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We describe a classical approximation algorithm for evaluating the ground state energy

of the classical Ising Hamiltonian with linear terms on an arbitrary planar graph. The
running time of the algorithm grows linearly with the number of spins and exponentially
with 1/ǫ, where ǫ is the worst-case relative error. This result contrasts the well known
fact that exact computation of the ground state energy for the two-dimensional Ising

spin glass model is NP-hard. We also present a classical approximation algorithm for
the quantum Local Hamiltonian Problem or Quantum Ising Spin Glass problem on a
planar graph with bounded degree which is known to be a QMA-complete problem. Using

a different technique we find a classical approximation algorithm for the quantum Ising
spin glass problem on the simplest planar graph with unbounded degree, the star graph.
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1 Introduction

Ising spin glasses model physical spin systems with random, competing interactions due to

disorder in the system [1]. In order to make meaningful predictions about such systems

one can consider statistical ensembles that represent different realizations of the couplings.

For a particular realization of the couplings one is generally interested in finding algorithms

to determine properties such as the spectrum, partition function, the ground-state or the

ground-state energy. Algorithms with a running time that is a polynomial in the problem

size are called efficient, in contrast with inefficient procedures that take super-polynomial or

exponential running times. Connections between disordered systems in statistical physics and

questions of computational complexity have been extensively explored, see e.g. [2] and [3].

In this paper we find a new application of tools from approximation algorithms to spin

glass problems, namely a rigorous approximation algorithm to determine the ground-state

energy of a classical or quantum Ising spin glass on a planar graph. It has been shown

that to determine the ground-state energy of a classical Ising spin glass on a 2D lattice with

linear terms exactly is computationally hard, or NP-hard [4]. Terhal and Oliveira showed that

determining the smallest eigenvalue of a quantum Ising spin glass of n qubits on a planar graph

with 1/poly(n) accuracy is QMA-hard [5]. Aharonov et al. [6] showed that even determining

the smallest eigenvalue for qudits on a line is QMA-hard. Therefore the running time of
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any algorithm for computing the ground state energy exactly must scale super-polynomially

with the number of spins n (under the assumption P6=NP). Thus it is natural to look for

approximation algorithms that solve the problem in polynomial time at the cost of providing

a slightly non-optimal solution.

Let us formally define the classical and the quantum Ising spin glass Hamiltonians on a

graph G = (V,E). In the classical case we associate a classical binary variable Su ∈ {−1,+1}
with every vertex u ∈ V . We shall refer to Su as a spin. Let n = |V | be the total number of

spins. Any spin configuration S ∈ {−1,+1}n is assigned an energy

H(S) =
∑

(u,v)∈E

cuvSuSv +
∑

u∈V

duSu. (1)

Here cuv and du can be arbitrary real coefficients. We shall refer to H(S) as the Ising spin

glass Hamiltonian. Given a description of the graph G and a list of coefficients cuv and du

(specified as some m-bit numbers) the problem is to get an estimate of the ground-state

energy λ(H) = minS H(S).

In the quantum case we associate a quantum spin-1/2 (a qubit) with every vertex u ∈ V .

Let σx
u, σ

y
u, σ

z
u be the Pauli operators acting on a qubit u. The quantum Ising spin glass

Hamiltonian is a hermitian operator on (C2)⊗n that can be written as a linear combination of

two-qubit Pauli operators associated with edges of G and arbitrary one-qubit Pauli operators:

H =
∑

(u,v)∈E

Qu,v +
∑

u∈V

Lu, Qu,v =
∑

α,β∈{x,y,z}
cαβ
uv σ

α
uσ

β
v , Lu =

∑

α∈{x,y,z}
dα

u σ
α
u . (2)

Here cαβ
uv and dα

u can be arbitrary real coefficients. Given a description of the graph G and

a list of coefficients cαβ
uv and dα

u (specified as some m-bit numbers) the problem is to get an

estimate of the ground-state energy λ(H), i.e., the smallest eigenvalue of H.

Our main results are summarized by the following theorems.

Theorem 1 There is a classical algorithm that takes as input a planar graph G with n

vertices, a description of an Ising spin glass Hamiltonian H defined on G, and a real number

ǫ > 0. The algorithm outputs a spin configuration S ∈ {−1,+1}n such that

|H(S) − λ(H)| ≤ ǫ|λ(H)|, (3)

where λ(H) is the ground state energy of H. The algorithm has running time O(n)2O(ǫ−1).

If the graph G is a 2D square lattice, the running time is O(n)4
1
ǫ .

Remark : We assume that the graph G has no parallel edges or self-loops. In this case any

planar graph with n vertices has O(n) edges and thus it can be specified by O(n log n) bits.

As far as the quantum problem is concerned, we can prove an analogue of Theorem 1 for

planar graphs of bounded vertex degree.

Theorem 2 There is a classical algorithm that takes as input a planar graph G with n

vertices and maximum vertex degree d, a description of a quantum Ising spin glass Hamilto-

nian H defined on G, and a real number ǫ > 0. The algorithm outputs a real number λ such

that

|λ− λ(H)| ≤ ǫ|λ(H)|, (4)

where λ(H) is the ground state energy of H. The algorithm has running time O(n)2dO(ǫ−1)

.
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The algorithm also outputs a classical description of a quantum state of n qubits with energy

λ. In Section 3.3 we show how to improve the running time of the above algorithm to nO(ǫ−1)

for the simplest family of planar graphs with unbounded degree that we call star graphs. A

star graph with n vertices is a tree in which the root has degree n − 1 and all its neighbors

are leaves.

Remark : For simplicity we assume that basic arithmetic operations with real numbers can

be performed at a single time step. In fact our algorithm uses only the first O(log ǫ−1) most

significant digits in the coefficients specifying the Hamiltonian, see Corollary 2 in Section 3.1.

Accordingly, taking the real cost of arithmetic operations into account would modify the

running time only by a factor poly(log ǫ−1).

Our approximation algorithm for the classical and quantum Ising spin glass is relevant

in light of the recent research on quantum adiabatic approaches for finding the ground-state

of a classical or quantum Ising spin glass and solving other NP-complete problems. The

paradigm of adiabatic quantum computation (AQC) was first introduced in [8]. An adiabatic

computation proceeds by slowly varying the system’s Hamiltonian starting from some simple

Hamiltonian H0 at the time t = 0 and arriving to, for example, a classical Ising spin glass

Hamiltonian H at t = T (the final Hamiltonian can also capture other NP-hard problems).

The adiabatic theorem, see e.g. [9], guarantees that if one starts from the ground state of H0

and the running time T is large compared to the inverse spectral gap at all times then the

final state is close the ground-state of H.

If we assume the validity of the conjecture that a quantum computer can not solve NP-

hard nor QMA-hard problems (see for classical spin glasses the analysis in [10, 11]) it follows

that AQC is a means to obtain an approximation to the ground-state and the ground-state

energy. The quality of this approximation and its dependence on the hardness of the problem

and the adiabatic path are at present not well understood. In order to understand the possible

power of AQC it is thus of interest to consider how well an approximation to the ground-state

energy can be obtained by purely classical algorithmic means.

Recently the company D-wave has claimed to have implemented the Ising spin glass Hamil-

tonian (with additional edges on the diagonals of the lattice) and an adiabatic evolution for

16 qubits on a 4 × 4 square lattice, see [12]. The hope of this endeavor is that such system

outperforms classical computers in (approximately) solving optimization problems.

