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1. Introduction

The apparently simple concept of distinguishability is at the root of information processing,

even at the quantum level. For instance, it is rather intuitive that the amount of classical

information (symbols encoded into quantum states) that can be reliably transmitted through a

quantum channel will ultimately depend upon the ability of the receiver to distinguish different

quantum states. Unlike classical states, two different quantum states are not necessarily fully

distinguishable. In [1] it was argued that the quantum relative entropy is the most appropriate

quantity to measure distinguishability between different quantum states. Hence it could be a

powerful tool for investigating quantum channels’ properties. The quantum relative entropy

does not increase under physical processes (described by completely and trace preserving

maps) [2]. Thus two states can only become less distinguishable as they undergo any kind of

physical transformation. This result will be central to this paper.

There is a single quantity that completely characterizes a quantum channel for transmit-

ting classical information: its classical capacity [3]. It represents the maximum rate at which

classical symbols can be transmitted through the channel in a reliably way. It should thus

come from the average over a large number (actually infinity) of channel uses. However, it
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was conjectured that memoryless channels possess the additivity property, that is the classical

capacity adds up with the number of channel uses [4, 5]. Hence, it can be simply evaluated by

considering one use (one shot) of the channel, likewise in the classical case due to the Shannon

coding theorem [6]. This has the profound implication that entangled inputs do not matter

for the capacity of memoryless quantum channels. The additive property has been proved for

a class of quantum channels [7, 8, 10, 9] and it was suspected that lp-norms play a crucial role

for the global proof. Recently it has been shown that this is not the case [11, 12]. Moreover,

the additivity seems not to be a global property of all quantum channels [13] as conjectured

in [14]. Thus the need to devise a powerful method to single out the widest class of quantum

channels for which it holds.

In reality, the additivity property as discussed above, can be traced back to the additivity

of the minimal output entropy of two channels. In contrast, when we consider the minimum of

the average output entropies, we are led to the superadditivity property. That is, the minimum

of the average output entropies for the tensor product of two quantum channels is greater

than or equal to the sum of the minima corresponding to the single channels. This property

was conjectured in [15] and it turns out to be stronger than the simple additive property.aIn

fact, if the strong superadditivity property holds, then the additivity property follows [15].

Thus, it is of uppermost importance to prove the strong superadditivity for memoryless

quantum channels. Actually, it has only been proved for entanglement-breaking channels and

noiseless channels [15] and for the quantum depolarizing channel [17] using different methods.

In the present paper we argue that the strong superadditivity is related to the decreasing

property of the relative entropy. Hence we shall give a proof of the strong superadditivity

based on the decreasing property of the relative entropy for a class of quantum channels. This

class not only includes the above mentioned channels (noiseless, entanglement -breaking and

depolarizing), for which the proof turns out to be alternative to those of [15] and [17], but

it also includes the quantum erasure channel, thus resulting as an extension over the already

know results. Remarkably, our proof could pave the way for a unified approach to the strong

superadditivity property.

The layout of the paper is the following. In Section II we recall some basic notions

about quantum relative entropy and classical capacity of quantum channels. Section III is

devoted to formalizing the additivity and the strong superadditivity properties. We give some

estimates of the output entropy for the phase damping channels and for a subclass of Weyl

channels in Section IV and Section V respectively . Finally, in Section VII we prove the strong

superadditivity for a class of quantum channels without any restriction on the input states.

Section VII is for conclusions.

2. Basic Notions

The von Neumann entropy of a quantum system described by a density matrix ρ belonging

to the set of states S(H) (positive unit trace operators) of the Hilbert space H of dimension

d < +∞,

S(ρ) := −Tr(ρ log ρ),

aThe strong superadditivity of entanglement of formation discussed in [16] also implies the additivity of Holevo
capacity.
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can be considered as the proper quantum analogue of the Shannon entropy [18].

Moving on from Shannon relative entropy one can consider the von Neumann relative

entropy between two states σ, ρ ∈ S(H) asb

S(σ||ρ) := Tr [σ(log σ − log ρ)] .

