̂
1

2/p+1
/n̂

2
2/p+1 ) samples to learn an n̂-partite state in p-GNST to great

accuracy. For p = 2 we have an uncertainty relation analogous to quantum mechanics that
rules out super-quantum violations of the CHSH bound. Nevertheless it still takes O(3

√
n̂/n̂)

samples to learn these states, as compared to O(n) in the quantum case.

Table 1. Summary of properties and results for various theories.

p-bin p-GNST/p-box p-nonlocal Quantum Classical

Non-signaling yes yes yes yes yes

Satisfies p-uncertainty yes yes yes p=2 n/a

Simultaneous no local commuting commuting all
measurements

CHSH violation 1
2

+ 1

21/p+1
1
2

+ 1

21/p+1
1
2

+ 1

21/p+1
1
2

+ 1

21/2+1
3
4

RAC bits to O(polylog(N)) O(polylog(N)) ? Ω(N) Ω(N)
encode N bits

PIR from N bits O(polylog(N)) O(polylog(N)) ? Ω(N) Ω(N)

“Learning” states hard hard ? easy easy

8 Conclusion and open questions

We have shown that relaxing uncertainty relations can lead to superstrong non-local correla-
tions. This is quite intuitive when considering Tsirelson’s bound as a consequence of such an
uncertainty relation in the quantum setting. We then constructed a range of theories inspired
by such relaxations, and investigated their power with respect to a number of information
processing problems. In particular, we obtained superstrong random access encodings and
savings for communication complexity. At the same time, however, it turned out to become
harder to learn a state in such a theory. We then discussed what makes such superstrong
encodings possible in our p-theories, but also in GNST. We identified a number of simple
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constraints that prevent us from constructing a similar encoding in the quantum setting. Our
work may indicate that using “box-world” to understand any other problems within quantum
information beyond non-local correlations may be difficult, as “box-world” differs from the
quantum setting with respect to such constraints, at least when drawing a one-to-one anal-
ogy from a gbit to a qubit as in GNST [20]. It is important to note that these constraints
did not prevent us from observing superstrong non-local correlations, but merely forbid our
encodings in section 6. If one would like to use “box-world” to understand other aspects one
could either impose such consistency constraints, or look for a different approach to defining
such theories. GNST was defined by first specifying states and then allowing all operations
that take valid states to valid states. If one would have specified the theory in terms of al-
lowed transformations, instead of states, such encodings could also have been ruled out. For
example, in the quantum setting one can transform operators X ⊗X, Z ⊗ Z and XZ ⊗XZ

into a bipartite form via a unitary operation. When looking at a density matrix expressed in
terms of strings of Pauli matrices, its coefficients (which directly determine the moments for
measurements of strings of Paulis) must obey similar constraints to the coefficients belonging
to bipartite operators of the form I⊗X, X ⊗ I, X ⊗X for example.

Finally, it is clear that both the uncertainty relation and the consistency constraints are
obeyed in the quantum setting, since we demand that for any ρ we have Tr(ρ) = 1 and ρ ≥ 0
to be a valid quantum state. Not surprisingly, both forms of constraints are thus necessary
(but in higher dimensions not always sufficient) conditions for ρ ≥ 0. Such characterizations
are not easy for d > 2 [28, 29, 30, 31], and it remains an interesting open problem to find an
intuitive interpretation for such conditions in higher dimensions, and their consequence for
information processing tasks.
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