The area of approximation algorithms is an active area of research in computer science,

see e.g. [13]. Such algorithms are often of practical importance for generic hard problems

for which we are willing to trade off the relative quality of the approximation versus the

running time of the algorithm. Three main types of approximation to optimization problems

can be distinguished. A problem is said to have a polynomial time approximation scheme

(PTAS) if given any ǫ > 0, there is an algorithm Aǫ which for any instance I produces a

solution within (1 ± ǫ) times the optimal solution. In addition Aǫ has a running time which

is a polynomial in the input size of I. Observe that the running time of a PTAS is only

required to be polynomial in input size, and it can have an arbitrary dependence on ǫ (for

example n1/ǫ or 21/ǫ poly(n) are valid running times for a PTAS). A stronger notion is that

of a fully polynomial time approximation scheme (FPTAS), where the running time of the

approximation scheme is required to be polynomial both in the size of the input and in (1/ǫ).

For the classical Ising spin glass problem an instance is a particular graph and set of values
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of the weights cuv and du. The optimal solution is the ground-state energy λ(H).

For the Ising spin glass problem on planar graphs, we can exclude the possibility of a

FPTAS for such instances (assuming P 6= NP). This is due to the fact that the problem is

NP-hard even when cuv, du are restricted to be either −1, 0 or +1 [4]. Let us assume that

we have a FPTAS and set ǫ = δ/poly(n) for some constant δ. This gives a polynomial-time

algorithm to approximate λ(H) with an error which is at most δ|λ(H)|/poly(n). This is

sufficient accuracy to solve the NP-hard problem exactly since |λ(H)| is at most poly(n) and

the difference between the minimum of H(S) and the value right above it (i.e. the energy

gap) is at least 1, that is, independent of n.

The class of classical optimization problems for which the objective function can be ef-

ficiently approximated with a relative error ǫ for some fixed constant ǫ is called APX. It is

known that some problems in APX do not have a PTAS (under the assumption P6=NP), for

example, Minimum Vertex Cover and Maximum Cut problems, see [14]. In other words, for

such problems no polynomial-time algorithm can make the relative error smaller than some

constant threshold value ǫ0. Problems having this property are called APX-hard. One can use

the relation between the Ising spin glass problem and the Maximum Cut problem, see [15],

to show that the former is APX-hard if defined on arbitrary graphs. This is the reason why

the present paper focuses only on planar graphs.

Note that the existence of a PTAS for a Hamiltonian H does not imply the existence

of a PTAS for the trivially related problem of finding the ground-state energy of H + aI,

where a is a constant; this is because the PTAS produces a solution with small relative error.

Our PTAS for the classical Ising spin glass problem can be translated to an approximation

algorithm with an absolute error at most ǫW , where W =
∑

(u,v)∈E |cu,v|, see Section 2.2. For

the quantum Ising spin glass the absolute error is at most ǫW , where W =
∑

(u,v)∈E ‖Qu,v‖,
see Section 3.1. Here ‖ · ‖ is the usual operator norm. We believe that an absolute error is a

more adequate figure of merit to quantify the quality of approximation obtained using AQC

since it is invariant under a trivial shift of energy. What approximation error can be achieved

using AQC in the regime when the evolution time is poly(n) while the inverse spectral gap is

super-polynomial (which is likely to be the case for NP-hard problems) is a challenging open

problem that goes beyond the scope of the present paper.

We will first consider the classical Ising spin glass on a graph G which is a two-dimensional

lattice, and give a PTAS for this case. It has a running time T = O(n4
1
ǫ ), see Section 2.1. We

also sketch a generalization of this algorithm to cubic lattices in R
d for any constant d. The

intuitive idea behind these constructions is simple. Assume, for simplicity, that all couplings

between spins have similar strength. Then one can subdivide a 2D lattice into blocks of size

L × L by omitting the edges connecting these subblocks. The total contribution of these

omitted boundary edges scales as 4L × n
L2 = O(n/L) and hence for large, but constant,

L = 1/ǫ the error that one makes by omitting these edges is bounded by at most O(ǫn). This

proves that there exists an approximation algorithm with absolute error. However one can

show that the magnitude of the ground-state energy scales linearly with n (see Theorem 3)

and thus the error will be proportional to the ground-state energy which is exactly what is

desired for the PTAS.

In our formulation of the problem, not all edges on the 2D lattice have similar strength,

hence somewhat more elaborate arguments are needed to show the existence of a PTAS.
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For general planar graphs this situation is more involved. Vertices in the graph can have

arbitrarily high degree and it is not clear how to divide up the graph into sub-blocks with

small boundaries. In the ‘classical’ Theorem 3 and its quantum counterpart Theorem 4 we

will show that the ground-state energy of an Ising spin glass on a planar graph is less than

−cW for some constant c (recall that W =
∑

(u,v) ||Qu,v|| for the quantum Ising spin glass and

W =
∑

(u,v) |cuv| for the classical Ising spin glass). This rigorously expresses the intuitive,

physical, notion that the ground-state energy is extensive in the system size n, that is, scales

linearly with n. The idea of the PTAS is then as follows. We take out a subset of edges in the

planar graph for which (i) one can show that their contribution to the Hamiltonian is at most

ǫW and (ii) by taking out these edges one ends up with a set of simpler disconnected graphs

on which one can solve the problem efficiently (in time O(n)). Let H̃ denote the (classical or

quantum) Hamiltonian for the problem where we have taken out these edges. Since we only

take out edges (and no vertices), a state with minimum energy for H̃ is also a state for H. By

Weyl’s inequality |λ(H) − λ(H̃)| ≤ ||H − H̃|| ≤ ǫW . Using Theorems 3 and 4 we can relate

W back to the lowest eigenvalue of H and hence show that the PTAS outputs a (quantum)

state which has energy at most O(ǫ|λ(H)|) higher than the true ground-state energy.

How do we take out edges from the original planar graph? In the classical case, see Section

2.3, we take out edges related to a so-called outerplanar decomposition of a graph. In this

way we end up with disconnected graphs which have a constant tree-width. It is well known

how to solve the classical spin problem on graphs with bounded tree-width using dynamic

programming, see [23] and the discussion in Section 2.3.

In the quantum case we cannot choose this procedure since the quantum problem on a

graph with bounded-tree width, or even on a tree, can still be hard, see [6]. This points to

an interesting difference between the quantum and the classical Ising spin glass.

If, in the quantum case, we restrict ourselves to graphs with bounded-degree, we can

apply a procedure that removes edges and leaves a set of disconnected graphs each of which

has constant size (related to ǫ), see Section 3.2. Determining the ground-state energy of a

Hamiltonian in constant dimension can be done classically by a brute-force method. Note that

this PTAS outputs a classical description of a quantum state which has an energy O(ǫ|λ(H)|)-
close to the true ground-state energy.

Our last result finds a PTAS for the quantum problem on a star graph, see Section 3.3.

The complexity of the local Hamiltonian problem on this graph is not known. For the star

graph it is clear that we cannot take out edges without introducing a large error. Hence we will

use a different technique which uses symmetry and the rounding of interactions. In effect, we

construct a Hamiltonian H̃ for which λ(H̃) and its ground-state can be determined efficiently

and ||H − H̃|| ≤ ǫW . The construction works as long as all terms in H have norms in a

range [a, 1] for a constant a. Such condition was not present in the other PTAS constructions.

Extensions of this technique may be important for addressing the general quantum problem

on planar graphs.

We note that our technique for the classical planar graph problem, i.e. using an outerplanar

decomposition of the graph, is fairly standard for solving hard classical problems on planar

graphs. In fact, many problems admit a PTAS on planar graphs even though approximating

them on general graphs is known to be NP-hard, see [16, 17, 18]. While our techniques are

similar to those of [17] and [18] at a conceptual level, our results do not follow directly from
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their work and require some new ideas. The main difficulty is that the Hamiltonian involves

both positive and negative terms which can possibly cancel out making the required precision

ǫ|λ(H)| too small. Our proof that the ground-state energy λ(H) is an extensive quantity is

the key technical contribution of the paper which allows us to build on ideas of [17] and [18].

