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In 2000, Dür, Vidal and Cirac indicated that there are infinitely many SLOCC classes for
four qubits. Later, Verstraete, Dehaene, and Verschelde proposed nine families of states
corresponding to nine different ways of entangling four qubits. And then in 2007 Lamata
et al. reported that there are eight true SLOCC entanglement classes of four qubits up

to permutations of the qubits. In this paper, we investigate SLOCC classification of the
nine families proposed by Verstraete, Dehaene and Verschelde, and distinguish 49 true
SLOCC entanglement classes from them.
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1 Introduction

Recently, many authors have exploited SLOCC (stochastic local operations and classical com-

munication ) classification. Dür et al. showed that for pure states of three qubits there are

four different degenerated SLOCC entanglement classes and two different true entanglement

classes [1], and for pure states of four qubits, there are infinitely many SLOCC classes. Their

proof is briefly described here. A general state of n qubits depends on 2 × 2n − 2 real pa-

rameters in [1]. In [1], the invertible local operator α was fixed to that det(α) = 1. Hence,

the local operator α depends on six real parameters. Thus, the set of SLOCC classes of n

qubits depends on at least 2 × 2n − 2 − 6n real parameters. Then, it was asserted [1] there

exist finite SLOCC classes for three qubits while infinite SLOCC classes for n ≥ 4 qubits.

The argument is not complete due to the following two reasons. (i). By the definition, for
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any invertible operator α, det(α) 6= 0. The operator α with det(α) 6= 0 still depends on

eight real parameters because we can image to remove a hyperplane det(α) = 0 with six real

parameters from a space with eight real parameters. That is, the set of SLOCC classes of n

qubits depends on at least 2× 2n − 2− 8n real parameters. By the argument in [1], this lower

bound allows for a finite number of SLOCC classes for n = 4. (ii). In Sec. 7.1 of this paper,

we show that two different true SLOCC entanglement classes constitute a continuous Family

La4
in [2]. The state La4

with a = 0 and the state La4
with a = 1 represent these two classes.

Clearly, the latter class including the state La4
with a 6= 0 can be labeled by a continuous

parameter a 6= 0. It means that finite parameters may allow for finite SLOCC classes. In

other words, it cannot be asserted that there exist infinite SLOCC classes for four qubits even

though the set of SLOCC classes of four qubits depends on at least six real parameters.

Verstraete et al. [2] proposed that for four qubits, there exist nine families of states

corresponding to nine different ways of entanglement. They gave a representative state for

each family and claimed that by determinant-one SLOCC operations, a pure state of four

qubits can be transformed into one of the nine families up to permutations of the qubits.

In [3][4], the authors used the partition to investigate SLOCC classification of three qubits

and four qubits. The idea for the partition was originally used to analyze the separability of

n qubits and multipartite pure states in [5]. In [4], the authors reported that there are 16

true SLOCC entanglement classes of four qubits, where permutation is explicitly included in

the counting. Up to permutations of the qubits, there are eight true SLOCC entanglement

classes of four qubits. We can show that this classification is not complete. For example, for

Span {OkΨ, OkΨ} in [4], the canonical states are

|0000〉 + |1100〉 + a|0011〉 + b|1111〉 and

|0000〉 + |1100〉 +a|0001〉 + a|0010〉 + b|1101〉 + b|1110〉,
where a 6= b [4]. It was pointed out in [6] that for the former canonical state, a = −b
and a 6= −b represent two different true SLOCC entanglement classes, while for the latter

canonical state, ab = 0 and ab 6= 0 represent another two different true SLOCC entanglement

classes. It says that the partition approach cannot classify the two subfamilies represented

by the above canonical states under SLOCC. Using the method in this paper, we can classify

each Span {.....} in [4]. In total, the eight Spans {...} in [4] include more than 16 true SLOCC

entanglement classes.

Miyake proposed the onionlike classification of SLOCC orbits [7]. The simple criteria for

the complete SLOCC classification for three qubits were given in [8]. In [9], we proposed

the SLOCC invariants and semi-invariants for four qubits. Using the invariants and semi-

invariants, it can be determined if two states belong to different SLOCC entanglement classes.

In [6], in terms of invariants and semi-invariants we distinguished 28 distinct true entanglement

classes of four qubits, where permutations of the qubits are allowed. That classification is not

complete. The invariants and semi-invariants only require simple arithmetic operations. In

this paper, we will investigate SLOCC classification of each family in [2] by means of invariants

and semi-invariants. We want to know how many SLOCC entanglement classes there are for

each family by the definition in [1]. For example, in this paper we show that Family La4
only

has two SLOCC entanglement classes: La4
with a = 0 and La4

with a 6= 0, which both are

true entanglement classes. The class La4
with a 6= 0 includes a continuous parameter of SL

(determinant-one SLOCC) classes. We also show that Family La203⊕1
only has two SLOCC
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entanglement classes: La203⊕1
with a = 0 and La203⊕1

with a 6= 0, and the latter is a true

entanglement class. As well, we demonstrate that the class La203⊕1
with a 6= 0 includes a

continuous parameter of SL classes, and can be labeled by a continuous parameter a 6= 0.

In this paper, we distinguish at least 49 true SLOCC entanglement classes from Verstraete

et al.’s nine families. For example, Family Gabcd, 13; Family Labc2
, 19; Family La2b2 , 4; Family

Lab3 , 8; Family La4
, 2; Family La203⊕1

, 1; Family L05⊕3
, 1; Family L07⊕1

, 1; Family L03+1̄03+1̄
,

0. We give the complete SLOCC classifications for families La4
, La203⊕1

, L05⊕3
, L07⊕1

, and

L03+1̄03+1̄
. But we cannot guarantee that the SLOCC classifications for other families are

complete.

In Sec. 3 of this paper, we exploit the classification for Family Gabcd. In Sec. 4 of this

paper, we discuss the classification for Family Labc2
. In Sec. 5 and Sec. 6 of this paper,

we study the classification for families La2b2 and Lab3 , respectively. For the classifications of

other families, see Sec. 7.

For the readability, we list the definitions of invariants and semi-invariants in Sec. 2 of

this paper.

2 SLOCC invariants and semi-invariants

The states of a four-qubit system can be generally expressed as

|ψ〉 =

15
∑

i=0

ai|i〉. (1)

By definition in [1], two states |ψ〉 and |ψ′〉 are equivalent under SLOCC if and only if

there exist invertible local operators α, β, γ and δ such that

|ψ′〉 = α⊗ β ⊗ γ ⊗ δ|ψ〉, (2)

where the local operators α, β, γ and δ can be expressed as 2 × 2 invertible matrices

α =

(

α1 α2

α3 α4

)

, β =

(

β1 β2

β3 β4

)

, γ =

(

γ1 γ2

γ3 γ4

)

, δ =

(

δ1 δ2
δ3 δ4

)

.

2.1 SLOCC invariant

Let |ψ′〉 =
∑15

i=0 a
′
i|i〉 in Eq. (2). If |ψ′〉 is SLOCC equivalent to |ψ〉, then the following

equation was derived by induction in [9].

I(ψ′) = I(ψ) det(α) det(β) det(γ) det(δ), (3)

where

I(ψ) = (a0a15 − a1a14) − (a2a13 − a3a12) − (a4a11 − a5a10) + (a6a9 − a7a8) (4)

and

I(ψ′) = (a′2a
′
13 − a′3a

′
12) + (a′4a

′
11 − a′5a

′
10) − (a′0a

′
15 − a′1a

′
14) − (a′6a

′
9 − a′7a

′
8). (5)
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Notice that I(ψ) does not vary under SL-operations, i.e., determinant-one SLOCC op-

erations, or vanish under non-determinant-one SLOCC operations. It is easy to see that if

|ψ′〉 and |ψ〉 are equivalent under SLOCC, then either I(ψ′) = I(ψ) = 0 or I(ψ′)I(ψ) 6= 0.

Otherwise, the two states belong to different SLOCC entanglement classes. Especially, if

I(ψ′) 6= I(ψ) , then |ψ〉 and |ψ′〉 are inequivalent under SL-operations. Eq. (3) implies that

each SLOCC entanglement class has infinite SL-classes. This is also true for n qubits.

By solving matrix equation in Eq. (2), we obtain the amplitudes a′i of |ψ′〉. By substituting

a′i into the above I(ψ′) in Eq. (5), we obtain the values of I(ψ′) in the Tables of this paper.

2.2 Semi-invariants D1, D2 and D3

In [8][6], we defined Di(ψ) for the state |ψ〉 as follows.

D1(ψ) = (a1a4 − a0a5)(a11a14 − a10a15) − (a3a6 − a2a7)(a9a12 − a8a13), (6)

D2(ψ) = (a4a7 − a5a6)(a8a11 − a9a10) − (a0a3 − a1a2)(a12a15 − a13a14), (7)

D3(ψ) = (a3a5 − a1a7)(a10a12 − a8a14) − (a2a4 − a0a6)(a11a13 − a9a15). (8)

Let |ψ〉 be the representative states in Tables in this paper. By solving matrix equation

in Eq. (2), we obtain the amplitudes a′i of |ψ′〉. By substituting a′i into D1, D2, and D3 in

Eqs. (6,7,8), we obtain the values of D1, D2, and D3 in these Tables. If Di = 0 for some

class in these Tables, then it implies that Di = 0 for for all the states of that class. If Di

is ∆ for some class in these Tables, then it means that Di = 0 for some states of that class

while Di 6= 0 for other states of that class. For example, for the class A1.2 in Table I, D1 is

0, D2 is ∆, and D3 = 0. It says that for some state of the class A1.2 in Table I, D2 6= 0 while

D1 = D3 = 0 for each state of the class A1.2.

2.3 Semi-invariants Fi

F1(ψ) = (a0a7 − a2a5 + a1a6 − a3a4)
2 − 4(a2a4 − a0a6)(a3a5 − a1a7),

F2(ψ) = (a8a15 − a11a12 + a9a14 − a10a13)
2 − 4(a11a13 − a9a15)(a10a12 − a8a14),

F3(ψ) = (a0a11 − a2a9 + a1a10 − a3a8)
2 − 4(a2a8 − a0a10)(a3a9 − a1a11),

F4(ψ) = (a4a15 − a6a13 + a5a14 − a7a12)
2 − 4(a6a12 − a4a14)(a7a13 − a5a15),

F5(ψ) = (a0a13 − a4a9 + a1a12 − a5a8)
2 − 4(a4a8 − a0a12)(a5a9 − a1a13),

F6(ψ) = (a2a15 − a6a11 + a3a14 − a7a10)
2 − 4(a6a10 − a2a14)(a7a11 − a3a15),

F7(ψ) = (a0a14 − a4a10 + a2a12 − a6a8)
2 − 4(a4a8 − a0a12)(a6a10 − a2a14),

F8(ψ) = (a1a15 − a5a11 + a3a13 − a7a9)
2 − 4(a5a9 − a1a13)(a7a11 − a3a15),

F9(ψ) = (a0a15 − a2a13 + a1a14 − a3a12)
2 − 4(a0a14 − a2a12)(a1a15 − a3a13),

F10(ψ) = (a4a11 − a7a8 + a5a10 − a6a9)
2 − 4(a7a9 − a5a11)(a6a8 − a4a10)).