This measure has the same statistical interpretation as its classical analogue: it tells us how

difficult it is to distinguish the state σ from the state ρ [20]. In particular the following

theorem holds [2]:

Theorem 1 (Decreasing property of relative entropy) For any completely positive,

trace preserving map Φ : S(H) → S(H) given by Φ(σ) =
∑

i AiσA∗
i such that

∑

A∗
i Ai = 1,

we have

S(Φ(σ)||Φ(ρ)) ≤ S(σ||ρ),

with σ, ρ ∈ S(H).

We simply present a physical argument as to why we should expect this theorem to hold.

A completely positive map (CP-map) can be represented as a unitary transformation on

an extended Hilbert space. Unitary transformations do not change the relative entropy

between two states. However, after this, we have to perform a partial trace to go back to the

original Hilbert space which decreases the relative entropy as some information is invariably

lost during this operation. Hence the relative entropy decreases under any CP-map.

A simple consequence of the fact that the quantum relative entropy itself does not increase

under CP-maps is that quantum distinguishability never increases. Another consequence is

that correlations (as measured by the quantum mutual information) also cannot increase, but

now under local CP-maps.

In classical information theory the capacity for communication is given by the mutual

information between sent message and received message [6]. This is intuitively clear, since

mutual information quantifies correlations between sent and received messages and it thus

tells us how faithful the transmission is. If we use quantum states to encode symbols, then

the capacity is not given by the quantum mutual information, but is given by the so called

Holevo bound [3] being achievable due to the quantum coding theorem proved independently

in [4, 5].

The linear map Φ : S(H) → S(H) is said to be a quantum channel if it is completely

positive [3]. Moreover, the quantum channel Φ is called bistochastic (or unital) if Φ( 1
dIH) =

1
dIH, where IH is the identity operator in H.

According to [4, 5] the one shot capacity C1(Φ) of a quantum channel Φ is defined by the

formula

C1(Φ) := sup



S





r
∑

j=1

πjΦ(xj)



−
r
∑

j=1

πjS (Φ(xj))



 , (1)

where the supremum is taken over all probability distributions {πj}r
j=1 and states xj ∈ S(H).

bActually, this quantity was first considered by Umegaki [19] and it is often referred to it as the Umegaki
entropy.
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Notice that

S





r
∑

j=1

πjΦ(xj)



−
r
∑

j=1

πjS (Φ(xj)) =

r
∑

j=1

πjS

(

Φ(xj)
∥

∥

∥

r
∑

l=1

πlΦ(xj)

)

,

so that we have a direct link to the relative entropy.

The additivity conjecture states that for any two channels Φ and Ω

C1(Φ ⊗ Ω) = C1(Φ) + C1(Ω). (2)

If the additivity conjecture holds, one can easily find the capacity C(Φ) of the channel Φ by

the formula (see [4])

C(Φ) = lim
n→+∞

C1(Φ
⊗n)

n
= C1(Φ). (3)

3. The strong superadditivity

Given a quantum channel Φ in a Hilbert space H let us put [15]

HΦ(ρ) := min
k
∑

j=1

πjS(Φ(ρj)), (4)

where ρ =
k
∑

j=1

πjρj and the minimum is taken over all probability distributions {πj}k
j=1 and

states ρj ∈ S(H).

The strong superadditivity conjecture for the channel Φ states that

HΦ⊗Ω(ρ) ≥ HΦ(TrK(ρ)) + HΩ(TrH(ρ)), (5)

with ρ ∈ S(H⊗K), for an arbitrary quantum channel Ω in the Hilbert space K.

The infimum of the output entropy of a quantum channel Φ is defined by

Smin(Φ) := inf
ρ∈S(H)

S(Φ(ρ)). (6)

The additivity conjecture for the quantity Smin(Φ) states that [4]

Smin(Φ ⊗ Ω) = Smin(Φ) + Smin(Ω) (7)

for an arbitrary quantum channel Ω. It was shown in [15] that if the strong superadditivity

holds, then the additivity follows. Hence, the conjecture (5) is stronger than (7).