2 Classical Hamiltonians on planar graphs

2.1 The 2D square lattice case

Consider the classical Ising spin glass Hamiltonian Eq. (1) defined on a 2D square lattice of

linear size L, that is, V = {u = (x, y) ∈ Z × Z : 0 ≤ x, y ≤ L − 1} for open boundary

conditions and V = ZL × ZL for periodic boundary conditions. Let n = L2 be the total

number of spins. Let ǫ > 0 be a fixed small constant. Without loss of generality let us

assume that t = 1/ǫ and ǫ
√
n are integers. For i = 0, . . . , t − 1, let Xi denote the set of

vertices u = (x, y) on the horizontal lines defined by {y ≡ i (modulo t) }. Similarly, let Yi

denote the set of vertices on the vertical lines defined by { x ≡ i (modulo t) }, see Figure

1. We define the Hamiltonians Hx
i (S) and Hy

j (S) as follows. Hx
i includes all terms duSu,

u ∈ Xi and all terms cuv SuSv such that (u, v) is a vertical edge that has exactly one end-

point in Xi. Similarly Hy
j includes all terms duSu for u ∈ Yj and and all terms cuv SuSv

such that (u, v) is a horizontal edge that has exactly one end-point in Yj . It is easy to see

that
∑t−1

i=0(H
x
i (S) + Hy

i (S)) = 2H(S)a. This implies that there exists an i and b = x or y

such that Hb
i (Sopt) ≥ H(Sopt)/t or H(Sopt)−Hb

i (Sopt) ≤ (1− ǫ)H(Sopt), where Sopt is a spin

configuration with the minimum energy.

i+t

i

i+2t

j j+t j+2t

Fig. 1. Sets of vertices on horizontal lines Xi and sets of vertices at vertical lines Yj . Drawn are
also some vertical edges that are part of Hx

i and horizontal edges that are part of Hy
j .

For any i and b = x, y consider a Hamiltonian Hb
sub,i(S) = H(S) − Hb

i (S). Note that

this Hamiltonian describes the Ising model defined on a set of ǫ
√
n disconnected strips of size

1
ǫ ×√

n and ǫ
√
n disconnected lines of size

√
n. The latter corresponds to sets of edges that

have both endpoints in Xi or Yi and thus contains no linear terms. It means that Hb
sub,i(S)

is invariant under flipping all the spins in any connected component of Xi (if b = x) or Yi (if

b = y). Besides, as shown in the previous paragraph, there exists a choice of i and b such that

Hb
sub,i(Sopt) ≤ (1 − ǫ)H(Sopt).

aWe note that a similar decomposition could be obtained for qubits on the square lattice with additional
diagonal interactions. In such case we would define four Hamiltonians corresponding to lines of vertical,
horizontal, diagonal-\, and diagonal-/ vertices with the edges incident on these vertices.
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Let S′
opt be a spin configuration that achieves the minimum of Hb

sub,i(S) for some fixed i

and b. Note that S′
opt assigns values to all the vertices of the lattice. Using the symmetry

of Hb
sub,i(S) mentioned above, one can choose S′

opt such that Hb
i (S′

opt) ≤ 0. Indeed, if b = x

then Hx
i (S′

opt) changes a sign under flipping all the spins in Xi while Hx
sub,i(S) is invariant

under this flip (the same argument applies to b = y). Therefore, for any i and b one has

H(Sopt) ≤ H(S′
opt) ≤ Hb

sub,i(S
′
opt) and for some i and b one has Hb

sub,i(S
′
opt) ≤ Hb

sub,i(Sopt) ≤
(1 − ǫ)H(Sopt). Thus the minimum energy of Hb

sub,i(S) over all i, b, and S approximates

H(Sopt) within a factor 1 − ǫ (one can easily show that the minimum energy H(Sopt) is

always non-positive, see Claim 1 in Section 2.2).

It follows that we can get a PTAS by finding the minimum of Hb
sub,i(S) over all choices

of i = 0, . . . , t− 1, b = x, y, and all spin configurations S. The running time of this PTAS is

T = 2
ǫ ·

[

Tstrip(
√
n, 1

ǫ ) + Tstrip(
√
n, 1)

]

·O(ǫ
√
n), where Tstrip(r, s) is the running time needed

to find the optimal solution for the Ising spin glass Hamiltonian on a r × s strip. One can

easily show that

Lemma 1 There is a dynamic programming algorithm that computes the optimum solution

for a r × s lattice-blocks using space O(2s) and time O(r4s).

Proof: Let Bi denote an r × s lattice B restricted to rows 1, . . . , i (Br = B). Let S

be {−1,+1} vector of size s and for i ∈ {1, . . . , r}, let V (i, S) be the optimum value of the

Hamiltonian restricted to Bi such that the variables on the i-th row have assignment S. The

dynamic program sequentially computes V (i, S) for all i and S starting from i = 1. This

suffices as the optimum solution for B is exactly minS V (r, S). At each step i one has to store

values of V (i, S) and V (i+ 1, S) only.

For i = 1, the quantity V (1, S) can be easily computed for each S. Suppose V (i, S) has

been computed and stored for all S. For an assignment S of row i+1 and an assignment S′ of

row i, let Z(i+1, S, S′) denote the contribution of all terms to the Hamiltonian corresponding

to vertices on row i+ 1, and edges in Bi+1 with at least one end point in row i+ 1. Since the

assignment S on row i+ 1 can only affect Z, it follows that

V (i+ 1, S) = min
S′

(V (i, S′) + Z(i+ 1, S, S′)). (5)

Since Z(i+1, S, S′) can be computed in time O(s) and V (i, S′) are already stored, computing

V (i+1, S) for all S takes time O(s2s ·2s). We can speed up this procedure somewhat to O(4s)

by considering the assignments S′ in say the Gray code order (where successive assignments

differ in exactly 1 variable), and hence only O(1) work needs to be done per assignment S′.
�

Thus using the dynamic program leads to a PTAS with an overall running time T =

O(n4
1
ǫ ).

We can consider how a quantum computer could improve these running times. A possible

application of quantum searching is inside the dynamic programming. Since many classical

approximation algorithms rely on dynamic programming, this could be an important area of

applications. For each row of s spins the dynamic program performs 2s minimizations and

the minimum is over a function which takes 2s values. There exists a quantum algorithm for

finding the minimum of a function [19] with square-root speed-up over a brute-force classical

minimization. This algorithm uses the Grover search algorithm as a subroutine. However

in the dynamic program, part of the input to this function is stored which implies that this
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is a problem of searching in a real database. In the database setting one has to consider

the additional time/hardware overhead in accessing the spatially extended database as well

as the overhead associated with implementation of the oracle in the Grover search. Optical

or classical wave implementations of this type of searching have been considered, see [20].

One can use the Grover search subroutine for solving the lattice strips and one obtains a

running time of Tq = O(n23/2ǫ) not taking into account the additional overheads. Whether

this application of Grover’s algorithm in dynamic programming is of genuine interest will

depend how its physical implementation competes in practice with the capabilities of classical

computers.

Let us briefly sketch how similar ideas provide a PTAS for the Ising spin glass problem

defined on a d-dimensional cubic lattice. For simplicity we consider the case du = 0, that is

H(S) contains only quadratic terms (the analysis extends directly to the case when du 6= 0).