Let |ψ〉 be the representative states in Tables in this paper. By solving matrix equation

in Eq. (2), we obtain the amplitudes a′i of |ψ′〉. By substituting a′i into the above Fi, we can

obtain the values of Fi. Thus, we can derive the properties of Fi for a SLOCC class.

Denotation. Let P = det2(β) det2(δ) det2(γ), Q = det2(α) det2(γ) det2(δ),

R = det2(α) det2(β) det2(δ), S = det2(α) det2(γ) det2(β), T = det(α) det(β) det(γ) det(δ).
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3 Family Gabcd

The representative state of this family is Gabcd = a+d
2 (|0000〉+|1111〉)+ a−d

2 (|0011〉+|1100〉)+
b+c
2 (|0101〉+ |1010〉)+ b−c

2 (|0110〉+ |1001〉). Gabcd becomes a product state of two EPR pairs

for the following cases:

a = b = c = d; x = y = z = 0 and u 6= 0; x = y = z = −u; x = y = −z = −u, where x, y,

z, u are distinct and x, y, z, u ∈ {a, b, c, d}.
When either b = c = 0 and a = ±d 6= 0 or a = d = 0 and b = ±c 6= 0, the states obtained

from Gabcd belong to the class |GHZ〉.
The state Gabcd satisfies the following equations.

I = (a2 + b2 + c2 + d2)/2,

D1 = (ac+ bd)(ab+ cd)/4,

D2 = (a2 + b2 − c2 − d2)(−a2 + b2 − c2 + d2)/16,

D3 = −(−ac+ bd)(ab− cd)/4,

Fi = (b2 − c2)(a2 − d2)/4, i = 1 to 8,

F9 = a2d2, F10 = b2c2. (9)

We consider the following four subfamilies and list the true SLOCC entanglement classes

of each subfamily in Tables I (1), I (2.1), I (2.2) and I (2.3).

3.1 Subfamily Gabcd with x = y = 0 and zu 6= 0, where different x, y, u, v ∈ {a, b,
c, d}

(1). Gabcd with a = d = 0 and bc 6= 0 is equivalent to Gabcd with b = c = 0 and ad 6= 0 under

SLOCC σx ⊗ I ⊗ I ⊗ σx, where I is the identity matrix.

(2). Gabcd with c = d = 0 and ab 6= 0 is equivalent to Gabcd with a = b = 0 and cd 6= 0

under SLOCC I ⊗ σy ⊗ σy ⊗ I.

(3). Gabcd with b = d = 0 and ac 6= 0 is equivalent to Gabcd with a = c = 0 and bd 6= 0

under SLOCC I ⊗ σx ⊗ I ⊗ σx.

(4). Gabcd with b = d = 0 and ac 6= 0 is equivalent to Gabcd with c = d = 0 and ab 6= 0.

This is because a(|0000〉 + |1111〉 + |0011〉 + |1100〉) + c(|0101〉 + |1010〉 − |0110〉 − |1001〉)
= α⊗β⊗γ⊗δ(−a(|0000〉+ |1111〉+ |0011〉+ |1100〉)+c(|0101〉+ |1010〉+ |0110〉+ |1001〉)),

where α = γ = diag{i, 1}, β = diag{−i, 1} = −δ.
Hence, we only need to consider the subfamily Gabcd with b = c = 0 and ad 6= 0. In this

subfamily Gabcd with b = c = 0 and ad 6= 0, there are three true SLOCC entanglement classes,

denoted as A1.1 ( i.e., |GHZ〉), A1.2, and A1.3.

For the class A1.1, it includes states Gabcd with b = c = 0 and a = ±d 6= 0, which are

equivalent to |GHZ〉.
For the class A1.2, it includes states Gabcd with b = c = 0 and a2 + d2 = 0. A1.2

is a true SLOCC entanglement class. We can argue this as follows. It is straightforward

to verify Gabcd(b = c = 0, d = ±ai) = α ⊗ β ⊗ γ ⊗ δ Gabcd(b = c = 0, a = 1, d = ±i),
where α = δ = diag(

√
a, 1) and β = γ = diag(1,

√
a). Also, Gabcd(b = c = 0, a = 1, d =

−i) = α ⊗ β ⊗ γ ⊗ δGabcd(b = c = 0, a = 1, d = i), where α = diag(i, 1), β = diag(1,−i),
γ = diag(−1, 1), and δ = I.
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Verstraete indicated that Family Gabcd includes the state |φ4〉 = (|0000〉+ |0011〉+ |1100〉−
|1111〉)/2. Now, we can exactly say that the state |φ4〉 is in the class A1.2 whose representative

is the stateGabcd(b = c = 0, a = 1, d = i). This is because the representative state is equivalent

to |φ4〉 under SLOCC α ⊗ β ⊗ γ ⊗ δ, where α = diag(i, 1), β = I, γ = diag(1 − i, 1) and

δ = diag(1,−(1 + i)).

For the class A1.3, it includes states Gabcd with b = c = 0 and a2 + d2 6= 0. We cannot

classify A1.3 further.

The three classes A1.1, A1.2 and A1.3 are different by the values of I, D1, D2, and D3 in

Table I (1).

For each state of this subfamily, the following equations hold.

I = (a2 + d2)/2 ∗ T , D1 = 0, D2 = (a2 − d2)/16 ∗ (...), D3 = 0,

F1 = a2d2α2
1α

2
2 ∗ P , F2 = a2d2α2

3α
2
4 ∗ P , F3 = a2d2β2

1β
2
2 ∗Q, F4 = a2d2β2

3β
2
4 ∗Q,

F5 = a2d2γ2
2γ

2
1 ∗R, F6 = a2d2γ2

4γ
2
3 ∗R, F7 = a2d2δ21δ

2
2 ∗ S, F8 = a2d2δ23δ

2
4 ∗ S,

F9 = a2d2 (α1β1α4β4 − β3α3β2α2)
2
det2(δ) det2(γ),

F10 = a2d2 (−α1β3α4β2 + β1α3β4α2)
2
det2(δ) det2(γ).

From the above equations, we have the following property.

Property 1.1.

For each state of this subfamily Gabcd with b = c = 0 and ad 6= 0, if F1F2 = 0 ∧ F3F4 = 0

then F9= 0 ∧ F10 6= 0 or F9 6= 0 ∧ F10= 0.

By computing, we obtain the Table I (1). For the first row of Table I (1), each state of the

class |GHZ〉 must satisfy I 6= 0, D1 = D2 = D3 = 0. ∆ in this paper may be zero or not.

Table I (1) The true SLOCC entanglement classes in the subfamily Gabcd with b = c = 0 and

ad 6= 0

classes criteria for classification I D1 D2 D3

A1.1 (i.e., |GHZ〉) a = ±d 6= 0 0 0 0
A1.2 (i.e., |φ4〉) a 6= ±d, and a2 + d2 = 0 = 0 0 ∆ 0
A1.3, * a 6= ±d, and a2 + d2 6= 0 6= 0 0 ∆ 0

Note that “*” means that we cannot show that it has only one true SLOCC entanglement

class.

3.2 Subfamily Gabcd with x = ±y 6= 0 and u = ±v 6= 0, where different x, y, u,

v ∈ {a, b, c, d}
3.2.1 Subsubfamily Gabcd with a = ±d 6= 0 and b = ±c 6= 0

(1). The state Gabcd with a = −d and b = c is equivalent to Gabcd with a = d and b = −c
under SLOCC I ⊗ σx ⊗ I⊗ σx.

(2). The state Gabcd with a = −d and b = −c is equivalent to Gabcd with a = d and b = c

under SLOCC I ⊗ I ⊗ σx⊗ σx.

Therefore we only need to consider the subsubfamily Gabcd with a = d and b = ±c but

a 6= ±b as follows.

This subsubfamily has four true SLOCC entanglement classes denoted as A2.1, A2.2, A3.1

and A3.2.

For the class A2.1, it includes states Gabcd with a = d, b = c, a 6= ±b, and a2 + b2 =

0. That is, A2.1 includes a(|0000〉 + |1111〉) ± ai(|0101〉 + |1010〉). A2.1 is a true SLOCC
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entanglement class. We can argue this as follows. It is straightforward to verify a(|0000〉 +

|1111〉) ± ai(|0101〉 + |1010〉) = α ⊗ β ⊗ γ ⊗ δ (|0000〉 + |1111〉 ± i(|0101〉 + |1010〉)), where

α = δ = diag(
√
a, 1) and β = γ = diag(1,

√
a). We can also show that two states (|0000〉 +

|1111〉 ± i(|0101〉 + |1010〉)) are equivalent under SLOCC. This is because (|0000〉 + |1111〉 −
i(|0101〉 + |1010〉)) = α ⊗ β ⊗ γ ⊗ δ (|0000〉 + |1111〉 + i(|0101〉 + |1010〉)), where γ = δ = I

and α = β = σz.

For the class A2.2, it includes states Gabcd with a = d, b = c, a 6= ±b, and a2 + b2 6= 0.

We cannot classify A2.2 further.

For the class A3.1, it includes states Gabcd with a = d, b = −c, a 6= ±b, and a2 + b2 = 0.

That is, A3.1 includes a(|0000〉+|1111〉)±ai(|0110〉+|1001〉). We can show that A3.1 is a true

SLOCC entanglement class as follows. It is plain to verify that a(|0000〉+|1111〉)±ai(|0110〉+
|1001〉) = α⊗β⊗ γ⊗ δ (|0000〉+ |1111〉± i(|0110〉+ |1001〉)), where α = β = diag(

√
a, 1) and

γ = δ = diag(1,
√
a). Furthermore. we can demonstrate that (|0000〉 + |1111〉 + i(|0110〉 +

|1001〉)) = α⊗β⊗γ⊗δ(|0000〉+ |1111〉−i(|0110〉+ |1001〉)), where γ = δ = I and α = β = σz.

For the class A3.2, it includes states Gabcd with a = d, b = −c, a 6= ±b, and a2 + b2 6= 0.

We cannot classify A3.2 further.

The four classes are different by the values of I, D1, D2, and D3 in (2.1).

