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EXACT UNIVERSALITY FROM ANY ENTANGLING GATE WITHOUT INVERSES
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This note proves that arbitrary local gates together with any entangling bipartite gate

V are universal. Previously this was known only when access to both V and V † was
given, or when approximate universality was demanded.

Communicated by: S Braunstein & M Mosca

A common situation in quantum computing is that we can apply only a limited set S ⊂ Ud

of unitary gates to some d-dimensional system. The first question we want to ask in this
situation is whether gates from S can (approximately) generate any gate in PUd = Ud/Z(Ud)
(the set of all d × d unitary matrices up to an overall phase). When this is possible, we say
that S is (approximately) universal. See [1,3,6,9,12] for original work on this subject, or Sect
4.5 of [11] or Chapter 8 of [10] for reviews.

Formally, S is universal (for PUd) if, for all W ∈ PUd, there exists U1, . . . , Uk ∈ S such
that

W = UkUk−1 · · ·U2U1, (1)

whereas U is approximately universal (for PUd) if, for all W ∈ PUd and all ε > 0, there exists
U1, . . . , Uk ∈ S such that

d(W,UkUk−1 · · ·U2U1) < ε. (2)

Here d(·, ·) can be any metric, but for concreteness we will take it to be the PUd analogue of
operator distance:

d(U, V ) := 1− inf
|ψ〉6=0

|〈ψ|U†V |ψ〉|
〈ψ|ψ〉

. (3)

Similar definitions could also be made for Ud, other groups, or even semigroups.
A natural way to understand universality is in terms of the group generated by S, which we

denote 〈S〉, and define to be the smallest subgroup of PUd that contains S. An alternate and
more constructive definition is that 〈S〉 consists of all products of a finite number of elements
of S or their inverses. When S contains its own inverses (i.e. S = S−1 := {x : x−1 ∈ S})
then 〈S〉 provides a concise way to understand universality: S is universal iff 〈S〉 = PUd and
S is approximately universal iff 〈S〉 is dense in PUd.
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But what if S does not contain its own inverses? The equivalence between approximate
universality and 〈S〉 being dense in PUd still holds. One direction remains trivial: if S is
approximately universal then 〈S〉 is dense in PUd. The easiest way to prove the converse is
with simultaneous Diophantine approximation, which implies that for any U ∈ PUd and for
any ε > 0, there exists n ≥ 0 such that d(Un, U−1) ≤ ε. The proof is due to Dirichlet, and for
completeness we include it here. We prove the claim for U ∈ Ud, and the PUd result will follow
from the fact that ignoring a global phase can only decrease distance. Let the eigenvalues
of U be (e2πiα1 , . . . , e2πiαd) for some α ∈ (R/Z)d. Here (R/Z)d is the d-dimensional torus,
which can be obtained by gluing together opposite faces of the hypercube [0, 1]d. Under
the L∞-norm, a ball of radius ε/2 will have volume εd. Thus, if n ≥ 1/εd then the set
{0, α, 2α, . . . , (n− 1)α} will have two distinct points, n1α and n2α, with ‖n1α− n2α‖∞ ≤ ε.
If n′ = |n2 − n1| then 0 < n′ < n and ‖n′α‖∞ ≤ ε. This implies that ‖Un′−1 − U−1‖∞ ≤
|1− eiε| = 2 sin ε/2 ≤ ε, thus completing the proof.

For any W ∈ PUd and ε > 0, the fact that 〈S〉 is dense in PUd means that there exists an
ε
2 -approximation to W of the form U±1

1 . . . U±1
k , with each Ui ∈ S. Now we replace each U−1

i

term with Uni
i for ni satisfying ‖Uni

i − U−1
i ‖ ≤ ε/2k. By the triangle inequality this yields

an ε-approximation to W out of a finite sequence of unitaries from S.
The case of exact universality is more difficult, and is the subject of the current note.

Again if S is universal then 〈S〉 = PUd, and again we would like to argue that the converse
holds. Unfortunately this statement is not known to be true, and there may well be counter-
examples along the lines of the Banach-Tarski paradox. However in the special case where
S contains a non-trivial one-parameter subgroup then we can prove that universality with
inverses implies universality without inverses. In fact we prove something a little stronger:
not only can any element of PUd be written as a finite product of elements from S, but there
is a uniform upper bound on the length of these products. If we define SL to be the set of
products of L elements from S, then we can prove

Theorem 1:

(a) Suppose S ⊂ PUd, 〈S〉 = PUd and there exists a Hermitian matrix H such that H is
not proportional to the identity and eiHt ∈ S for all t ∈ R. Then S is exactly universal
for PUd. In fact there exists an integer L such that SL = PUd.

(b) Suppose S ⊂ Ud, 〈S〉 = Ud and there exists a Hermitian matrix H such that H has
nonzero trace, H is not proportional to the identity and eiHt ∈ S for all t ∈ R. Then S
is exactly universal for Ud, and there exists L such that SL = Ud.