For every integer vector i = (i1, . . . , id) with components defined modulo t ≡ 1/ǫ consider

a subset of vertices Mi such that v = (v1, . . . , vd) ∈ Mi iff vp = ip (mod t) for at least one

coordinate 1 ≤ p ≤ d. There are td such subsets. Note that for every edge (u, v) the number

of subsets Mi such that u ∈ Mi or v ∈ Mi is Nt,d = t(td−1 − (t − 1)d−1) + 2(t − 1)d−1 =

(d+ 1)td−1 +O(td−2). Now define Hsub,i(S) as a sum of all terms cuvSuSv such that u /∈Mi

and v /∈ Mi. Since Hsub,i describes O(nǫd) independent blocks of spins of linear size t,

its ground state energy can be computed exactly in time O(nǫd2td

). On the other hand,
∑

i
(H(Sopt) − Hsub,i(Sopt)) = Nt,dH(Sopt) ≈ (d + 1)td−1H(Sopt) and thus there exists an i

such that Hsub,i(Sopt) ≤ (1 − (d + 1)ǫ)H(Sopt). Here for simplicity we retain only the terms

linear in ǫ. Furthermore, for any fixed i let S′
opt be the minimum energy configuration ofHsub,i.

Note that S′
opt is not defined on spins fromMi. Let us show that S′

opt can be extended to a spin

configuration S′′
opt on the whole lattice such that H(S′′

opt) ≤ Hsub,i(S
′
opt). Indeed, let M0

i
and

M1
i

include all vertices in Mi which have even and odd sum of coordinates respectively. For

any α, β ∈ {+1,−1} extend S′
opt by setting value α to every spin in M0

i
and value β to every

spin in M1
i
. Let S′′

opt(α, β) be the resulting spin configuration. Since every edge has at most

one endpoint in M0
i

and M1
i

we have
∑

α,β=±1H(S′′
opt(α, β)) = 4Hsub,i(S

′
opt). Thus one can

choose some α, β such that S′′
opt = S′′

opt(α, β) satisfies H(S′′
opt) ≤ Hsub,i(S

′
opt). We conclude

that there exists an i such that H(S′′
opt) ≤ Hsub,i(S

′
opt) ≤ Hsub,i(Sopt) ≤ (1−(d+1)ǫ)H(Sopt).

Therefore the minimum of H(S′′
opt) over all i provides an approximation to H(Sopt) with

a relative error at most (d + 1)ǫ. Trying all possible td sublattices we get a PTAS with a

running time T = O(n2ǫ−d

) and a relative error (d+ 1)ǫ.

2.2 General planar graphs

Let us now consider the general case of planar graphs. In the lattice case we used the symmetry

of the lattice to argue that there exists a small subset of edges such that they have a small

contribution to the Hamiltonian and removing them decomposes the lattice into small disjoint

blocks. For general planar graphs we cannot use this argument due to the lack of symmetry

and hence we argue indirectly. We show that the magnitude of the optimal solution is at

least a constant fraction of the sum of the absolute values of quadratic terms corresponding

to the edges. This allows us to find a subset of edges with relatively small weight such that

removing them decomposes the graph into simpler disjoint graphs for which the problem can

be solved directly. Since the removed edges have small weight adding them back in does not
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increase the value of the Hamiltonian by too much.

For a planar graph G = (V,E) let W =
∑

(u,v)∈E |cuv|. Let Sopt ∈ {−1,+1}n be a ground-

state spin configuration such that λ(H) = H(Sopt). The key to our PTAS is the following

result that shows that the ground-state energy scales linearly with W :

Theorem 3 If G is planar, then H(Sopt) ≤ −W/3.
We begin with a simple property of the optimal solution (the one that minimizes H(S))

that holds for an arbitrary graph. Let us write the Hamiltonian as H(S) = Q(S) + L(S),

where Q(S) is the overall contribution of the quadratic terms cu,vSuSv and L(S) is the overall

contribution of the linear terms duSu.

Claim 1 There exists an optimal solution Sopt such that H(Sopt) ≤ 0 and L(Sopt) ≤ 0.

Proof: It is clear that
∑

S H(S) = 0. This implies that there must exist a spin con-

figuration with non-positive energy and thus H(Sopt) is non-positive. The second part can

be argued by assuming the contrary (L(Sopt) > 0) and then noting that the solution with

opposite signs −Sopt is better than Sopt itself. �

Thus we note that it suffices to show that minS Q(S) ≤ −W/3 since Claim 1 shows that

minS H(S) ≤ minS Q(S). Hence we consider planar graphs with only quadratic terms in

H(S), i.e. we assume that du = 0 for all u. Recall that Bieche et al. [7] have shown that

this problem can be solved exactly in polynomial time. Our proof of Theorem 3 builds on the

ideas of Bieche et al. and so we first describe these ideas. We begin with some notation.

A graph is planar if it can be drawn in the plane such that no edges cross. This drawing

defines disjoint regions in the plane that are called faces. A cycle in a graph is a subset of

edges C ⊆ E such that every vertex has even number of incident edges from C. Given two

cycles C1 and C2, their sum C1 ⊕ C2 is defined as the symmetric difference of C1 and C2.

The faces of planar graph form a cycle basis, that is, every cycle can be expressed as a sum of

faces. Given an assignment S, an edge (u, v) is called unsatisfied if u and v are not assigned

according to the sign of cuv (i.e. if cuv ≥ 0 but SuSv = 1 or if cuv < 0 but SuSv = −1). A face

F is called frustrated if its boundary contains an odd number of edges with positive weight.

A key observation is that for any assignment, a frustrated face must always contain an odd

number (hence at least one) of unsatisfied edges. Conversely, if J is a subset of edges such

that each frustrated (resp. non-frustrated) face contains exactly an odd (resp. even) number

of edges in J , then there is an assignment S such that the unsatisfied edges are exactly those

in J . Thus, Q(S) = −W +2
∑

(u,v)∈J |cuv|. We shall see below that finding such a set J with

minimum weight is equivalent to finding the minimum weight T -join in the dual graph G∗

(these terms are defined below). Let us remark that the total number of frustrated faces is

even because every edge (u, v) with cu,v > 0 either has exactly two adjacent faces or it does

not belong to a boundary of any face (edges of the latter type may correspond to “dangling”

paths or trees).

For a planar graph G, its dual graph G∗ is defined as follows: G∗ has a vertex for each face

in G. Vertices u and v in G∗ are connected by an edge if and only if the faces corresponding

to u and v in G share a common edge. Note that for a given graph G, the dual G∗ is not

necessarily unique (it depends on the drawing of G). A subset of edges E′ is called a cut-set

if removing them disconnects the graph into two or more components. For planar graphs,

every cut-set in the dual graph G∗ corresponds to a cycle in G.

Let G = (V,E) be a graph with edge weights, and let T be a subset of vertices T ⊆ V such
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that |T | is even. A T -join is a collection of edges J such that each vertex in T is adjacent to an

odd number of edges in J and each vertex in V \T is adjacent to an even number of edges in J .

It follows from these definitions that finding the optimal assignment is equivalent to finding

the minimum weight T -join in G∗ where T is taken to be the set of vertices corresponding

to the frustrated faces in G, and where an edge e corresponding to (u, v) in G has weight

w(e) = |cuv|.
We will use a polyhedral description of T -joins. For a subset of edges J , let ~J denote the

corresponding |E|-dimensional incidence vector (with 1 in the i-th coordinate if edge i lies in

J and 0 otherwise). For a subset of vertices X, let δ(X) denote the set of edges with one

end point in X and other in V \ X. Given a graph G and the set T , we say that a subset

of edges J is an upper T -join if some subset J ′ of J is a T -join for G. Let P be the convex

hull of all vectors ~J corresponding to the incidence vector of upper T -joins. P is called the

up-polyhedra of T -joins. Edmonds and Johnson [21] gave the following exact description of

P (see the book by Schrijver [22], Chapter 29, par. 1-6 for further details).