Table I (2.1). The true SLOCC entanglement classes in the subsubfamily Gabcd with a = d and

b = ±c but a 6= ±b

classes criteria for classification I D1 D2 D3

A2.1 b = c, a2 + b2 = 0 = 0 ∆ 0 0
A2.2, * b = c, a2 + b2 6= 0 6= 0 ∆ 0 0
A3.1 b = −c, a2 + b2 = 0 = 0 0 0 ∆
A3.2, * b = −c, a2 + b2 6= 0 6= 0 0 0 ∆

Let us show that this subsubfamily is different from the subfamily Gabcd with x = y = 0

and zu 6= 0 as follows.

The representative state of this subsubfamily is Gabcd with a = d and b = ±c. From

Eq. (9), this representative state satisfies Fi = 0, i = 1 to 8, F9 = a4, and F10 = b4. This

violates property 1.1. Therefore this subsubfamily is different from the subfamily Gabcd with

x = y = 0 and zu 6= 0.

By calculating, each state of classes A2.1 and A2.2 satisfies the following equations.

I = (a2 + b2), D1 = −ab ∗ (...), D2 = D3 = 0,

F1 = (a2 − b2)α2
1α

2
2 ∗ P , F2 = (a2 − b2)α2

3α
2
4 ∗ P ,

F3 = (a2 − b2)β2
1β

2
2 ∗Q, F4 = (a2 − b2)β2

3β
2
4 ∗Q,

F5 = (a2 − b2)γ2
2γ

2
1 ∗R, F6 = (a2 − b2)γ2

4γ
2
3 ∗R,

F7 = (a2 − b2)δ21δ
2
2 ∗ S, F8 = (a2 − b2)δ23δ

2
4 ∗ S,

We omit F9 and F10 because they are too complicated. From the above Fi, we can derive

the following property 1.2.

Property 1.2.

(1). For each state of the subsubfamily Gabcd with a = d and b = c but a 6= ±b,
(i). if I = 0, then F9 = F10,

(ii). if F1F2 = 0 ∧ F3F4 = 0, then F9 6= 0 ∧ F10 6= 0,

(iii). if I 6= 0 and F1F2 = 0 ∧ F3F4 = 0, then F9 6= F 10.
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(2). For each state of the subsubfamily Gabcd with a = d and b = c but a 6= ±b, if

F1F2 = 0 ∧ F 3 = F4 = 0 or F3F4 = 0 ∧ F1 = F2 = 0, then D1 6= 0.

3.2.2 Subsubfamily Gabcd with a = ±b 6= 0, and c = ±d 6= 0

(1). When a = b∧ c = d or a = −b∧ c = −d, and a2 + c2 = 0, the states are in A2.1.

(2). When a = b∧ c = d or a = −b∧ c = −d, and a2 + c2 6= 0, the states are in A2.2.

(3). When a = b ∧ c = −d or a = −b ∧ c = d, and a2 + c2 = 0, the states are in A3.1.

(4). When a = b ∧ c = −d or a = −b ∧ c = d, and a2 + c2 6= 0, the states are in A3.2.

3.2.3 Subsubfamily Gabcd with a = ±c 6= 0 and b = ±d 6= 0

The states Gabcd with a = ±c and b = ±d are equivalent to the states Gabcd with a = ±b,
and c = ±d in the above subsection 3.2.2 under SLOCC. For example, the state Gabcd with

a = c and b = d, denoted as Gabcd(a = c and b = d), is equivalent to the state Gabcd with

a = b, and c = d, denoted as Gabcd(a = b and c = d). This fact can be verified as follows.

Let α = δ = diag{i, 1}, β = γ = diag{−i, 1}. Then, it is easy to see that Gabcd(a = b and

c = d) = α⊗ β ⊗ γ ⊗ δGabcd(a = c and b = d).

3.3 Subfamily Gabcd with either a = ±d 6= 0 and b 6= ±c, or b = ±c 6= 0 and a 6= ±d
Note that

(1). The state Gabcd with b = c and a 6= ±d is equivalent to state Gabcd with a = d and

b 6= ±c under σx ⊗ I ⊗ σx ⊗ I.

(2). The state Gabcd with b = −c and a 6= ±d is equivalent to the state Gabcd with a = d

and b 6= ±c under σx ⊗ I ⊗ I ⊗ σx.

(3). Furthermore, the state Gabcd with a = −d and b 6= ±c is equivalent to the state Gabcd

with a = d and b 6= ±c under I ⊗ I ⊗ σx ⊗ σx.

Therefore, we only need to consider the subfamily Gabcd with a = d and b 6= ±c as follows.

This subfamily has four true SLOCC entanglement classes denoted as A4.1, A4.2, A4.3

and A4.4.

For the class A4.1, it includes states Gabcd with a = d, either a = ±b or ±c, and 2a2 +

b2 + c2 = 0.

For the class A4.2, it includes states Gabcd with a = d, either a = ±b or ±c, and 2a2 +

b2 + c2 6= 0.

For the class A4.3, it includes states Gabcd with a = d, a 6= ±b, a 6= ±c, and 2a2+b2+c2 =

0.

For the class A4.4, it includes states Gabcd with a = d, a 6= ±b, a 6= ±c, and 2a2+b2+c2 6=
0.

We cannot classify A4.1, A4.2, A4.3 or A4.4 further.

Table I (2.2). The true SLOCC entanglement classes in the subfamily Gabcd with a = d and

b 6= ±c

classes criteria for classification I D1 D2 D3

A4.1, * either a = ±b or ±c, and 2a2 + b2 + c2 = 0 = 0 ∆ ∆ ∆
A4.2, * either a = ±b or ±c, and 2a2 + b2 + c2 6= 0 6= 0 ∆ ∆ ∆
A4.3, * a 6= ±b, a 6= ±c, and 2a2 + b2 + c2 = 0 = 0 ∆ ∆ ∆
A4.4, * a 6= ±b, a 6= ±c, and 2a2 + b2 + c2 6= 0 6= 0 ∆ ∆ ∆
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We demonstrate the following properties of this subfamily.

When a = d, Gabcd becomes Gabcd(a = d) = a(|0000〉 + |1111〉) + b+c
2 (|0101〉 + |1010〉) +

b−c
2 (|0110〉+|1001〉). Any state connected with Gabcd(a = d) by SLOCC satisfies the following:

I = 1/2(2a2 + b2 + c2)T ,

F1 = (a2 − b2)(a2 − c2)2α2
1α

2
2P, F2 = (a2 − b2)(a2 − c2)2α2

3α
2
4P,

F3 = (a2 − b2)(a2 − c2)2β2
1β

2
2Q,F4 = (a2 − b2)(a2 − c2)2β2

3β
2
4Q,

F5 = (a2 − b2)(a2 − c2)2γ2
2γ

2
1R,F6 = (a2 − b2)(a2 − c2)2γ2

4γ
2
3R,

F7 = (a2 − b2)(a2 − c2)2δ21δ
2
2S, F8 = (a2 − b2)(a2 − c2)2δ23δ

2
4S. (10)

We omit the complicated expressions of D1, D2, D3, F9 and F10.

From Eq. (10), we have the following property 1.3.

Property 1.3.

(1). From Eq. (10), each state of the subfamily Gabcd with a = d, b 6= ±c, and either

a = ±b or ±c satisfies Fi = 0, i = 1 to 8, and when b2 + c2 6= 0, |F9| + |F10| 6= 0.

(2). From Eq. (10), for each state of the subfamily Gabcd with a = d, b 6= ±c, a 6= ±b and

a 6= ±c, if F1 = F2 = F3 = F4 = 0, then one can obtain (i) F9 6= 0 and F10 6= 0 whenever

abcd 6= 0, and (ii) F9 6= F10 whenever a4 6= b2c2.

From Eq. (10), Fi 6= 0, i = 1, ..., 8 for some states of the subfamily Gabcd with a = d,

b 6= ±c. Therefore, classes A4.1, A4.2, A4.3 and A4.4 are different from each other. Also see

Table I (2.2).

Let us argue that this subfamily is different from the subfamily Gabcd with x = y = 0 and

zu 6= 0 and the subfamily Gabcd with a = ±d and b = ±c as follows.

The representative state of this subfamily is Gabcd with a = d and b 6= ±c. From Eq. (9),

this representative state satisfies Fi = 0, i = 1 to 8, F9 = a4, F10 = b2c2, D1 = a2(b+ c)2/4 6=
0, D2 = (b2 − c2)2/16 6= 0, D3 = −a2(b − c)2/4 6= 0. These Fi violate property 1.1. Hence,

this subfamily is different from the subfamily Gabcd with x = y = 0 and zu 6= 0. These Di

also violate the criteria for Di in Table I (2.1), therefore this subfamily is different from the

subfamily Gabcd with a = ±d and b = ±c.

3.4 Subfamily Gabcd with x 6= ±y, or x 6= ±y but only one r = s, where x, y ∈ {a,
b, c, d}, r ∈ {±a, ±d}, and s ∈ {±b, ±c}

Class A4.5 includes states Gabcd with a2 + b2 + c2 + d2 = 0. The class A4.6 includes states

Gabcd with a2 + b2 + c2 + d2 6= 0. We cannot classify A4.5 or A4.6 further.

Table I (2.3). The true SLOCC entanglement classes in the subfamily Gabcd with x 6= ±y

classes criteria for classification I D1 D2 D3

A4.5, * a2 + b2 + c2 + d2 = 0 = 0 ∆ ∆ ∆
A4.6, * a2 + b2 + c2 + d2 6= 0 6= 0 ∆ ∆ ∆

For this subfamily, I = 1
2 (a2 + b2 + c2 + d2)T . The two classes are different because of

their different values of I. See Table I (2.3).

4 Family Labc2

The representative state of this family is Labc2
= a+b

2 (|0000〉+ |1111〉)+ a−b
2 (|0011〉+ |1100〉)+

c( |0101〉 + |1010〉) + |0110〉. When a = b = c = 0, this becomes a full separable state. We
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divide Family Labc2
into three subfamilies. They are the subfamily Labc2

with c = 0, the

subfamily Labc2
with abc 6= 0, and the subfamily Labc2

with c 6= 0, ab = 0. We list the true

SLOCC entanglement classes of each subfamily in Tables II (1), II (2), II (3), and II (4),

and demonstrate that these classes of each subfamily are distinct true SLOCC entanglement

classes in Appendix A.

4.1 The classification for the subfamily Labc2
with c = 0

Here the state Labc2
with c = 0 represents this subfamily. Let Labc2

(c = 0) = a+b
2 (|0000〉 +

|1111〉) + a−b
2 (|0011〉 + |1100〉) + |0110〉. The subfamily Labc2

(c = 0) includes the following

five distinct true SLOCC entanglement classes. The five classes are denoted as B1.1, B1.2,

B1.3, B1.4, and B1.5. See Table II (1).