The additivity property (7) was proved for quantum depolarizing channel [8]. The method

was based upon the estimation of lp-norms of the channel. However, lp-norms cannot be a

general tool as it has been recently shown [11]. Thus, the need to devise alternative methods.
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4. Estimation of the output entropy for the phase damping channel

Let {|es〉}d−1
s=0 and {λs}d−1

s=0 be an orthonormal basis in the Hilbert space H of dimension d

and a probability distribution, respectively. Then, one can introduce the unitary operator

V :=
d−1
∑

s=0

exp

(

i
2πs

d

)

|es〉〈es|,

so to define the phase damping channel as

Φ(ρ) :=

d−1
∑

j=0

λjV
jρV ∗j , (8)

where ρ ∈ S(H). Furthermore, the completely positive map defined as

E(ρ) :=
1

d

d−1
∑

j=0

V jρV ∗j =
d−1
∑

s=0

|es〉〈es|ρ|es〉〈es|,

represents the conditional expectation on the algebra of fixed elements of Φ.

We shall call a pure state ρ = |f〉〈f |〉 ∈ S(H) unbiased with respect to the basis {|es〉} if

Tr(ρ|es〉〈es|) =
1

d
, 0 ≤ s ≤ d − 1. (9)

The above condition is equivalent to the property

|〈f |es〉| =
1√
d
, 0 ≤ s ≤ d − 1. (10)

Notice that if (10) is satisfied for vectors |f〉 = |fj〉, 0 ≤ j ≤ d − 1 forming an orthonormal

basis in H, then the bases {|fj〉} and {|es〉} are said to be mutually unbiased [21].

Let us denote by A a convex set of states which can be represented as a convex linear

combination of pure states ρ = |f〉〈f | being unbiased with respect to the basis {|es〉} (eigen-

vectors of the unitary operators introduced in the definition of the phase damping channel

(8)). As a consequence A is a convex set. Moreover the following proposition holds.

Proposition 2 Suppose that ρ ∈ A, then for the phase damping channel (8) we get

HΦ(ρ) ≤ −
d−1
∑

j=0

λj log λj .

Proof. Proposition 2 Given ρ ∈ A we can write it as the convex linear combination

ρ =
∑

k

πkρk, ρk = |fk〉〈fk| ∈ A such that

S(ρk) = −
d−1
∑

j=0

λj log λj .

Thus, the result follows from the definition of HΦ(ρ). �.
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Proposition 3 Suppose that for ρ ∈ S(H⊗K) the following inclusion holds,

TrK(ρ) ∈ A.

Then,

S((Φ ⊗ Id)(ρ)) ≥ −
d−1
∑

j=0

λj log λj +
1

d

d−1
∑

j=0

S(ρj), (11)

where ρj = d TrH((|ej〉〈ej | ⊗ IK)ρ) ∈ S(K).

Proof. Proposition 3 The proof treads [9] steps. Let us take ρ ∈ S(H ⊗K) such that

TrK(ρ) ∈ A and define a quantum channel Ξρ : S(H⊗K) → S(H⊗K) by the formula

Ξρ(σ) :=
d−1
∑

j=0

Tr((|ej〉〈ej | ⊗ IK)σ)(V j ⊗ IK)ρ(V ∗j ⊗ IK),

with σ ∈ S(H⊗K). Then, let

σ =

d−1
∑

j=0

λj |ej〉〈ej | ⊗ y,

σ =
d−1
∑

j=0

1

d
|ej〉〈ej | ⊗ y ≡ 1

d
IH ⊗ y,

with y ∈ S(K) an arbitrary fixed state. It follows that

Ξρ(σ) = (Φ ⊗ Id)(ρ),

Ξρ(σ) =
1

d

d−1
∑

j=0

(V j ⊗ IK)ρ(V ∗j ⊗ IK) := Ẽ(ρ).