∑

e∈δ(X)

x(e) ≥ 1, for all sets X s.t. |X ∩ T | is odd, (6)

0 ≤ x(e) ≤ 1 for all edges e. (7)

This implies that any feasible solution x to the system of inequalities above can be written

as a convex combination of upper T -joins, i.e. x =
∑

αi
~Ji where 0 ≤ αi ≤ 1 and

∑

i αi = 1.

In particular this implies that

Corollary 1 If all the edge weights w(e) are non-negative, then given any feasible assignment

x(e) satisfying the inequalities above, there exists a T -join with cost at most
∑

e w(e)x(e).

We are now ready to prove Theorem 3. Recall that a graph is called simple iff it has no

self-loops and no multiple edges between the same pair of vertices.

Lemma 2 Let G be a simple planar graph with weights |cuv| on the edges, and let G∗ be its

dual graph. For any subset of vertices T of G∗ such that |T | is even, the minimum weighted

T -join has weight at most (
∑

(u,v) |cuv|)/3.
Proof: Each cut-set J of G∗ corresponds to a cycle in G. Since G is simple, each cycle has

length at least 3, and hence each cut-set J of G∗ contains at least 3 edges. Consider the

assignment x(e) = 1/3 for all e ∈ E. It clearly satisfies Eq. (7). Moreover it also satisfies Eq.

(6) as δ(X) ≥ 3 for all X ⊂ V , X 6= V . The result then follows from Corollary 1.

�

Lemma 2 implies Theorem 3 immediately, since the value of the optimal assignment is −W
plus twice the weight of the optimal T -join which is at most −W + 2W/3 = −W/3. Observe

that Theorem 3 is tight, as seen from the example where G is a triangle with edge weights

+1,+1 and −1. Here W = 3, but the optimal spin assignment has value −1. The condition

that G is simple is necessary. Otherwise, consider the graph on two vertices with two edges,

one with weight −1 and other with weight +1. Here W = 2, but the optimal assignment has

value 0.

2.3 The approximation algorithm

Given Theorem 3, the PTAS follows using some ideas in [18]. We begin by describing the

notions of p-outerplanar graphs and tree-widths. An outerface of a planar graph drawn in
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the plane is the set of edges that constitute the boundary of the drawing. For a tree, the

outerface is the set of all the edges. One defines a p-outerplanar graph recursively as follows.

Definition 1 (p-outerplanar graphs) An outerplanar or 1-outerplanar graph is a planar

graph that has an embedding in the plane with all vertices appearing on the outerface. A

p-outerplanar graph is a planar graph that has an embedding in the plane such that removing

all the vertices on the outerface gives a (p− 1)-outerplanar graph.

Examples of 1-outerplanar graphs include any tree or a graph consisting of two cycles that

share a common vertex. An example of a 4-outerplanar graph is shown on Fig. 2.

Fig. 2. A planar graph which is drawn as a 4-outerplanar graph.

The notion of tree decompositions (TD) was introduced by Robertson and Seymour [23],

see also [18, 24]. Roughly speaking, a TD allows one to map the Ising spin Hamiltonian

H(S) on a graph G = (V,E) to a new spin Hamiltonian Htree(Θ) that depends on spins

Θt ∈ {0, 1}b living at vertices t of some tree T . The spin Θt represents the “opinion” that

a vertex t has about value of spins Su in some subset of vertices Bt ⊆ V called a bag.

Accordingly, Θt may take 2b values, where b is the number of spins in Bt. Suppose we can

form m bags B1, . . . , Bm ⊆ V associated with the m vertices of T such that (i) every vertex

u ∈ V is contained in some bag Bt; (ii) for every edge (u, v) ∈ E, some bag Bt contains both

u and v; (iii) a set of bags containing any given vertex of G forms a subtree of T . These

data specify a TD of G with a size m and a width b− 1. The tree-width of a graph G is the

minimum integer w such that G has a TD of width w. The rules (i),(ii) guarantee that one can

distribute the terms cuvSuSv and duSu of the Hamiltonian H(S) over the bags B1, . . . , Bm

such that every term appears in exactly one bag. This distribution defines Hamiltonians

Htree,t(Θt) =
∑

(u,v)∈Bt
cuvSuSv +

∑

u∈Bt
duSu, where the spins Su are determined by Θt.

Define Htree(Θ) =
∑m

t=1Htree,t(Θt). For every edge (s, t) ∈ E(T ) let us say that Θs and

Θt are consistent on (s, t) iff their opinions about any spin u ∈ Bs ∩ Bt agree. The rule

(iii) guarantees that Θ is consistent with some spin configuration S iff (Θs,Θt) are consistent

on every edge of T . Accordingly, minS H(S) = min′
ΘHtree(Θ), where min′ means that the

consistency condition on every edge of T is imposed. The optimal solution Θ can be found very

efficiently using the standard dynamic programming approach since the problem is defined

on a tree. For the sake of completeness we sketch the main steps of this approach below.

Lemma 3 One can compute min′
ΘHtree(Θ) in time O(m4b).

Proof: Let r be the root of T . For any vertex s let Ts be the subtree of T rooted at s.

Consider a quantity

V (s,Θs) = Htree,s(Θs) + min′
Θ

∑

t∈Ts\s

Htree,t(Θt)
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which is the minimum energy of the Hamiltonian Htree restricted to the subtree Ts where the

minimization is subject to the consistency conditions on edges of Ts and the spin Θs at the

root of Ts is fixed. One can easily check that V (s,Θs) obeys the following recursive equation:

V (s,Θs) = Htree,s(Θs) +
∑

t=child(s)

min′
Θt
V (t,Θt),

where the minimization is over all Θt consistent with Θs. Thus given a table of values of

V (t,Θt) for every child of s, one can compute a table of values of V (s,Θs) in time O(c(s) ·
2b · 2b), where c(s) is the number of children of s. Thus one can compute min′

ΘHtree(Θ) =

minΘr
V (r,Θr) in time O(m4b).

�

It is known that a p-outerplanar graph has a TD with a size m = 2n− 1 and a tree-width

at most 3p − 1. Such a TD can be computed in time O(pn), see [25]. Summarizing, the

minimum energy of the Ising spin glass Hamiltonian on a p-outerplanar graph with n vertices

can be found in time T = O(n26p).

Our algorithm works as follows. Given the planar graph G, one first constructs a drawing

of G in the plane. This can be done in linear time, using for example the algorithm of Hopcroft

and Tarjan [26]. This gives an outerplanar decomposition of G, see e.g. Fig 2. Say it is h-

outerplanar (h could be as large as O(n)). Partition the vertices into levels V1, . . . , Vh where

V1 is the outer face and Vi is the outer face obtained by removing V1, . . . , Vi−1. Let Ei be a

set of edges that go from Vi to Vi+1. For j = 0, . . . , t−1, let Gj be the union of sets Ei for all

i = j (modulo t). (Recall that t ≡ 1/ǫ.) As each edge lies in at most one set Gj , there exists

some index j such that the sum of |cuv| over all edges in Gj is at most ǫW . Remove all the

edges in Gj from the graph G. This decomposes G into a disjoint collection of t-outerplanar

graphs F1, F2, . . . , Fǫh. We find the minimum energy separately on each of these subgraphs.