For the class B1.1, it includes states Labc2
with c = 0 and a = b 6= 0. That is, B1.1

includes a(|0000〉 + |1111〉) + |0110〉. B1.1 is a true SLOCC entanglement class because

a(|0000〉 + |1111〉) + |0110〉 = α ⊗ β ⊗ γ ⊗ δ(|0000〉 + |1111〉 + |0110〉), where γ = δ = I,

α = diag(1, a), and β = diag(a, 1).

For the class B1.2, it includes states Labc2
with c = 0 and a = −b 6= 0. That is, B1.2

includes a(|0011〉 + |1100〉) + |0110〉. B1.2 is a true SLOCC entanglement class because

a(|0011〉 + |1100〉) + |0110〉 = α ⊗ β ⊗ γ ⊗ δ(|0011〉 + |1100〉 + |0110〉), where γ = δ = I,

α = diag(1, a), and β = diag(a, 1).

For the class B1.3, it includes states Labc2
with c = 0 and a 6= ±b and a2 + b2 = 0.

That is, B1.3 includes a(1±i)
2 (|0000〉 + |1111〉) + a(1∓i)

2 (|0011〉 + |1100〉) + |0110〉. We can

prove that B1.3 is a true SLOCC entanglement class as follows. It is easy to verify that
a(1±i)

2 (|0000〉 + |1111〉) + a(1∓i)
2 (|0011〉 + |1100〉) + |0110〉 = α ⊗ β ⊗ γ ⊗ δ( (1±i)

2 (|0000〉 +

|1111〉) + (1∓i)
2 (|0011〉 + |1100〉) + |0110〉), where α = diag(1, a), β = diag(a, 1), γ = δ = I.

Also, we can show that (1+i)
2 (|0000〉+ |1111〉) + (1−i)

2 (|0011〉+ |1100〉) + |0110〉 = α⊗ β⊗ γ⊗
δ( (1−i)

2 (|0000〉+|1111〉)+ (1+i)
2 (|0011〉+|1100〉)+|0110〉), where α = diag(1, i), β = diag(−i, 1),

γ = diag(−1, 1), and δ = I.

For the class B1.4, it includes states Labc2
with c = 0, a 6= ±b, ab 6= 0, and a2 + b2 6= 0.

We cannot classify B1.4 further.

For the class B1.5, it includes states Labc2
with c = 0, a 6= ±b, and ab = 0. B1.5 is a true

SLOCC entanglement class. The following is our argument. a
2 (|0000〉 + |1111〉) ± a

2 (|0011〉 +

|1100〉) + |0110〉 = α ⊗ β ⊗ γ ⊗ δ( 1
2 (|0000〉 + |1111〉) ± 1

2 (|0011〉 + |1100〉) + |0110〉), where

α = diag(1, a), β = diag(a, 1), γ = δ = I. We can also show 1
2 (|0000〉 + |1111〉) + 1

2 (|0011〉 +

|1100〉) + |0110〉 = α ⊗ β ⊗ γ ⊗ δ( 1
2 (|0000〉 + |1111〉) − 1

2 (|0011〉 + |1100〉) + |0110〉), where

α = δ = σz, β = γ = I.

Classes B1.1-B1.5 are distinct because of their different values of I, D1, D2, and D3 in

Table II (1).

Table II (1). The true SLOCC entanglement classes in the subfamily Labc2
with c = 0

classes criteria for classification I D1 D2 D3

B1.1 a = b 6= 0 6= 0 0 0 ∆
B1.2 a = −b 6= 0 6= 0 ∆ 0 0
B1.3 a 6= ±b, and a2 + b2 = 0 = 0 ∆ ∆ ∆
B1.4, * a 6= ±b, ab 6= 0, and a2 + b2 6= 0 6= 0 ∆ ∆ ∆
B1.5 a 6= ±b, and ab = 0 6= 0 0 ∆ 0
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4.2 The classification for the subfamily Labc2
with abc 6= 0

This subfamily has three inequivalent subsubfamilies under SLOCC. They are the subsub-

family Labc2
with abc 6= 0 and a = b, the subsubfamily Labc2

with abc 6= 0 and a = −b, and

the subsubfamily Labc2
with abc 6= 0, a 6= ±b.

Table II (2). The true SLOCC entanglement classes in the subfamily Labc2
with abc 6= 0

classes criteria for classification I D1 D2 D3

B2.1 a = b, a = ±c 6= 0 ∆ 0 0
B2.2 a = b, a 6= ±c, and a2 + c2 = 0 = 0 ∆ ∆ ∆
B2.3, * a = b, a 6= ±c, and a2 + c2 6= 0 6= 0 ∆ ∆ ∆
B3.1 a = −b, and a = ±c 6= 0 0 0 ∆
B3.2 a = −b, a 6= ±c, and a2 + c2 = 0 = 0 ∆ ∆ ∆
B3.3, * a = −b, a 6= ±c, and a2 + c2 6= 0 6= 0 ∆ ∆ ∆
B4.1, * a 6= ±b, a = c, and (3a2 + b2) = 0 = 0 ∆ ∆ ∆
B4.2, * a 6= ±b, a = c, and (3a2 + b2) 6= 0 6= 0 ∆ ∆ ∆

4.2.1 Subsubfamily Labc2
with abc 6= 0 and a = b

This subsubfamily has the following three distinct true SLOCC entanglement classes. They

are named as B2.1, B2.2, and B2.3. See Table II (2).

For the class B2.1, it includes states Labc2
with abc 6= 0, a = b, and a = ±c. That is,

B2.1 includes a (|0000〉 + |1111〉) ± a ( |0101〉 + |1010〉) + |0110〉. We can show that B2.1 is

a true entanglement class as follows. a (|0000〉 + |1111〉) ± a ( |0101〉 + |1010〉) + |0110〉 =

α⊗β⊗γ⊗δ(|0000〉+|1111〉± (|0101〉+|1010〉)+|0110〉), where α = diag(1, a), γ = diag(a, 1),

β = δ = I. Also, |0000〉+ |1111〉+ |0101〉+ |1010〉+ |0110〉 = α⊗ β⊗ γ⊗ δ(|0000〉+ |1111〉−
(|0101〉 + |1010〉) + |0110〉), where α = δ = σz, and β = γ = I.

For the class B2.2, it includes states Labc2
with abc 6= 0, a = b, a 6= ±c, and a2 + c2 = 0.

That is, B2.2 includes a (|0000〉+|1111〉)±ai ( |0101〉+|1010〉)+|0110〉. We can also show that

B2.2 is a true entanglement class as follows. a(|0000〉+|1111〉)±ai ( |0101〉+|1010〉)+|0110〉 =

α⊗β⊗γ⊗δ(|0000〉+|1111〉±i (|0101〉+|1010〉)+|0110〉), where α = diag(1, a), γ = diag(a, 1),

β = δ = I. Also, |0000〉 + |1111〉 + i ( |0101〉 + |1010〉) + |0110〉 = α ⊗ β ⊗ γ ⊗ δ(|0000〉 +

|1111〉 − i (|0101〉 + |1010〉) + |0110〉), where α = δ = σz, and β = γ = I.

For the class B2.3, it includes states Labc2
with abc 6= 0, a = b, a 6= ±c, and a2 + c2 6= 0.

We cannot classify B2.3 further.

Classes B2.1, B2.2, and B2.3 are different from each other by the values of I, D1, D2, and

D3 in Table II (2).

4.2.2 The classification for the subsubfamily Labc2
with abc 6= 0 and a = −b

This subsubfamily has the following three distinct true SLOCC entanglement classes. They

are denoted as B3.1, B3.2, and B3.3. See Table II (2).

For the class B3.1, it includes states Labc2
with abc 6= 0 and a = −b and a = ±c. That is,

B3.1 includes a (|0011〉 + |1100〉) ± a ( |0101〉 + |1010〉) + |0110〉. We demonstrate that B3.1

is a true entanglement class below.

a (|0011〉+ |1100〉)±a ( |0101〉+ |1010〉)+ |0110〉 = α⊗β⊗γ⊗δ(|0011〉+ |1100〉± (|0101〉+
|1010〉) + |0110〉), where α = δ = I, β = γ = diag(a, 1).
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Also, |0011〉+ |1100〉+ |0101〉+ |1010〉+ |0110〉 = α⊗β⊗γ⊗δ(|0011〉+ |1100〉− (|0101〉+
|1010〉) + |0110〉), where α = γ = I, β = σz, and δ = −σz.

For the class B3.2, it includes states Labc2
with abc 6= 0 and a = −b and a 6= ±c, a2+c2 = 0.

That is, B3.2 includes a (|0011〉+ |1100〉)± ai ( |0101〉+ |1010〉) + |0110〉. We can argue that

B3.2 is a true entanglement class as follows.

a (|0011〉 + |1100〉) ± ai ( |0101〉 + |1010〉) + |0110〉 = α ⊗ β ⊗ γ ⊗ δ(|0011〉 + |1100〉 ±
i (|0101〉 + |1010〉) + |0110〉), where α = δ = I, β = γ = diag(a, 1).

Also, |0011〉 + |1100〉 + i (|0101〉 + |1010〉) + |0110〉 = α ⊗ β ⊗ γ ⊗ δ(|0011〉 + |1100〉 −
i (|0101〉 + |1010〉) + |0110〉), where α = γ = I, β = σz, and δ = −σz.

For the class B3.3, it includes states Labc2
with abc 6= 0 and a = −b and a 6= ±c, a2+c2 6= 0.

We cannot classify B3.3 further.

Classes B3.1, B3.2 and B3.3 are different from each other by the values of I, D1, D2, and

D3 in Table II (2).

4.2.3 Subsubfamily Labc2
with abc 6= 0, a 6= ±b, but c = ±a or c = ±b

Note that the states Labc2
with abc 6= 0, a 6= ±b, and c = ±b can be obtained by SLOCC

I ⊗ σz ⊗ σz ⊗ I from the states Labc2
with abc 6= 0, a 6= ±b, and c = ∓a, respectively.

Furthermore, the state Labc2
with abc 6= 0, a 6= ±b, and c = −a is equivalent to the Labc2

with abc 6= 0, a 6= ±b, and c = a under SLOCC. The following is our argument. Let p = −a
and q = −b. Then, from the state p+q

2 (|0000〉 + |1111〉) + p−q

2 (|0011〉 + |1100〉) + p( |0101〉 +

|1010〉) + |0110〉, we can obtain a+b
2 (|0000〉 + |1111〉) + a−b

2 (|0011〉 + |1100〉) − a( |0101〉 +

|1010〉) + |0110〉 under SLOCC (−σz) ⊗ σz ⊗ I ⊗ I.