The main interest of this theorem is in its application to the setting of a bipartite quantum
system where local unitaries are free and nonlocal operations are restricted. Say that d =
dAdB and that S = UdA

× UdB
∪ {V }, where UdA

× UdB
is embedded in UdAdB

according
to (UA, UB) → UA ⊗ UB and V is some arbitrary unitary in UdAdB

. In other words, we can
perform V as well as arbitrary local unitaries, meaning unitaries of the form UA⊗UB . Say that
V is imprimitive if there exists |ϕA〉 ∈ CdA , |ϕB〉 ∈ CdB such that V (|ϕA〉⊗|ϕB〉) is entangled.
Equivalently V is imprimitive if it cannot be written as UA⊗UB for any UA ∈ UdA

, UB ∈ UdB
,

nor, if dA = dB , as SWAP · (UA ⊗ UB). Then [1] proved that 〈S〉 = PUd if and only V is
imprimitive. It was claimed in [1] that in fact S was exactly universal when V is imprimitive,
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but their proof assumed that V † ∈ S. Theorem 1 then fills in the missing step in the proof of
[1], and together with the fact that local unitaries contain at least one nontrivial one-parameter
subgroup and the results of [1], we obtain

Corollary 2: If S = UdA
× UdB

∪ {V } and V is imprimitive then S is exactly universal for
UdAdB

. In fact, there exists an integer L such that SL = UdAdB
.

This corollary is used in [8] to prove that unitary gates have the same communication
capacities with or without the requirement that clean protocols be used. Exact universality
there is used to show that a protocol (possibly inefficient) exists for exact communication
using a fixed bipartite unitary gates supplemented by arbitrary local operations. Now we
turn to the proof of Theorem 1.

Proof: We start with an overview of the proof (which is similar in strategy to the proof of
[12]), and then discuss the details of each step. Let G denote the group we are working with,
which could be either PUd or Ud, and let m = d2 − 1 if G = PUd or m = d2 if G = Ud. Note
that G is an m-dimensional real manifold[5, 7].

(1) We will define a smooth (i.e. infinitely differentiable) map f from Rm to G. It will have
the property that df0 (its derivative at the point 0) is non-singular.

(2) We will construct a map f̃ : Rm → G such that df̃0 is non-singular and there exists an
integer ` such that f̃(x) ∈ S` for all x ∈ Rm.

(3) We will construct an open neighborhood N of the identity matrix I ∈ G such that
N ⊂ S`+`′

for some integer `′.

(4) We will show that G = Nn for some integer n, and thus that G = Sn(`+`′).

Step 1: For some U1, . . . , Um ∈ G to be determined later, we define

f(x) = U1e
iHx1U†1U2e

iHx2U†2 · · ·Ume
iHxmU†m, (4)

where H is the Hermitian matrix satisfying {eiHt : t ∈ R} ⊂ S. The partial derivatives at
x = 0 are given by

∂f

∂xj
(0) = iUjHU

†
j . (5)

We would like to choose U1, . . . , Um so that the UjHU
†
j are linearly independent. Consider

first the G = PUd case. Then the space of Hermitian traceless matrices (which we call sud) is
a d2 − 1-dimensional irrep of G, so the span of {UHU† : U ∈ G} is equal to all of sud. Thus,
there exists a basis of m = d2 − 1 matrices of the form UjHU

†
j .

When G = Ud, the tangent space is instead the set of Hermitian matrices ud, which
decomposes into irreps as ud = sud ⊕ RI. Since H is neither traceless nor proportional to
I, it has nonzero overlap with both irreps. Again we would like to show that the span of
{UHU† : U ∈ G} (which we denote by h) is equal to ud. First, we use the fact that Ud acts
transitively on matrices of fixed spectrum. Averaging over all d! diagonal matrices isospectral
to H we find that (trH)I/d (which we have assumed is nonzero) is in h. Second, we replace
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H with H − (trH)I/d (which is in h and sud) and use the result for PUd to show that the
span of sud ⊂ h. Thus h equals all of ud. Since h was spanned by matrices of the form UHU†,
this means we can choose a set of d2 linearly independent matrices U1HU

†
1 , . . . , UmHU

†
m to

form a basis for h = ud.
In either case, df0 has m linearly independent columns of length m, and thus is non-

singular. Denote the smallest singular value of df0 by σmin(df0).

Step 2: Since 〈S〉 = G, S is approximately universal and so we can approximate Uj and

U†j with products of elements of S, which we call Ũj and Ũ†j respectively. Demand that each
approximation be accurate to within a parameter ε which we will choose later. We then define
f̃ as follows:

f̃(x) := Ũ1e
iHx1Ũ†1 Ũ2e

iHx2Ũ†2 · · · Ũme
iHxmŨ†m. (6)

An explicit calculation of df0 and df̃0 shows that each matrix element of df†0df0 − df̃
†
0df̃0 has

absolute value at most 2mε trH2. Thus σmin(df̃0) ≥ σmin(df0)− 2m2ε trH2 which is strictly
positive if we choose ε = m2 trH2/4. In this way, we can guarantee that df̃0 is non-singular.