Now consider the quality of the solution obtained for the decomposed problem. Let

Hsub,j(S) = H(S) − ∑

(u,v)∈Gj
cuvSuSv and let the optimal solution for Hsub,j be S′

opt. By

the reasoning above there exists j such that

Hsub,j(S
′
opt) ≤ Hsub,j(Sopt) ≤ H(Sopt) + ǫW. (8)

Furthermore, H(S′
opt) ≤ Hsub,j(S

′
opt)+ǫW . ThusH(S′

opt) ≤ H(Sopt)+2ǫW ≤ (1−6ǫ)H(Sopt)

by Theorem 3. It follows that we can get a PTAS with a relative error 6ǫ by trying all possible

j = 0, . . . , t−1 and choosing the optimal solution S′
opt that yields the smallest value ofH(S′

opt).

For a fixed j finding S′
opt requires time Tj =

∑ǫh
a=1O(|Fa|26t) = O(n26t). Thus the overall

running time of the PTAS is T =
∑t−1

j=0 Tj = O(nǫ−126/ǫ). Choosing δ = 6ǫ this implies

that the algorithm obtains an assignment with the energy at most (1 − δ)H(Sopt) in time

O(nδ−1236/δ).

3 Quantum Hamiltonians on planar graphs

3.1 Upper bound on the ground-state energy

Let us start from proving the quantum equivalent of Theorem 3 which will be instrumental

in proving our results. It asserts that the ground-state energy of a quantum Ising spin glass

Hamiltonian on a planar graph is an extensive quantity, that is, its magnitude is at least a

constant fraction of the sum of the absolute values of all quadratic and linear terms.
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Theorem 4 The minimum eigenvalue λ(H) of H for a planar graph λ(H) ≤ −∑

u ||Lu||/5−
W/(5 · 35), where W =

∑

(u,v)∈E ‖Qu,v‖.
Proof: The strategy will be to upper bound λ(H) by λsep(H), where λsep is the minimal

energy achieved on tensor products of states |0〉, |1〉, |+〉, |−〉, | + i〉, | − i〉, where

|±〉 = (|0〉 ± |1〉)/
√

2, | ± i〉 = (|0〉 ± i |1〉)/
√

2.

It is enough to prove that λsep is an extensive quantity and this can be achieved using

Theorem 3 — the result for the classical case. Let us first prove the theorem for the special

case when L = 0, that is when the Hamiltonian involves only interactions quadratic in Pauli

operators. For every edge (u, v) ∈ E the interaction Qu,v generally involves all 9 combinations

of Pauli operators. We will choose one of them that has the coefficient with the largest absolute

value (ties are broken arbitrarily). The corresponding term in the Hamiltonian proportional

to a tensor product of two Pauli operators will be called a dominating coupling. For example,

if Qu,v = 3σx
u ⊗ σy

v − 4σz
u ⊗ σx

v , then the edge (u, v) has dominating coupling −4σz
u ⊗ σx

v . We

have

Lemma 4 Suppose Qu,v has a dominating coupling cuv σ
α
u ⊗ σβ

v , where α, β ∈ {X,Y,Z}.
Then

|cuv| ≥
1

9
‖Qu,v‖. (9)

Proof: Indeed, otherwise the triangle inequality would imply ‖Qu,v‖ ≤ 9|cuv| < ‖Qu,v‖.
�

We shall now partition edges E into several subsets E = ∪jEj , such that the dominating

couplings in each subset Ej commute with each other, that is, the sum of dominating couplings

over Ej is equivalent to a classical Ising Hamiltonian up to a local change of basis. First of all,

since G is a planar graph we can color its vertices by {1, 2, 3, 4} such that adjacent vertices

have different colors. A map f : V → {X,Y,Z} that assigns a Pauli operator to every vertex

of G will be called a Pauli frame if f(u) depends only on the color of u. Consider the following

Pauli frames.
1 2 3 4
X X X X
X Y Z Y
X Z Y Z
Y X Z Z
Y Y Y X
Y Z X Y
Z X Y Y
Z Y X Z
Z Z Z X

This table forms an orthogonal array of strength two with alphabet {X,Y,Z}, that is

every pair of columns contains every possible combination of two Pauli operators exactly one

time (for a general theory of orthogonal arrays see [27]). Let f1, . . . , f9 be the corresponding

Pauli frames. Denote by Ej the subset of edges (u, v) ∈ E such that (u, v) has a dominating

coupling

cuv σ
fj(u)
u ⊗ σfj(v)

v .



714 Classical approximation schemes for the ground-state energy of quantum and classical Ising spin ...

Then we conclude that

Ej ∩ Ek = ∅ if j 6= k, and ∪9
j=1 Ej = E. (10)

For every Pauli frame fj we can introduce a classical Ising Hamiltonian Qj obtained from

Q by restricting the whole Hilbert space to classical states in the Pauli frame fj (that is,

if fj(u) = X for some qubit u, we allow this qubit to be in either of states |+〉 and |−〉; if

fj(u) = Z, we allow u to be in either of states |0〉, |1〉, etc.). By definition,

λ(Q) ≤ λ(Qj). (11)

The Hamiltonian Qj has a single interaction cαβ
uv σ

α
uσ

β
v associated with every edge (u, v) ∈ E,

where α = fj(u) and β = fj(v). Note that for every edge (u, v) ∈ Ej the dominating coupling

in Qu,v is diagonal in the Pauli frame fj and thus it is included to Qj (for edges that are

not in Ej the dominating coupling is not included to Qj but some other coupling may be

included). Thus, applying Theorem 3 to Qj we obtain

λ(Qj) ≤ −1

3

∑

(u,v)∈Ej

|cuv| ≤ − 1

33

∑

(u,v)∈Ej

‖Qu,v‖, (12)

where the second inequality follows from Lemma 4. Combining Eqs. (10,11,12) we arrive at

λ(Q) ≤ 1

9

9
∑

j=1

λ(Qj) ≤ − 1

35

∑

(u,v)∈E

‖Qu,v‖. (13)

It remains to generalize this bound to the case L 6= 0. We can show that as in the classical

case (see Claim 1), the following holds:

Lemma 5 One can choose a ground-state |ψ0〉 of Q such that 〈ψ0|L|ψ0〉 ≤ 0.

Proof: Consider the anti-unitaryb operator W (known as the time reversal operator) defined

by

W |φ〉 =
⊗

u∈V

Yu |φ∗〉

for all |φ〉, where |φ∗〉 is the complex conjugate of |φ〉 such that the complex conjugation is

performed with respect to the |0〉, |1〉 basis. One can check that Pα
u W = −WPα

u for any

single-qubit Pauli operator Pα
u . It follows that

QW = WQ, LW = −WL.

Thus, if one defines a state |φ0〉 = W |ψ0〉, one gets

〈φ0|L|φ0〉 = −〈ψ0|L|ψ0〉, 〈φ0|Q|φ0〉 = 〈ψ0|Q|ψ0〉.

It follows that |φ0〉 is also a ground state of Q and one of the inner products 〈φ0|L|φ0〉 or

〈ψ0|L|ψ0〉 is non-positive.

bRecall that an anti-unitary operator on a Hilbert space H is a bijective map W : H → H such that
〈Wφ|Wψ〉 = 〈ψ|φ〉 for all vectors |ψ〉, |φ〉 ∈ H.
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�

Remark: As far as the analysis of the approximation algorithm is concerned (see the next

section), one can use a weaker form of Theorem 4, namely, λ(H) ≤ −3−5
∑

(u,v)∈E ‖Qu,v‖
which follows from Eq. (13) and Lemma 5.

Now define 5 states ρ1, . . . , ρ5 such that

(i) For j = 1, . . . , 4 a state ρj sets qubits u ∈ V of color j to the ground state of Lu; all other

qubits are set to the maximally mixed state.