Here and throughout the paper Id denotes the identity map. Also notice that Ẽ = (E⊗Id) is

the conditional expectation to algebra of the elements being fixed with respect to the action

of the cyclic group {V j ⊗ IK, 0 ≤ j ≤ d − 1}.
Now, on the one hand, Theorem 1 gives us

S
(

Ξρ(σ)
∥

∥Ξρ(σ)
)

≤ S(σ‖σ) =

d−1
∑

j=0

λj log λj + log d. (12)

On the other hand, it is

S
(

Ξρ(σ)
∥

∥Ξρ(σ)
)

= Tr((Φ ⊗ Id)(ρ) log(Φ ⊗ Id)(ρ)) − Tr((Φ ⊗ Id)(ρ) log Ẽ(ρ))

= −S((Φ ⊗ Id)(ρ)) − Tr(Ẽ ◦ (Φ ⊗ Id)(ρ) log Ẽ(ρ))

= −S((Φ ⊗ Id)(ρ)) + S(Ẽ(ρ)). (13)

In the above equations, we have used the equality Ẽ ◦ (Φ⊗ Id) = Ẽ which holds because Ẽ is

the conditional expectation to the algebra of elements being fixed with respect to the action

of Φ ⊗ Id.
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Since, using E(TrK(ρ)) = 1
dId,

Ẽ(ρ) =
1

d

d−1
∑

j=0

|ej〉〈ej | ⊗ ρj , ρj ∈ S(K),

it follows

S(Ẽ(ρ)) = log d +
1

d

d−1
∑

j=0

S(ρj), (14)

with ρj = d TrH((|ej〉〈ej | ⊗ IK)ρ), 0 ≤ j ≤ d− 1. Then, combining (12), (13) and (14) we get

the result of the proposition 3. �.

We can now single out a class of input states for which the phase damping channels respect

a kind of superadditivity property.

Theorem 4 Suppose that ρ ∈ S(H⊗K) is such that

TrK(ρ) ∈ A.

Let Φ be the phase damping channel (8), then the inequality

S((Φ ⊗ Ω)(ρ)) ≥ −
d−1
∑

j=0

λj log λj + HΩ(TrH(ρ))

≥ HΦ(TrK(ρ)) + HΩ(TrH(ρ)),

holds for an arbitrary quantum channel Ω : S(K) → S(K).

Proof. Theorem 4 Defining ρ̃ := (Id ⊗ Ω)(ρ), we notice that TrK(ρ̃) ∈ A and

S((Φ ⊗ Ω)(ρ)) = S((Φ ⊗ Id)(ρ̃)). (15)

Applying the Proposition 3 we obtain

S((Φ ⊗ Ω)(ρ)) ≥ −
d−1
∑

j=0

λj log λj +
1

d

d−1
∑

j=0

S(ρj), (16)

where ρj = d TrH((|ej〉〈ej | ⊗ IK)(Id ⊗ Ω)(ρ)) ∈ S(K). Using Proposition 2 we can rewrite

(16) as

S((Φ ⊗ Ω)(ρ)) ≥ HΦ(TrK(ρ)) +
1

d

d−1
∑

j=0

S(ρj).

Finally, taking into account that 1
d

d−1
∑

j=0

ρj = Ω(TrH(ρ)), we obtain

d−1
∑

j=0

S(ρj) ≥ HΩ(TrH(ρ)).

The result of the theorem 4 then follows. �.
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5. Estimation of the Output Entropy for the Weyl Channels

Let us consider an orthonormal basis |k〉, k = 0, 1, . . . , d−1 of the Hilbert space H of dimension

d and define the unitary operators

Um,n :=

d−1
∑

k=0

e
2πi

d
kn|k ⊕ m〉〈k|, (17)

where 0 ≤ m,n ≤ d − 1 and ⊕ denotes the sum modulus d. The operators (17) satisfy the

Weyl commutation relations

Um,nUm′,n′ = e2πi(m′n−mn′)/dUm′,n′Um,n, (18)

hence, we shall call them Weyl operators. Notice that

Um,0|k〉 = |k ⊕ m〉, U0,n|k〉 = e
2πi

d
kn|k〉. (19)

We shall consider bistochastic quantum channels of the following form

Φ(ρ) :=

d−1
∑

m,n=0

πm,nUm,n ρU∗
m,n, (20)

where {πm,n}d−1
m,n=0 are probability distributions and ρ ∈ S(H) states. The channels (20) are

called Weyl channels.