Additionally, each eiHxj ∈ S and each Ũj and Ũ†j is a product of a finite number of
elements from S, so there exists ` such that f̃(x) ∈ S` for all x ∈ Rm.

Step 3: According to the inverse function theorem (see e.g. [7]), f̃ is a local diffeomorphism
at 0. This means that there exists a neighborhood X of 0 such that f̃(X) is a neighborhood
of f̃(0) and f̃ : X → f̃(X) is a diffeomorphism (one-to-one, onto, smooth and such that f̃−1

is also smooth). Let Bδ(U) := {V : d(U, V ) < δ} denote the open ball of radius δ around U .
Since f̃(X) is a neighborhood of f̃(0), there exists δ > 0 such that B2δ(f̃(0)) ⊂ f̃(X). Now
we again use the approximate universality of S to construct a δ-approximation to f̃(0)−1,
which we call V . Then V · f̃(X) contains Bδ(I) =: N . Additionally, if V ∈ S`′

then
N ⊂ V · f̃(X) ⊂ S`+`′

.

Step 4: If n > π/2 sin−1(δ/2) then Bδ(I)n = G. This is because G = {eiH : ‖H‖∞ ≤ π}
(optionally modulo overall phase) and Bδ(I) = {eiH : ‖H‖∞ ≤ 2 sin−1(δ/2)}. Thus G =
Sn(`+`′) � .

We conclude with some open questions. First, it would be nice to know the exact con-
ditions on S for which 〈S〉 = G implies exact universality. One easy extension of the above
Theorem (proof omitted) is to assume only that S contains {U1e

iHtU2 : t1 ≤ t ≤ t2} for
some t1 ≤ t2 ∈ R and U1, U2 ∈ Ud. A perhaps more important question is that of efficiency.
If S is approximately universal and contains its own inverses, then the Solovay-Kitaev theo-
rem[2,10] states that any gate can approximated to an accuracy ε by S` for ` = poly log(1/ε).
But if S does not contain its own inverses, the best bound known on ` is the trivial poly(1/ε)
bound from Dirichlet’s theorem. This is the more operationally relevant question, since in any
practical application there will always be a small but nonzero approximation error. Finally,
the gap between universality with and without inverses also appears in Trotter-Suzuki ap-
proximations[13] and their applications to the theory of composite pulses[14]. Here is known
that access to inverses improves the efficiency of constructions[15], but the full extent of this
advantage is unknown in general.



A. W. Harrow 777

Acknowledgments

My funding is from the U.S. Army Research Office under grant W9111NF-05-1-0294, the
European Commission under Marie Curie grants ASTQIT (FP6-022194) and QAP (IST-
2005-15848), and the U.K. Engineering and Physical Science Research Council through “QIP
IRC.”

References
[1] J.-L. Brylinski and R. Brylinski, Universal quantum gates, Mathematics of Quantum Computation, 2002.

arXiv:quant-ph/0108062.

[2] C. M. Dawson and M. A. Nielsen, The Solovay-Kitaev algorithm, Quantum Inf. Comput. 6 (2006), no. 1,
81–95. arXiv:quant-ph/0505030.

[3] D. Deutsch, A. Barenco, and A. Ekert, Universality in Quantum Computation, 1995. arXiv:quant-
ph/9505018.

[4] J.P.G. Lejeune Dirichlet, Werke, vol I (L. Kronecker, ed.), Reimer, Berlin, 1889.

[5] O. Ya Viro and D. B. Fuchs, Topology II: Homotopy and Homology : Classical Manifolds (S. P. Novikov
and V. A. Rokhlin, eds.), Springer, 2004.

[6] M. Freedman, A. Kitaev, and J. Lurie, Diameters of Homogeneous Spaces, 2002. arXiv:quant-ph/0209113.

[7] V. Guillemin and A. Pollack, Differential Topology, Prentice Hall, 1974.

[8] A.W. Harrow and P.W. Shor, Time reversal and exchange symmetries of unitary gate capacities, 2005.
arXiv:quant-ph/0511219.

[9] S. L. Lloyd, Almost any quantum logic gate is universal, Phys. Rev. Lett. 75 (1995), no. 2, 346–349.

[10] A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and Quantum Computation, Graduate Studies
in Mathematics, vol. 47, AMS, 2002.

[11] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University
Press, New York, 2000.

[12] N. Weaver, On the universality of almost every quantum logic gate, J. Math. Phys. 41 (2000), no. 1,
240–243.

[13] M. Suzuki, General theory of higher-order decomposition of exponential operators and symplectic inte-
grators, Phys. Lett. A 165 (1992), 387–395.

[14] K. R. Brown and A. W. Harrow and I. L. Chuang, Arbitrarily accurate composite pulses, Phys. Rev. A
70 (2004). arXiv:quant-ph/0407022.

[15] S. Blanes and F. Casas, On the necessity of negative coefficients for operator splitting schemes of order
higher than two, Appl. Num. Math. 54 (2005), 23–37.