(ii) ρ5 is a ground state of Q such that Tr(ρ5 L) ≤ 0.

Then one has the following inequalities

Tr(Qρj) = 0 for j = 1, . . . , 4, and Tr(Qρ5) = λ(Q). (14)

Tr(Lρj) = −
∑

u : color(u)=j

‖Lu‖ for j = 1, . . . , 4, and Tr(Lρ5) ≤ 0. (15)

Let ρ be the uniform probabilistic mixture of ρ1, . . . , ρ5. Then Eqs. (13,14,15) imply that

Tr(ρH) ≤ −1

5

∑

u∈V

‖Lu‖ −
1

5 · 35

∑

(u,v)∈E

‖Qu,v‖.

�

Corollary 2 One can estimate the ground-state energy λ(H) with a relative error ǫ by spec-

ifying the coefficients in H only up to the first m = O(log ǫ−1) most significant digits.

Indeed, Theorem 4 implies that it suffices to estimate λ(H) with an absolute error δ =

O(ǫ)(
∑

u ‖Lu‖ +
∑

(u,v) ‖Qu,v‖). Setting the i-th digit in coefficients specifying Lu and Qu,v

to zero for all i > m will change the Hamiltonian at most by O(δ) in operator norm and thus

it will change λ(H) at most by O(δ). Note that this observation applies also to the classical

Ising spin glass problem.

3.2 The approximation algorithm for planar graphs with bounded degree

Let us start from defining a weak diameter of a subgraph.

Definition 2 (Weak Diameter): Let G = (V,E) be a graph and let G′ = (V ′, E′) be a

subgraph of G. We say that G′ has weak diameter d with respect to G, if for any two vertices

v, w ∈ V ′, their distance in G is at most d.

We shall use the following result of Klein, Plotkin and Rao [28] on decomposing planar

graphs.

Theorem 5 Let G = (V,E) be an undirected planar graph with non-negative edge weights,

and let W denote the total edge weight. Then, given any ǫ > 0, there is a subset of edges

E′ with total weight at most ǫW such the removing these edges decomposes the graph G into

components each of which has weak diameter at most c/ǫ with respect to G. Here c is a fixed

constant independent of ǫ.

IfG is a planar graph with maximum degree d, Theorem 5 implies that each component can

have at most dO(1/ǫ) vertices and hence the minimum eigenvalue problem for a Hamiltononian

H restricted to every component can be solved in time 2dO(1/ǫ)

by a direct calculation of the

minimum eigenvalue, for example, using the Lanczos algorithm [29].
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There is a linear time algorithm to determine the set of edges E′. The algorithm works as

follows. Let δ = ǫ/3. Root the graph G at an arbitrary vertex and consider the breadth first

tree. A vertex is said to be at level i, if it is at distance i from the root. For j = 0, . . . , 1/δ−1,

let Ej denote the set of edges that connect two vertices at level i and i+1 where i ≡ j (modulo

1/δ). Choose the set Ej with least weight and remove these edges from G. Let G1 denote the

obtained graph. Now consider each of the components of G1 and apply this procedure again

to obtain the graph G2. Finally, apply the same procedure to G2 to obtain G3 (one applies

the procedure three times because planar graphs are K3,3 minor free). The result of Klein,

Plotkin and Rao [28] shows that G3 has weak diameter at most O(1/δ) = O(1/ǫ). Moreover

the weight of edges removed is at most 3δ = ǫ fraction of the total weight.

Let H =
∑

(u,v)∈E Qu,v +
∑

u∈V Lu be a quantum Ising spin glass Hamiltonian defined on

a graph G = (V,E). Define a weight associated with an edge (u, v) as ‖Qu,v‖. Let Hsub be

a Hamiltonian obtained from H by keeping all the linear terms Lu and the quadratic terms

Qu,v associated with edges of a subgraph G3 defined above. By definition of G3 one has

‖H − Hsub‖ ≤ ǫW and thus |λ(Hsub) − λ(H)| ≤ ǫW . Theorem 4 implies that |λ(Hsub) −
λ(H)| ≤ cǫ|λ(H)| for some numeric constant c. Thus one can approximate λ(H) with any

fixed relative error ǫ in time n2dO(1/ǫ)

.

3.3 Quantum Ising spin glass problem on a star graph

The construction of a PTAS for classical Hamiltonians on planar graphs presented in Sec-

tion 2.3 relies on the fact that the classical problem on a tree (or any graph of constant

treewidth) can be solved efficiently using the dynamic programming. Unfortunately, this

method does not work for quantum Hamiltonians. In this section we develop a new tech-

nique that allows one to obtain a PTAS for the quantum Ising spin glass Hamiltonian on a

star graph — a tree that consists of n + 1 vertices with one vertex having degree n and n

vertices having degree 1. The corresponding graph is G = (V,E), where V = {0, 1, . . . , n}
and E = {(0, 1), (0, 2), . . . , (0, n)}. We shall refer to spins sitting at vertices 1, 2, . . . , n as bath

spins and the spin sitting at the vertex 0 as central spin (by analogy with the central spin

problem studied in the condensed matter physics [32]). Let the Hamiltonian be

H = H0 +

n
∑

j=1

H0,j (16)

where H0 is a linear term acting on the central spin and H0,j is the interaction between the

central spin and j-th bath spin (which can include both quadratic and linear terms).

Theorem 6 Suppose there exist constants 0 < a ≤ b such that a ≤ ‖H0,j‖ ≤ b for all

j. Then one can approximate the smallest eigenvalue λ(H) with a relative error ǫ in time

nǫ−O(1)

.

In the rest of the section we prove Theorem 6. We start from proving that λ(H) can be

computed exactly in time poly(n) as long as the number of distinct interactionsH0,j is bounded

by a constant. We shall use

Lemma 6 Suppose the interactions H0,j are the same for some subset of bath spins S ⊆
{1, . . . , n}. Then one can choose a pure ground state of H symmetric under permutations of

spins in S.
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Proof: Suppose one chooses a ground state |Ψ〉 and symmetrizes it over all permutations

of spins in S. Since H commutes with all such permutations, the symmetrized state |Ψ′〉 is a

pure ground state of H. The main difficulty in following this approach is that |Ψ′〉 may be a

zero vector, so we need somewhat more elaborate arguments.

Without loss of generality S = {1, 2, . . . , k}. Let |Ψ〉 be a ground state of H. Denote

Wj,k the swap of qubits j and k. Assume that |Ψ〉 is not symmetric under permutations of

spins in S. Without loss of generality, W1,2 |Ψ〉 6= |Ψ〉. There are two cases: (i) W1,2 |Ψ〉
is proportional to |Ψ〉. Then W1,2 |Ψ〉 = −|Ψ〉, since W1,2 has eigenvalues ±1. Therefore

|Ψ〉 = |Ψ−〉1,2 ⊗ |Ψ〉else, where |Ψ−〉 = 1√
2
(|01〉 − |10〉 is the singlet state and |Ψ〉else is some

state of spins {0, 3, 4, . . . , n}. The second case is (ii) W1,2 |Ψ〉 and |Ψ〉 are linearly independent.

Then the anti-symmetrized state |Ψ′〉 = |Ψ〉−W1,2 |Ψ〉 is non-zero. On the other hand, |Ψ′〉 is

a ground state of H since W1,2 commutes with H. We conclude that |Ψ′〉 = |Ψ−〉1,2⊗|Ψ〉else.

In both case we conclude that H has a ground state |Ψ〉 = |Ψ−〉1,2 ⊗ |Ψ〉else.