Now, let us fix positive numbers 0 ≤ pn, rm ≤ 1, 1 ≤ n ≤ d − 1, 0 ≤ m ≤ d − 1 such that

d
d−1
∑

n=1
pn +

d−1
∑

m=0
rm = 1 and let us consider the Weyl channel

Φ(ρ) =
d−1
∑

m=0

rmUm,0 ρU∗
m,0 +

d−1
∑

m=0

d−1
∑

n=1

pnUm,n ρU∗
m,n, (21)

ρ ∈ S(H).

It is shown in [9] that the channels (21) is covariant with respect to the maximum com-

mutative group of unitary operators. Moreover, if the dimension of the space d is a prime

number, the following decomposition holds

Φ(ρ) =

d−1
∑

k=0

d−1
∑

m=0

cmUm,0Ψk(ρ)U∗
m,0, (22)

where ρ ∈ S(H) and

Ψk(ρ) =
d−1
∑

n=0

λnUnk mod d,n ρU∗
nk mod d,n,

are phase damping channels. Furthermore, it is

λ0 = 1 − d

d−1
∑

n=1

pn,

λn = dpn, 1 ≤ n ≤ d − 1,

cm =
rm

d

(

1 − d
d−1
∑

n=1
pn

) , 0 ≤ m ≤ d − 1.
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We can now single out a wide class (over the totality) of input states for which the Weyl

channels (21) respect a kind of superadditivity property.

Let us denote by A the maximum commutative algebra generated by the projectors

|k〉〈k|, 0 ≤ k ≤ d − 1. Notice that the states ρ ∈ A are mutually unbiased with respect

to the eigenvectors of the unitary operators Unk,n, 0 ≤ k, n ≤ d − 1 [9]. Then, the following

theorem holds.

Theorem 5 Let the dimension d of the space H be a prime number. Suppose that ρ ∈
S(H⊗K) is such that

TrK(ρ) ∈ A.

Let Φ be the Weyl channel (21), then the inequality

S((Φ ⊗ Ω)(ρ)) ≥ HΦ(TrK(ρ)) + HΩ(TrH(ρ)),

holds for an arbitrary quantum channel Ω : S(K) → S(K).

Proof. Theorem 5 Using the decomposition (22) we easily arrive at

S((Φ ⊗ Ω)(ρ)) ≥ 1

d

d−1
∑

k=0

S((Ψk ⊗ Ω)(ρ)). (23)

Then, by applying Theorem 4 to each term of the right hand side of (23) we obtain the result

of Theorem 5. �.

6. Quantum Channels Respecting the Strong Superadditivity

We shall provide hereafter a class of quantum channels that fully respect the strong superad-

ditivity, i.e. without any restriction on the input states.

6.1. The quantum noiseless channel

The quantum noiseless channel in the Hilbert space H of the dimension d is simply defined

as the identity operation

Φ(ρ) := Id(ρ) = ρ, (24)

with ρ ∈ S(H).

Theorem 6 Let Φ be the quantum noiseless channel of Eq.(24), then the inequality

HΦ⊗Ω(ρ) ≥ HΩ(TrH(ρ)), (25)

holds for an arbitrary quantum channel Ω : S(K) → S(K).

Proof. Theorem 6 Actually this theorem was proved in [15]. Our prove is alternative

and based upon the decreasing property of the relative entropy. Let us take the optimal

ensemble {ρk} such that

HΦ⊗Ω(ρ) =
∑

k

πkS((Φ ⊗ Ω)(ρk)).