Therefore, we only need to consider states Labc2
with abc 6= 0, a 6= ±b, a = c. This

subsubfamily has the following two different true SLOCC entanglement classes: B4.1 and

B4.2. See Table II (2).

For the class B4.1, it includes states Labc2
with abc 6= 0, a 6= ±b, c = a and (3a2 + b2) = 0.

For the class B4.2, it includes states Labc2
with abc 6= 0, a 6= ±b, a = c, (3a2 + b2) 6= 0.

We cannot classify B4.1 or B4.2 further.

Classes B4.1 and B4.2 are different because they have different values of I in Table II (2).

4.2.4 Subsubfamily Labc2
with abc 6= 0, and x 6= ±y, where x, y ∈ {a, b, c}

We can distinguish two classes B4.3 and B4.4 from this subsubfamily.

For the class B4.3, it includes states Labc2
with abc 6= 0 and x 6= ±y and a2 + b2 +2c2 = 0.

For the class B4.4, it includes states Labc2
with abc 6= 0 and x 6= ±y and a2 + b2 +2c2 6= 0.

We cannot classify B4.3 or B4.4 further.

Table II (3). The true SLOCC entanglement classes in the subfamily Labc2
with abc 6= 0 and

x 6= ±y

classes criteria for classification I D1 D2 D3

B4.3, * x 6= ±y, a2 + b2 + 2c2 = 0 = 0 ∆ ∆ ∆
B4.4, * x 6= ±y, a2 + b2 + 2c2 6= 0 6= 0 ∆ ∆ ∆

These two classes are different because of their different values of I.
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4.3 The classification for the subfamily Labc2
with c 6= 0, ab = 0

First we show that the state Labc2
with c 6= 0, b = 0 is equivalent to the state Labc2

with c 6= 0,

a = 0 under SLOCC as follows. From the state a
2 (|0000〉 + |1111〉) − a

2 (|0011〉 + |1100〉) +

c( |0101〉+ |1010〉)+ |0110〉, we can obtain a
2 (|0000〉+ |1111〉)+ a

2 (|0011〉+ |1100〉)+c( |0101〉+
|1010〉) + |0110〉 under SLOCC α ⊗ β ⊗ γ ⊗ δ, where α = β = diag{i, 1}, γ = δ = diag{−i,
1}. Therefore, we only consider Labc2

with c 6= 0, a = 0 below.

Furthermore, note that the state Labc2
with c 6= 0, a = 0, and b = −c is equivalent to the

state Labc2
with c 6= 0, a = 0, and b = c under SLOCC. We can argue this as follows. From

the state −b
2 (|0000〉 + |1111〉) − −b

2 (|0011〉 + |1100〉) − b( |0101〉 + |1010〉) + |0110〉, we can

obtain b
2 (|0000〉 + |1111〉) − b

2 (|0011〉 + |1100〉) − b( |0101〉 + |1010〉) + |0110〉 under SLOCC

I ⊗ I ⊗ σz ⊗ (−σz).

This subfamily has the following four true SLOCC entanglement classes: B5.1, B5.2, B5.3

and B5.4.

Class B5.1, it includes states Labc2
with c 6= 0 and a = b = 0. That is, B5.1 includes c

( |0101〉 + |1010〉) + |0110〉. B5.1 is a true SLOCC entanglement class because c ( |0101〉 +

|1010〉)+|0110〉 = α⊗β⊗γ⊗δ( |0101〉+|1010〉+|0110〉), where α = δ = I, β = γ = diag(c, 1).

Class B5.2, it includes states Labc2
with c 6= 0, a = 0, and b = c. That is, B5.2 includes

b
2 (|0000〉+ |1111〉)− b

2 (|0011〉+ |1100〉) + b( |0101〉+ |1010〉) + |0110〉. B5.2 is a true SLOCC

entanglement class because Labc2
(a = 0, b = c) = α⊗ β ⊗ γ ⊗ δLabc2

(a = 0, b = c = 1), where

α = δ = diag(1,
√
b), and β = γ = diag(

√
b, 1).

Class B5.3, it includes states Labc2
with c 6= 0, a = 0, b 6= ±c, and b2 + 2c2 = 0. That

is, B5.3 includes b
2 (|0000〉 + |1111〉) − b

2 (|0011〉 + |1100〉) ± bi√
2
( |0101〉 + |1010〉) + |0110〉.

We can show that B5.3 is a true SLOCC entanglement class as follows. Labc2
(a = 0, c =

±bi/
√

2) = α ⊗ β ⊗ γ ⊗ δLabc2
(a = 0, b = 1, c = ±i/

√
2), where α = δ = diag(1,

√
b), and

β = γ = diag(
√
b, 1). Also, Labc2

(a = 0, b = 1, c = i/
√

2) = α ⊗ β ⊗ γ ⊗ δLabc2
(a = 0, b =

1, c = −i/
√

2), where α = σz, β = diag(i, 1), γ = diag(−i, 1), and δ = diag(1,−i).
Class B5.4, it includes states Labc2

with c 6= 0, a = 0, b 6= ±c, and b2 + 2c2 6= 0. We

cannot classify B5.4 further.

Table II (4). The true SLOCC entanglement classes in the subfamily Labc2
with c 6= 0, ab = 0

classes criteria for classification I D1 D2 D3

B5.1 a = b = 0 6= 0 0 ∆ 0
B5.2 a = 0, and b = c 6= 0 ∆ ∆ ∆
B5.3 a = 0, b 6= ±c, and b2 + 2c2 = 0 = 0 ∆ ∆ ∆
B5.4, * a = 0, b 6= ±c, and b2 + 2c2 6= 0 6= 0 ∆ ∆ ∆

5 Family La2b2

The representative state of this family is La2b2 = a (|0000〉 + |1111〉) + b ( |0101〉 + |1010〉) +

|0110〉 + |0011〉. When a = b = 0, this becomes a product state: |01〉13 ⊗ (|01〉 + |10〉)24. We

can distinguish four true SLOCC entanglement classes in this family, which are denoted as

V1, V2, V3, and V4.

For the class V1, it includes states La2b2 with a = ±b 6= 0. V1 is a true SLOCC entan-

glement class. The representative state is denoted as La2b2(a = b = 1) = |0000〉 + |1111〉+
|0101〉 + |1010〉 + |0110〉 + |0011〉. The following is our argument. Let α = diag{1, a},
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γ = {a, 1}, and β = δ = I. Then La2b2(a = b 6= 0) = α ⊗ β ⊗ γ ⊗ δLa2b2(a = b = 1). Let

α = diag{−i, a}, γ = diag{−ai, 1}, and β = δ = diag{i, 1}. Then La2b2(a = −b 6= 0) =

α⊗ β ⊗ γ ⊗ δLa2b2(a = b = 1).

For the class V2, it includes states La2b2 with a 6= ±b, ab 6= 0, and a2 + b2 = 0. We

can argue that V2 is a true SLOCC entanglement class as follows. Let α = diag{1, a},
β = I, γ = diag{a, 1}, and δ = I. Then, it is easy to verify that La2b2(with b = ±ai) =

α ⊗ β ⊗ γ ⊗ δLa2b2(a = 1, b = ±i). Furthermore, we can demonstrate that La2b2(a = 1, b =

−i) = α⊗ β ⊗ γ ⊗ δLa2b2(a = 1, b = i), where α = diag(1, i), β = diag(i, 1), γ = diag(−i, 1),

and δ = diag(1,−i).
For the class V3, it includes states La2b2 with a 6= ±b, ab 6= 0, and a2 + b2 6= 0. Each state

of V3 is a true entangled state. However we cannot classify V3 further.

For the class V4, it includes states La2b2 with a 6= ±b and ab = 0. V4 is a true SLOCC

entanglement class. The representative state is denoted as La2b2(a = 1, b = 0) = |0000〉 +

|1111〉 + |0110〉 + |0011〉. We can argue this as follows. We can show that for any a and b,

La2b2 with a 6= ±b and ab = 0 is equivalent to the representative state La2b2(a = 1, b = 0)

under SLOCC as follows. Let α = diag{1, a}, γ = diag{a, 1}, β = δ = I. Then La2b2(a 6= 0,

b = 0} = α ⊗ β ⊗ γ ⊗ δ La2b2(a = 1, b = 0). Let α = diag{1, b}, γ = diag{b, 1}, and

β = δ = σx. Then, La2b2(a = 0, b 6= 0} = α⊗ β ⊗ γ ⊗ δLa2b2(a = 1, b = 0).

Note that the state La2b2 with a = 1 and b = 0, and the state La2b2 with a = 0 and b = 1

are different representative states of the class V4 because |0101〉+ |1010〉+ |0110〉+ |0011〉 =

I ⊗ σx ⊗ I ⊗ σx( |0000〉 + |1111〉 + |0110〉 + |0011〉).

Table III. Four true SLOCC entanglement classes in Family La2b2

classes criteria for classification I D1 D2 D3

V1 La2b2 with a = ±b 6= 0 6= 0 ∆ 0 0
V2 La2b2 with a 6= ±b, ab 6= 0, and a2 + b2 = 0 = 0 ∆ ∆ ∆
V3, * La2b2 with a 6= ±b, ab 6= 0, and a2 + b2 6= 0 6= 0 ∆ ∆ ∆
V4 La2b2 with a 6= ±b and ab = 0 6= 0 ∆ ∆ ∆

To demonstrate that the four classes in Table III are distinct true SLOCC entanglement

classes, we only need to show that the class V4 is different from the class V3 due to the

properties of I, D1, D2, and D3. For the class V4, each state of the class V4 has the following

Fi:

F1 = a4α2
1α

2
2P , F2 = a4α2

3α
2
4P , F3 = a4β2

1β
2
2Q, F4 = a4β2

3β
2
4Q, F5 = a4γ2

2γ
2
1R, F6 = a4

γ2
4γ

2
3R, F7 = a4δ21δ

2
2S, F8 = a4δ23δ

2
4S,

F9 = a4 (α1α4β1β4 − α2α3β2β3)
2
det2(δ) det2(γ),

F10 = a4 (−α1α4β2β3 + α2α3β1β4)
2
det2(δ) det2(γ).

Clearly, for each state of the class V4, the above Fi satisfy Properties 2.1 and 2.2 in

Appendix A. However, in the class V3 the state La2b2 with a 6= ±b, ab 6= 0, and a2 + b2 6= 0

satisfies the following

Fi = 0, i = 2, 3, 4, 5, 7, 8; (11)

F1 = F6 = 4ab, F9 = a4, F10 = b4. (12)

Clearly, these Fi in Eqs. (11) and Eq. (12) do not satisfy property 2.2 in appendix A.
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Therefore the class V4 is different from the class V3.