Since the energy of a state depends only upon the reduced density matrices ρ0,j , we can

replace the antisymmetric singlet |Ψ−〉 by the symmetric EPR state |Ψ+〉 without changing

the energy. On the other hand, any state with energy equal to the ground-state energy must

be a ground state. We conclude that H has a ground-state |Ψ〉 = |Ψ+〉1,2 ⊗ |Ψ〉else.

By iterating the arguments above one concludes that H has a ground state

|Ψ〉 = |Ψ+〉1,2 ⊗ · · · ⊗ |Ψ+〉k−1,k ⊗ |Ψ〉else ≡ |Ψ〉S ⊗ |Ψ〉else. (17)

where |Ψ〉else is some state of all spins j /∈ S (if k is odd then there will be one unpaired spin

in S; this will not change the arguments below very much). Now we can symmetrize |Ψ〉 by

a brute force method. Let

Π =
1

k!

∑

τ∈Sk

W (τ)

be the projector onto the symmetric subspace, where W (τ) is the unitary operator implement-

ing a permutation τ of k spins in S. Note that the state |Ψ〉S in Eq. (17) has non-negative

amplitudes in the standard basis. Therefore W (τ) |Ψ〉S also has non-negative amplitudes.

Therefore Π |Ψ〉S 6= 0, and, accordingly, |Ψ′〉 = (ΠS ⊗ Ielse) |Ψ〉 is a non-zero state symmetric

under permutations of spins in S. On the other hand, since W (τ) commutes with H, |Ψ′〉 is

a ground state of H.

�

This result implies that we can look for a ground state that “occupies” only a |S| + 1

dimensional subspace of the 2|S| dimensional Hilbert space describing spins in S. If we

have a constant number M of distinct interactions, the dimension of the space in which

the optimization takes place is ΠM
i=1(|Si| + 1) ≤ nM which is polynomial in n. Thus the

optimization problem for constant M can be solved efficiently in n.

In order to map the general problem onto one in which we have constant number of distinct

interaction, we apply a coarse-graining procedure to the general Hamiltonian Eq. (16). One

can show

Lemma 7 For any 0 < a < 1 define a set Ma of 2-qubit Hamiltonians H satisfying a ≤
‖H‖ ≤ 1. For any ǫ > 0 there exist 2-qubit Hamiltonians G1, . . . , GM , M = O((aǫ)−32) such

that minα ‖Gα −H‖ ≤ ǫ ‖H‖ for any H ∈Ma.
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Proof: It is enough to satisfy minα ‖Gα − H‖ ≤ ǫa. A 2-qubit Hamiltonian satisfying

‖H‖ ≤ 1 lives in a 2× 2× · · · × 2 cube in R
32 (where 32 is the dimension over R of the vector

space of 4 × 4 complex matrices). Construct an ǫa-mesh, count the number of points.

�

Now we are ready to prove Theorem 6. Without loss of generality, b = 1 (otherwise

multiply H by b−1). Applying Lemma 7 to every interaction H0,j one can partition the

n bath spins into M = O((aǫ)−32) subsets S1, . . . , SM such that ‖H0,j − Gα‖ ≤ ǫ ‖H0,j‖
for all j ∈ Sα. We define a coarse-grained Hamiltonian H̃ = H0 +

∑M
α=1

∑

j∈Sα
Gα[j],

where the notation Gα[j] means that Gα acts on the spins 0 and j. We have ‖H − H̃‖ ≤
ǫ
∑n

j=1 ‖H0,j‖ ≤ ǫ5 ·35|λ(H)| where the second inequality follows from Theorem 4. Therefore,

|λ(H) − λ(H̃)| ≤ cǫ|λ(H)| for some numeric constant c. The classical PTAS will find the

ground-state (that is, a poly(n)-sized classical description of this state) and the ground-state

energy λ(H̃) of the coarse-grained Hamiltonian. Lemma 6 implies that it requires time nǫ−O(1)

.

4 Discussion

An important open question is whether there exists a classical or quantum PTAS for the

quantum Ising spin glass problem on general planar graphs (with arbitrary vertex degree). It

is clear that some new techniques will be needed to settle this problem. A simpler problem

in this realm would the quantum Ising spin glass problem on a tree with unbounded degree.

Note that even in the simplest case of star graphs the existence of PTAS for the quantum

problem is not proved (Theorem 6 assumes the constant lower and upper bounds on the norm

of interactions H0,j).

One interesting approach to address these quantum problems may be to consider quantum

or classical algorithms that output a thermal state Z−1 e−H/T at temperature T . One can

show that such thermal state is in fact providing a PTAS. One proves this by showing that the

average energy 〈H〉T = Z−1 Tr(He−H/T ) is bounded as |〈H〉T − λ(H)| ≤ 2nT . This bound

follows from the fact that for the free-energy F (T ) = −T logZ = 〈H〉T − TS(T ) we have

|F (T )−〈H〉T | ≤ nT and |F (T )−λ(H)| = |F (T )−F (0)| ≤ nT . When the ground-state energy

λ(H) scales with n, see e.g. Theorems 3 and 4, the error in the approximation can be made

ǫλ(H) for T = O(ǫ). This also shows that finite but small temperature implementation of

adiabatic quantum computation will generally provide a PTAS-approximation to the ground-

state energy problem (assuming that, say, for bounded-degree graphs beyond the planar ones,

the ground-state energy will be extensive, scales with n).

The difference between classical and quantum behavior on tree graphs is also witnessed by

the fact that the algorithm of classical belief propagation (for zero temperature this essentially

corresponds to dynamic programming) converges efficiently on trees, whereas quantum belief

propagation will only work when additional conditions are fulfilled [30, 31]. It is expected

that for bounded-degree trees the quantum belief propagation algorithm of [31] at finite

temperature T will give rise to a PTAS.
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19. C. Dürr and P. Høyer. A quantum algorithm for finding the minimum. http://arxiv.org/abs/

quant-ph/9607014.
20. P.G. Kwiat, J.P. Mitchell, P.D.D. Schwindt, and A.G. White. Grover’s search algorithm: An

optical approach. J. Mod. Opt., 47, pp. 257–266 (2000).
21. J. Edmonds and E. Johnson. Matchings, Euler tours and the Chinese postman problem. Math.

Programming, 5, pp. 88–124 (1973).
22. A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer-Verlag (2003).
23. N. Robertson and P. D. Seymour. Graph minors II: Algorithmic aspects of treewidth. Journal of

Algorithms, 7, pp. 309–322 (1986).
24. H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11, pp. 1–22 (1993).
25. H.L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comp. Sci.,

209, pp. 1–45 (1998).
26. J. Hopcroft and R.E. Tarjan. Efficient planarity testing. Jour. of the ACM, 21, pp. 549–568

(1974).
27. A. Hedayat, N. Sloane, and J. Stufken Orthogonal Arrays: Theory and Applications. Springer



720 Classical approximation schemes for the ground-state energy of quantum and classical Ising spin ...

Series in Statistics (1999).
28. Philip Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, network decomposition, and

multicommodity flow. In Proceedings of STOC, pp. 682–690 (1993).
29. J. Cullum and R. Willoughby. Lanczos algorithms for large symmetric eigenvalue computations,

Vol. 1. Society for Industrial and Applied Mathematics, USA (2002)
30. M. Leifer and D. Poulin. Quantum Graphical Models and Belief Propagation. Ann. Phys. 323,

p. 1899 (2008). http://arxiv.org/abs/0708.1337.
31. M. B. Hastings. Quantum belief propagation. Phys. Rev. B RAPIDS, 76, p. 201102 (2007).
32. M. Gaudin. Diagonalisation d’une classe d’hamiltoniens de spin J. de Physique 37, p. 1087

(1976).