Given a state ρk ∈ S(H ⊗K), the identity channel can be considered as the phase damping

channel Φ with λ0 = 1, λj = 0, 1 ≤ j ≤ d − 1 (see (8)), for which the state TrK(ρ) ∈ A,
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where A is the convex set generated by pure states unbiased with respect to the basis of

eigenvectors of the unitary operator determining Φ. Hence, the result follows from Theorem

4. �.

6.2. The quantum-classical channel

Let {Mj , 1 ≤ j ≤ d} be a resolution of the identity in H consisting of positive operators

Mj > 0,
d
∑

j=1

Mj = IH. The quantum channel Φ is said to be a quantum-classical channel

(shortly q-c channel) if there exists an orthogonal basis {|ej〉} in H such that [4]:

Φ(ρ) =

d
∑

j=1

Tr(Mjρ)|ej〉〈ej |. (26)

The additivity for quantum-classical channels was proved in [4] and the result was extended

to the entanglement-breaking channels in [22].

Theorem 7 Let Φ be the q-c channel (26), then the inequality

HΦ⊗Ω(ρ) ≥ HΦ(TrK(ρ)) + HΩ(TrH(ρ)), (27)

holds for an arbitrary quantum channel Ω : S(K) → S(K).

To prove the theorem we need of the following lemma.

Lemma 1 Let Φ be the q-c channel (26). Then, given a state ρ ∈ S(H⊗K),

S((Φ ⊗ Id)(ρ)) ≥ S(Φ(TrK(ρ))) +

d
∑

j=1

λjS(ρj), (28)

where λj = Tr(MjTrK(ρ)), ρj = 1
λj

TrH((Mj ⊗ IK)ρ) ∈ S(K).

Proof. Lemma 1 Let us define a quantum channel Σρ : S(H) → S(H ⊗ K) by the

formula

Σρ(σ) :=

d
∑

j=1

Tr(|ej〉〈ej |σ)|ej〉〈ej | ⊗ ρj , (29)

where the states ρj ∈ S(K) are the same as in the formulation of the Lemma 1. One can see

that

Σρ(Φ(TrK(ρ))) = (Φ ⊗ Id)(ρ), (30)

Σρ

(

1

d
IH

)

=
1

d

d
∑

j=1

|ej〉〈ej | ⊗ ρj . (31)

The decreasing property of the relative entropy, Theorem 1, gives us

S

(

Σρ(Φ(TrK(ρ)))
∥

∥

∥Σρ(
1

d
IH)

)

≤ S

(

Φ(TrK(ρ))
∥

∥

∥

1

d
IH

)

. (32)

Taking into account Eq.(30) and (31) we get (using same technique as proof of Proposition

3)

S

(

Φ(TrK(ρ))
∥

∥

∥

1

d
IH

)

= log d − S (Φ(TrK(ρ))) , (33)
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and

S

(

Σρ(Φ(TrK(ρ)))
∥

∥

∥Σρ(
1

d
IH)

)

= log d +

d
∑

j=1

λjS(ρj) − S((Φ ⊗ Id)(ρ)),

from which the result of Lemma 1 follows. �.

Proof. Theorem 7 Let Φ be the q-c channel (26). Suppose that Ω is an arbitrary channel

and

ρ =
k
∑

j=1

pjρj , (34)

such that the states ρj , 1 ≤ j ≤ k, form the optimal ensemble for the output entropy of

Φ ⊗ Ω, i.e.

HΦ⊗Ω(ρ) =
∑

j

pjS((Φ ⊗ Ω)(ρj)). (35)

Applying Lemma 1 to each term in the sum on the right hand side we get

HΦ⊗Ω(ρ) ≥
∑

j

pjS(Φ(TrK(ρj))) +
∑

j

pj

d
∑

k=1

λjkS(Ω(ρjk)),

where λjk = Tr(MkTrK(ρj)) and ρjk = 1
λjk

TrH((Mk ⊗ IK)ρj) ∈ S(K). By the definitions

(34) and (4) we obtain on the one hand

∑

j

pjS(Φ(TrK(ρj))) ≥ HΦ(TrK(ρ)). (36)

On the other hand,
∑

j

pj

d
∑

k=1

λjkΩ(ρjk) = Ω(TrH(ρ)). (37)

The last formula implies that

∑

j

pj

d
∑

k=1

λjkS(Ω(ρjk)) ≥ HΩ(TrH(ρ)). (38)

Then the result of Theorem 7 follows. �.