6 Family Lab3

The representative state of this family is Lab3 = a (|0000〉+ |1111〉) + a+b
2 ( |0101〉+ |1010〉)+

a−b
2 ( |0110〉 + |1001〉) + i√

2
(|0001〉 + |0010〉 + |0111〉 + |1011〉).

Let us consider three subfamilies, which are the subfamily Lab3 with a = ±b, the subfamily

Lab3 with a 6= ±b and ab = 0, and the subfamily Lab3 with a 6= ±b and ab 6= 0. We

demonstrate that these three subfamilies are inequivalent under SLOCC and there are at

least eight true SLOCC entanglement classes in this family below.

The state Lab3 satisfies

I = −(b2 + 3a2), D1 = a2(a+ b)2/4, D2 = (a2 − b2)2/16, D3 = −a2(a− b)2/4,

F1 = F3 = F6 = F8 = (a2 − b2)/2,

F2 = F4 = F5 = F7 = 0,

F9 = a4, F10 = a2b2. (13)

Let |ψ〉 in Eq. (2) be the state Lab3 . Let |ψ′〉 be any state which is equivalent to |ψ〉 under

SLOCC. By solving matrix equation in Eq. (2), we obtain the amplitudes ai of the state |ψ′〉.
By substituting ai into Fi, we obtain the following Fi. That is, each state in Family Lab3

satisfies

F1 = (a2 − b2)α4
1P/2, F2 = (a2 − b2)α4

3P/2,

F3 = (a2 − b2)β4
1Q/2, F4 = (a2 − b2)β4

3Q/2,

F5 = (a2 − b2)γ4
2R/2, F6 = (a2 − b2)γ4

4R/2,

F7 = (a2 − b2)δ42S/2, F8 = (a2 − b2)δ44S/2. (14)

6.1 Subfamily Lab3 with a = ±b
This subfamily has the following three classes: R1.1, R1.2 and R1.3.

For the class R1.1, it includes the state Lab3 with a = b = 0. Let Lab3(a = b = 0) =

|0001〉 + |0010〉 + |0111〉 + |1011〉. Clearly, Lab3(a = b = 0) is equivalent to the state |W 〉
because Lab3(a = b = 0) = I ⊗ I ⊗ σx ⊗ σx|W 〉.

For the class R1.2, it includes states Lab3 with a = b 6= 0. That is, R1.2 includes Lab3(a =

b) = a(|0000〉+|1111〉+ |0101〉+|1010〉)+ i√
2
(|0001〉+|0010〉+|0111〉+|1011〉). A representative

state is Lab3(a = b = 1) = |0000〉 + |1111〉+ |0101〉 + |1010〉 + i√
2
(|0001〉 + |0010〉 + |0111〉 +

|1011〉). R1.2 is a true SLOCC entanglement class because Lab3(a = b) = α⊗β⊗γ⊗δLab3(a =

b = 1), where α = β = diag{1, a}, γ = diag{a, 1}, and δ = diag{1, 1/a}.
For the class R1.3, it includes states Lab3 with a = −b 6= 0. That is, R1.3 includes

Lab3(a = −b) = a(|0000〉 + |1111〉+ |0110〉 + |1001〉) + i√
2
(|0001〉 + |0010〉 + |0111〉 + |1011〉).

A representative state is Lab3(a = −b = 1) = |0000〉+ |1111〉+ |0110〉+ |1001〉+ i√
2
(|0001〉+

|0010〉+ |0111〉+ |1011〉). R1.3 is a true SLOCC entanglement class because Lab3(a = −b) =

α⊗ β ⊗ γ ⊗ δLab3(a = −b = 1), where α = β = diag{1, a}, γ = diag{a, 1}, and δ = diag{1,

1/a}.
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Classes R1.1, R1.2, and R1.3 are different under SLOCC by the values of I, D1, D2, and

D3 in Table IV.

6.2 Subfamily Lab3 with a 6= ±b and ab = 0

Subfamily Lab3 with a 6= ±b and ab = 0 has two classes denoted as R2.1 and R2.2.

For the class R2.1, it includes states Lab3 with a = 0, b 6= 0. That is, R2.1 includes Lab3(a =

0, b 6= 0) = b
2 ( |0101〉 + |1010〉)− b

2 ( |0110〉 + |1001〉) + i√
2
(|0001〉 + |0010〉 + |0111〉 + |1011〉).

R2.1 is a true entanglement class because Lab3(a = 0, b 6= 0) = α⊗β⊗γ⊗δLab3(a = 0, b = 1),

where α = β = diag{1, b}, γ = diag{b, 1}, and δ = diag{1, 1/b}.
For the class R2.2, it includes states Lab3 with a 6= 0, b = 0. That is, R2.2 includes Lab3(b =

0) = a (|0000〉+|1111〉)+ a
2 ( |0101〉+|1010〉)+ a

2 ( |0110〉+|1001〉)+ i√
2
(|0001〉+|0010〉+|0111〉+

|1011〉). R2.2 is a true entanglement class because Lab3(b = 0) = α⊗β⊗γ⊗δLab3(a = 1, b = 0),

where α = β = diag{1, a}, γ = diag{a, 1}, and δ = diag{1, 1/a}.
We argue that classes R2.1 and R2.2 are different under SLOCC as follows.

For each state of the class R2.1, Fi (i = 1, ..., 8) can be obtained from Eq. (14) by letting

a = 0,

F9 = − 1
2b

2(α2α3β1β3 − α1α4β1β3 − α1α3β2β3 + α1α3β1β4)
2 det2(γ) det2(δ),

F10 = − 1
2b

2(α2α3β1β3 − α1α4β1β3 + α1α3β2β3 − α1α3β1β4)
2 det2(γ) det2(δ).

Then, we derive that for each state in the class R2.1, Fi satisfy the following:

Property 7.1. If Fi = 0 then F9 = F10, i = 1, 2, 3, or 4.

Property 7.2. If F1F2 = 0 ∧ F3F4 = 0 then F9= F 10= 0.

For each state of the class R2.2, Fi (i = 1, ..., 8) can be obtained from Eq. (14) by letting

b = 0. F9 and F10 are omitted because they are too complicated. We can derive that for each

state of the class R2.2, Fi satisfy the following properties:

Property 8.1. If F1 = F3 = 0 or F2 = F4 = 0 then F9 6= 0 ∧ F10 = 0.

Property 8.2. If F1 = F4 = 0 or F2 = F3 = 0 then F9 = 0 ∧ F10 6= 0.

Classes R2.1 and R2.2 are different under SLOCC by the following argument.

From Eq. (13), the state Lab3(b = 0) in the class R2.2 satisfies F1 = F3 = F6 = F8 = a2/2,

F2 = F4 = F5 = F7 = 0, F9 = a4, F10 = 0. It is obvious that the state Lab3(b = 0) in the

class R2.2 does not satisfy property 7.2. Therefore, classes R2.1 and R2.2 are different under

SLOCC.

6.3 Subfamily Lab3 with a 6= ±b and ab 6= 0

This subfamily has two subsubfamilies denoted as R3.1 and R3.2.

Subsubfamily R3.1 includes states Lab3 with a 6= ±b, ab 6= 0, 3a2 + b2 6= 0. Each one of

this subsubfamily is a true entanglement state. However, we cannot classify R3.1 further.

Subsubfamily R3.2 includes states Lab3 with a 6= ±b, ab 6= 0, 3a2 + b2 = 0. This subsub-

family consists of two inequivalent true SLOCC entanglement classes. Their representative

states are denoted as Lab3(a = 1, b = ±
√

3i) = |0000〉 + |1111〉 + (1±
√

3i)
2 ( |0101〉 + |1010〉)+

(1∓
√

3i)
2 ( |0110〉+ |1001〉)+ i√

2
(|0001〉+ |0010〉+ |0111〉+ |1011〉). We can argue this as follows.

Let α = β = diag{1, a}, γ = diag{a, 1}, and δ = diag{1, 1/a}. Then, it is easy to verify that

the state Lab3 (with a 6= ±b, ab 6= 0 and b = ±
√

3ai) = α⊗ β ⊗ γ ⊗ δLab3(a = 1, b = ±
√

3i).

Furthermore, we can demonstrate that these two representative states are inequivalent under

SLOCC.
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Subfamilies R3.1 and R3.2 are different under SLOCC because they have different values

of I in Table IV.

6.4 Inequivalent subfamilies

Lemma 6.1. The subfamily Lab3 with a 6= ±b and ab = 0, and the subfamily Lab3 with a 6= ±b
and ab 6= 0 are inequivalent to the subfamily Lab3 with a = ±b under SLOCC.

Proof. From Eq. (14), it is easy to see that Fi = 0, i = 1, ..., 8, for any state in the

subfamily Lab3 with a = ±b. While Fi 6= 0, i = 1, ..., 8, for the state Lab3 with a 6= ±b and

ab = 0 and the state Lab3 with a 6= ±b and ab 6= 0. Hence, the subfamily Lab3 with a 6= ±b
and ab = 0 and the subfamily Lab3 with a 6= ±b and ab 6= 0 are inequivalent to the subfamily

Lab3 with a = ±b under SLOCC, respectively.

Lemma 6.2. The subfamily Lab3 with a 6= ±b and ab = 0, and the subfamily Lab3 with

a 6= ±b and ab 6= 0 are inequivalent under SLOCC.

Proof.

When a 6= ±b and ab 6= 0, Fi in Eq. (13) do not satisfy properties 7.2 or 8.1. Hence,

lemma 6.2 holds.

Conclusively, Family Lab3 has at least eight distinct true entanglement classes. See Table

IV. It means that Family Lab3 does not include any product state.

Table IV. Eight True SLOCC entanglement classes in Family Lab3

classes criteria for classification I D1 D2 D3

R1.1 (i.e., |W 〉) Lab3
with a = b = 0 = 0 0 0 0

R1.2 Lab3
with a = b 6= 0 6= 0 ∆ 0 0

R1.3 Lab3
with a = −b 6= 0 6= 0 0 0 ∆

R2.1 Lab3
with a = 0, b 6= 0 6= 0 ∆ ∆ ∆

R2.2 Lab3
with a 6= 0, b = 0 6= 0 ∆ ∆ ∆

R3.1, * Lab3
with a 6= ±b, ab 6= 0, 3a2 + b2 6= 0 6= 0 ∆ ∆ ∆

subsubfamily R3.2 (two classes) Lab3
with a 6= ±b, ab 6= 0, 3a2 + b2 = 0 = 0 ∆ ∆ ∆

7 Other five families

7.1 Family La4

The representative state of this family is La4
= a(|0000〉+|0101〉+|1010〉+|1111〉)+(i|0001〉+

|0110〉 − i|1011〉). There are two true SLOCC entanglement classes in this family.

(1). The class La4
with a = 0. In this case, La4

reduces to i|0001〉 + |0110〉 − i|1011〉.
Clearly, this is a true entanglement class.

(2). The class La4
with a 6= 0. We show that this is a true SLOCC entanglement class as

follows. Let La4
(a = 1) = |0000〉+ |0101〉+ |1010〉+ |1111〉+ (i|0001〉+ |0110〉− i|1011〉). Let

α = diag{1, a2}, β = diag{1, a}; γ = diag{1, 1/a2}, and δ = diag{a, 1}. Then, it is easy to

verify that for any a 6= 0, La4
= α⊗ β ⊗ γ ⊗ δLa4

(a = 1).

Therefore, there are two true SLOCC entanglement classes in Family La4
and these two

classes are different because they have different values of I. See Table V.

For the class La4
with a 6= 0, I = 2a2T . For SL-operations, I = 2a2. It means that the

SLOCC entanglement class La4
with a 6= 0 includes a continuous parameter of SL classes. In

other words, the class La4
with a 6= 0 can be described by a continuous parameter.

Table V. Two true SLOCC entanglement classes in Family La4
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I D1 D2 D3

La4
with a = 0 0 ∆ 0 0

La4
with a 6= 0 6= 0 ∆ ∆ ∆

7.2 Family La203⊕1

The representative state of this family is La203⊕1
= a(|0000〉+|1111〉)+|0011〉+|0101〉+|0110〉.

We argue there are only two SLOCC entanglement classes in this family as follows.

(1). The class La203⊕1
with a = 0. In this case, La203⊕1

becomes |0〉⊗(|011〉+|101〉+|110〉),
which is a product state of the one-qubit state |0〉 and the 3-qubit |W 〉.

(2). The class La203⊕1
with a 6= 0. We show that this is a true SLOCC entanglement class

as follows.

The state La203⊕1
with a 6= 0 is a true entanglement state. Let La203⊕1

(a = 1) = |0000〉+

|1111〉+ |0011〉+ |0101〉+ |0110〉. Let α = diag{√a, a2}, β = diag{1/√a, 1/a}, γ = diag{√a,
1}, and δ = diag{√a, 1}. Then it is easy to verify that La203⊕1

(a 6= 0) = α ⊗ β ⊗ γ ⊗
δLa203⊕1

(a = 1).

For the class La203⊕1
with a 6= 0, I = a2T . For SL-operations, I = a2. It implies that the

SLOCC entanglement class La203⊕1
with a 6= 0 includes a continuous parameter of SL classes.

It says that the class La203⊕1
with a 6= 0 can be characterized by a continuous parameter.

Table VI. One true SLOCC entanglement class in Family La203⊕1

criterion for classification I D1 D2 D3

La203⊕1
with a 6= 0 6= 0 ∆ ∆ ∆

7.3 Family L05⊕3

The representative state of this family is L05⊕3
= |0000〉 + |0101〉 + |1000〉 + |1110〉. This

family is a true SLOCC entanglement class. Each state of this family satisfies the following:

I = 0, D1 = D2 = D3 = 0, F1 = F2 = 0, |F3| + |F4| 6= 0, |F5| + |F6| 6= 0, |F7| + |F8| 6= 0,

F9 = F10, F3F4 = (F9)
2.

7.4 Family L07⊕1

The representative state of this family is L07⊕1
= |0000〉 + |1011〉 + |1101〉 + |1110〉. This

family is a true SLOCC entanglement class. Each state of this family satisfies the following:

I = 0, D1 is ∆, D2 is ∆, D3 is ∆, |F3| + |F4| 6= 0, |F5| + |F6| 6= 0, |F7| + |F8| 6= 0.

7.5 Family L03+1̄03+1̄

The representative state of this family is L03+1̄03+1̄
= |0〉(|000〉 + |111〉), which is a product

state of the one-qubit state |0〉 and the three-qubit |GHZ〉 state.

8 Summary

Verstraete, Dehaene, and Verschelde proposed nine families of states corresponding to nine

different ways of entangling four qubits [2]. In this paper, we investigate SLOCC classification

of each of the nine families, and distinguish 49 true SLOCC entanglement classes from them.

We give complete SLOCC classifications for Families La4
, La203⊕1

, L05⊕3
, L07⊕1

and L03+1̄03+1̄
.

But we cannot guarantee that SLOCC classifications for Families Gabcd, Labc2
, La2b2 and Lab3

are complete.
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Appendix A Classification for Family Labc2

The representative state of Family Labc2
satisfies the following:

I = −(a2 + b2 + 2c2)/2,

D1 = (a+ b)2c2/4,D2 = −(a2 − b2)2/16,D3 = (a− b)2c/4,

F1 = F4 = F6 = F7 = (a2 − b2)c,

F2 = F3 = F5 = F8 = 0, F9 = a2b2, F10 = c4. (A.1)

8.1 Subfamily Labc2
with c = 0.

Labc2
becomes Labc2

(c = 0) = a+b
2 (|0000〉 + |1111〉) + a−b

2 (|0011〉 + |1100〉) + |0110〉. Each

state of this subfamily satisfies the following:

I = 1
2 (a2 + b2)T ,

D1 = 1
2ab(a− b)α1α3γ2γ4 det(α) det2(β) det(γ) det2(δ),

D2 = 1
16 (a2 − b2) det(α) det(β) det2(γ) det2(δ)

(2a2α1α3β1β3 + 2b2α1α3β1β3 + a2α2α3β2β3 − b2α2α3β2β3 + a2α1α4β2β3 − b2α1α4β2β3

+a2α2α3β1β4 − b2α2α3β1β4 + a2α1α4β1β4 − b2α1α4β1β4 + 2a2α2α4β2β4 + 2b2α2α4β2β4)

D3 = − 1
2ab(a+ b)α1α3δ1δ3 det(α) det2(β) det2(γ) det(δ),

F1 = a2b2α2
1α

2
2P, F2 = a2b2α2

3α
2
4P, F3 = a2b2β2

1β
2
2Q,F4 = a2b2β2

3β
2
4Q,

F5 = a2b2γ2
2γ

2
1R,F6 = a2b2γ2

4γ
2
3R,F7 = a2b2δ21δ

2
2S, F8 = a2b2δ23δ

2
4S,

F9 = a2b2(α2α3β2β3 − α1α4β1β4)
2

2

det(γ)
2

det(δ),

F10 = a2b2(α1α4β2β3 − α2α3β1β4)
2

2

det(γ)
2

det(δ). (A.2)
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From Eq. (A.2), for each state of this subfamily Labc2
with c = 0, Fi have the following

properties.

Property 2.1. If ab 6= 0 and Fi = 0 then |F9| + |F10| 6= 0, i = 1, 2, 3, or 4.

Property 2.2. If ab 6= 0 and F1F2 = F 3F4 = 0 then F9= 0 ∧ F10 6= 0 or F9 6= 0 ∧ F10= 0.

Property 2.3. If ab 6= 0, a 6= ±b, and F1 = F2 = F 3 = F4 = 0, then D2 6= 0.

Property 2.4. If F1 = F2 = 0 or F5 = F6 = 0 then D1 = 0.

Property 2.5. If F1 = F2 = 0 or F7 = F8 = 0 then D3 = 0.

From the Table II (1), it is not hard to see that the classes B1.1, B1.2, B1.3, B1.4, and B1.5

are different from each other by the values of I, D1, D2, D3. Note that the state Labc2
with

c = a = 0∧b 6= 0 and the state Labc2
with c = b = 0∧a 6= 0 are different representatives of the

class B1.5 because these two states are obtained from each other by SLOCC I ⊗ σz ⊗ σz ⊗ I.

8.2 Subfamily Labc2
with abc 6= 0

This subfamily is different from the subfamily Labc2
with c = 0 under SLOCC. This is because

from Eq. (A.1), it is straightforward that for the representative state Labc2
with abc 6= 0, Fi

do not satisfy property 2.2. It implies that classes B2.1-B2.3, B3.1-B3.3, B4.1 and B4.2 in

Table II (2) are different from classes B1.1-B1.5 in Table II (1).

8.2.1 Subsubfamily Labc2
with abc 6= 0 and a = b

Labc2
becomes Labc2

(a = b) = a (|0000〉+ |1111〉)+ c ( |0101〉+ |1010〉)+ |0110〉. For any state

which is connected with Labc2
(a = b) by SLOCC, we obtain the following Fi and Di.

F1 = (a2 − c2)2α2
1α

2
2P, F2 = (a2 − c2)2α2

3α
2
4P,

F3 = (a2 − c2)2β2
1β

2
2Q,F4 = (a2 − c2)2β2

3β
2
4Q,

F5 = (a2 − c2)2γ2
2γ

2
1R,F6 = (a2 − c2)2γ2

4γ
2
3R,

F7 = (a2 − c2)2δ21δ
2
2S, F8 = (a2 − c2)2δ23δ

2
4S. (A.3)

D1 = acdet(α) det2(β) det(γ) det2(δ)(a2α1α3γ1γ3+c
2α1α3γ1γ3+acα2α3γ2γ3+acα1α4γ2γ3+

acα2α3γ1γ4 + acα1α4γ1γ4 + a2α2α4γ2γ4 + c2α2α4γ2γ4),

D2 = −c(a2 − c2)α1α3β2β4 det(α) det(β) det2(γ) det2(δ),

D3 = −a(a2 − c2)α1α3δ1δ3 det(α) det2(β) det2(γ) det(δ),

When a 6= ±c, from Eq. (A.3) and the above D1, D2 and D3, it can be verified that the

following properties 3.1-3.5 hold for each state which is connected with Labc2
with abc 6= 0,

a = b and a 6= ±c by SLOCC.

Property 3.1. If F1 = F2 = 0, then D2 = D3 = 0.

Property 3.2. If F3 = F4 = 0, then D2 = 0.

Property 3.3. If F7 = F8 = 0, then D3 = 0.

Property 3.4. If F1 = F2 = F5 = F6 = 0, then D1 6= 0.

Property 3.5. If F1 = F2 = F3 = F4 = 0, then F9 6= 0 and F10 6= 0.

We argue that property 3.4 holds as follows.

When F1 = F2 = 0 and F5 = F6 = 0, there are following four cases: case 1. α1 = α4 = 0

and γ1 = γ4 = 0, case 2. α1 = α4 = 0 and γ2 = γ3 = 0, case 3. α2 = α3 = 0 and γ1 = γ4 = 0,

case 4. α2 = α3 = 0 and γ1 = γ4 = 0. From the above four cases, any state, which is
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connected with Labc2
with abc 6= 0, a = b and a 6= ±c by SLOCC, satisfies the above property

3.4:

8.2.2 Subsubfamily Labc2
with abc 6= 0 and a = −b

When a 6= ±c, Labc2
becomes Labc2

(a = −b) = a (|0011〉+|1100〉)+c ( |0101〉+|1010〉)+|0110〉.
For any state which is connected with Labc2

with abc 6= 0, a = −b and a 6= ±c by SLOCC, Fi

(i = 1, ..., 8) satisfy Eq. (A.3) and the following D1, D2, and D3 hold.

D1 = −a(a2 − c2)α1α3γ2γ4 det(α) det2(β) det(γ) det2(δ),

D2 = −c(a2 − c2)α1α3β2β4 det(α) det(β) det2(γ) det2(δ),

D3 = acdet(α) det2(β) det2(γ) det(δ)∗
(a2α2α4δ1δ3 + c2α2α4δ1δ3 + acα2α3δ2δ3 + acα1α4δ2δ3
+acα2α3δ1δ4 + acα1α4δ1δ4 + a2α1α3δ2δ4 + c2α1α3δ2δ4).

Property 3.5 also holds. We can derive the following properties 4.1-4.4 for each state which

is connected with Labc2
with abc 6= 0, a = −b and a 6= ±c by SLOCC.

Property 4.1. If F3 = F4 = 0, then D2 = 0.

Property 4.2. If F1 = F2 = 0, then D1 = D2 = 0.

Property 4.3. If F5 = F6 = 0, then D1 = 0.

Property 4.4. If F1 = F2 = F7 = F8 = 0, then D3 6= 0.

From Eq. (A.1), for the state Labc2
(a = −b 6= 0), Fi = 0, i = 1, 2, 3, 4, 5, 6, 7, 8, and

D1 = D2 = 0. Therefore, the state Labc2
(a = −b 6= 0) does not satisfy Property 3.4. It means

that classes B3.2 and B3.3 are different from classes B2.2 and B2.3, respectively.

8.2.3 Subsubfamily Labc2
with abc 6= 0 and a 6= ±b, but c = ±a or c = ±b

By discussion in Sec. 4.2.3, we only need to consider c = a here.

When c = a, Labc2
becomes a+b

2 (|0000〉 + |1111〉) + a−b
2 (|0011〉 + |1100〉) + a( |0101〉 +

|1010〉) + |0110〉. Thus, each state in this subsubfamily satisfies the following equations.

F1 = a(a2 − b2)α4
1P , F2 = a(a2 − b2)α4

3P , F3 = a(a2 − b2)β4
2Q, F4 = a(a2 − b2)β4

4Q,

F5 = a(a2 − b2)γ4
2R, F6 = a(a2 − b2)γ4

4R, F7 = a(a2 − b2)δ41S, F8 = a(a2 − b2)δ43S.

We omit the complicated expressions of F9, F10, D1, D2, and D3.

It is plain to see that Fi satisfy the following inequality.

|Fi| + |Fi+1| 6= 0, i = 1, 3, 5, 7. (A.4)

We also have the following properties for each state which is connected with Labc2
with

abc 6= 0, a 6= ±b, and c = a by SLOCC.

Property 5.1. If F1F2 = 0 and F5F6 = 0, then D1 6= 0.

Property 5.2. If F1F2 = 0 and F3F4 = 0, then D2 6= 0.

Property 5.3. If F1F2 = 0 and F7F8 = 0, then D3 6= 0.

Property 5.4. If F2 = F3 = 0, then F9 6= 0 and F10 6= 0.

In Eq. (A.1), Fi and D2 obtained by letting a = ±b do not satisfy Properties 5.2. It

implies that classes B2.2, B2.3, B3.2 and B3.3 are different from classes B4.1 and B4.2.

8.2.4 Subsubfamily Labc2
with abc 6= 0, and x 6= ±y, where x, y ∈ {a, b, c}

Each state in this subsubfamily satisfies the following.

F1 = α2
1[c(a

2 − b2)α2
1 + (a2 − c2)(b2 − c2)α2

2]P ,



D.-F. Li, X.-R. Li, H.-T. Huang, and X.-X. Li 799

F2 = α2
3[c(a

2 − b2)α2
3 + (a2 − c2)(b2 − c2)α2

4]P ,

F3 = β2
2 [c(a2 − b2)β2

2 + (a2 − c2)(b2 − c2)β2
1 ]P ,

F4 = β2
4 [c(a2 − b2)β2

4 + (a2 − c2)(b2 − c2)β2
3 ]P ,

F5 = γ2
2 [c(a2 − b2)γ2

2 + (a2 − c2)(b2 − c2)γ2
1 ]P ,

F6 = γ2
4 [c(a2 − b2)γ2

4 + (a2 − c2)(b2 − c2)γ2
3 ]P ,

F7 = δ21 [c(a2 − b2)δ21 + (a2 − c2)(b2 − c2)δ22 ]P ,

F8 = δ23 [c(a2 − b2)δ23 + (a2 − c2)(b2 − c2)δ24 ]P ,

I = 1
2 (a2 + b2 + 2c2)T .

We want to show that some states in this subsubfamily violates Eq. (A.4). So, this

subsubfamily is inequivalent to the subsubfamily Labc2
with abc 6= 0 and a 6= ±b, but c = ±a

or c = ±b under SLOCC. The following is our argument.

For the operator α, let α1 = 0, α2 6= 0, α2
3 = (a2−c2)(c2−b2)

c(a2−b2) α2
4, and α4 6= 0. Clearly,

det(α) 6= 0, but F1 = F2 = 0. So, it violates Eq. (A.4).

8.3 Subfamily Labc2
with c 6= 0 and ab = 0

There are three subsubfamilies. They are the subsubfamily Labc2
with c 6= 0 and a = b = 0,

the subsubfamily Labc2
with c 6= 0 and a = 0 and b = c, and the subsubfamily Labc2

with

bc 6= 0 and a = 0 and b 6= ±c.

8.3.1 Subsubfamily Labc2
with c 6= 0 and a = b = 0

Labc2
becomes Labc2

(a = b = 0) = c ( |0101〉+ |1010〉)+ |0110〉. Each state, which is connected

Labc2
(a = b = 0) by SLOCC, satisfies the following Di and Fi.

D1 = D3 = 0, D2 = c3α1α3β2β4 det(α) det(β) det2(γ) det2(δ),

Fi (i = 1, ..., 8) can be obtained from Eq. (A.3) by letting a = b = 0.

F9 = c4(α1α4β2β3 − α2α3β1β4)
2 det2(γ) det2(δ),

F10 = c4(α2α3β2β3 − α1α4β1β4)
2 det2(γ) det2(δ).

It is easy to know that the above Fi satisfy Properties 2.1 and 2.2.

Each state, which is connected with Labc2
with c 6= 0 and a = b = 0 under SLOCC,

satisfies the following Properties 6.1 and 6.2.

Property 6.1. If F1 = F2 = 0 or F3 = F4 = 0, then D2 = 0.

Property 6.2. If F1F2 = 0 and F3F4 = 0, then F9= 0 ∧ F10 6= 0 or F9 6= 0 ∧ F10= 0.

Remark 1. Classes B1.5 and B5.1 are different though they have the same information for

I, D1, D2, and D3.

We argue remark 1 as follows. From Eq. (A.2), when ab = 0, any state in class B1.5

satisfies Fi = 0, i = 1, ..., 10. But a representative of class B5.1 is c( |0101〉+ |1010〉)+ |0110〉,
for which F10 = c4 6= 0 from Eq. (A.1). Therefore classes B1.5 and B5.1 are different.

8.3.2 Subsubfamily Labc2
with c 6= 0, a = 0, and b = c

This subsubfamily is a true SLOCC entanglement class.

For each state of this class, we have the following Fi.

F1 = −b3α4
1P , F2 = −b3α4

3P , F3 = −b3β4
2Q, F4 = −b3β4

4Q,

F5 = −b3γ4
2R, F6 = −b3γ4

4R, F7 = −b3δ41S, F8 = −b3δ43S.

Fi satisfy Eq. (A.4). Therefore, this class is different from the classes obtained from c = 0

and the classes obtained from c 6= 0 ∧ a = ±b because the Fi (i = 1, ..., 8) of the latter

representative states vanish. See Eq. (A.1). We also have the following properties.
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Properties 5.1, 5.2, and 5.3 hold for this case.

Each state, which is connected with Labc2
with c 6= 0 and a = 0 and b = c under SLOCC,

satisfies the following property 6.3

Property 6.3. If F2 = F3 = 0, then F9 = 0 and F10 6= 0.

From Eq. (A.1), it is obvious that the representative state with a = 0 and b = c 6= 0

does not satisfy property 5.4. Hence, the class B5.2 is different from classes B4.1 and B4.2,

respectively.

For the state Labc2
with c = 0 and ab 6= 0, we obtain F9 6= 0 and F10 = 0 from Eq. (A.1).

Thus, it violates property 6.3. It means that classes B1.3 and B1.4 are different from the class

B5.2.

From Eq. (A.1), the representative state Labc2
with abc 6= 0 does not satisfy property 6.2

or 6.3. Hence, the classes in the subfamily Labc2
with abc 6= 0 are different from the classes

B5.1 and B5.2, respectively.

8.3.3 Subsubfamily Labc2
with bc 6= 0 and a = 0 and b 6= ±c

Each state of this subsubfamily satisfies the following equations.

I = (b2 + 2c2)/2 ∗ T ,

F1 = −cα2
1(b

2α2
1 + c(b2 − c2)α2

2) ∗ P , F2 = −cα2
3(b

2α2
3 + c(b2 − c2)α2

4) ∗ P ,

F3 = −cβ2
2(b2β2

2 + c(b2 − c2)β2
1) ∗Q, F4 = −cβ2

4(b2β2
4 + c(b2 − c2)β2

3) ∗Q,

F5 = −cγ2
2(b2γ2

2 + c(b2 − c2)γ2
1) ∗R, F6 = −cγ2

4(b2γ2
4 + c(b2 − c2)γ2

3) ∗R,

F7 = −cδ21(b2δ21 + c(b2 − c2)δ22) ∗ S, F8 = −cδ23(b2δ23 + c(b2 − c2)δ24) ∗ S.

We can choose α1 = 0, α2 6= 0, α4 6= 0, and α2
3 = c(c2−b2)

b2
α2

4 such that det(α) 6= 0 but

F1 = F2 = 0. This violates Eq. (A.4). Therefore this subsubfamily is different from the

subsubfamily Labc2
with c 6= 0 and a = 0 and b = c.