Notice that a q-c channel is a partial case of the entanglement-breaking channels considered

in [15]. So our proof is alternative to the one given in [15] for entanglement-breaking channels.

6.3. The quantum erasure channel

Let H and H′ be Hilbert spaces of dimension d and d+1 respectively. We claim that H ⊂ H′

which results in the inclusion S(H) ⊂ S(H′). Suppose that |ω〉 ∈ K is orthogonal to H. Fix

ǫ such that 0 ≤ ǫ ≤ 1, then we call quantum erasure channel the CP-map Φ : S(H) → S(H′)

defined by

Φ(ρ) := ǫ|ω〉〈ω| + (1 − ǫ)ρ, (39)

with ρ ∈ S(H). Notice that this is a generalization to dimension d of the qubit erasure

channel introduced in [23].
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Theorem 8 Let Φ be the erasure channel (39), then the inequality

HΦ⊗Ω(ρ) ≥ HΦ(TrK(ρ)) + HΩ(TrH(ρ)), (40)

holds for an arbitrary quantum channel Ω : S(K) → S(K).

To prove the theorem we need of the following lemma.

Lemma 2 Let Φ be the quantum erasure channel (39). Then, given a state ρ ∈ S(H⊗K)

S((Φ ⊗ Id)(ρ)) ≥ ǫS(TrH(ρ)) + (1 − ǫ)S(ρ) + S(Φ(TrK(ρ))).

Proof. Lemma 2 Denote by PH the orthogonal projection in H′ onto the subspace H.

Given ρ ∈ S(H⊗K) let us define a quantum channel Σρ : S(H′) → S(H′⊗K) by the formula

Σρ(σ) := Tr(|ω〉〈ω|σ)|ω〉〈ω| ⊗ TrH(ρ) + Tr(PHσ)ρ, (41)

with σ ∈ S(H′).

Pick up the orthogonal projection |e〉〈e| from the spectral decomposition of the state

TrK(ρ). One can see that

Σρ(Φ(TrK(ρ))) = (Φ ⊗ Id)(ρ), (42)

Σρ

(

1

2
|ω〉〈ω| + 1

2
|e〉〈e|

)

=
1

2
|ω〉〈ω| ⊗ TrH(ρ) +

1

2
ρ. (43)

The decreasing property of the relative entropy, Theorem 1, gives us

S

(

Σρ (Φ(TrK(ρ)))
∥

∥

∥
Σρ

(

1

2
|ω〉〈ω| + 1

2
|e〉〈e|

))

≤ S

(

Φ(TrK(ρ))
∥

∥

∥

1

2
|ω〉〈ω| + 1

2
|e〉〈e|)

)

.

Taking into account (42) and (43) we get

S

(

Φ(TrK(ρ))
∥

∥

∥

1

2
|ω〉〈ω| + 1

2
|e〉〈e|

)

= (ǫ + (1 − ǫ)〈e|TrK(ρ)|e〉) log d − S(Φ(TrK(ρ)))

≤ log d − S(Φ(TrK(ρ))),

and

S

(

Σρ(Φ(ρ))
∥

∥

∥Σρ(
1

2
|ω〉〈ω| + 1

2
|e〉〈e|)

)

= log d + ǫS(TrH(ρ)) + (1 − ǫ)S(ρ) − S((Φ ⊗ Id)(ρ)).

The result of Lemma 2 then follows. �.

Proof. Theorem 8 Let Φ be the erasure channel (39). Suppose that Ω is an arbitrary

channel and

ρ =

k
∑

j=1

pjρj (44)

is such that the states ρj , 1 ≤ j ≤ k, form the optimal ensemble for for the output entropy

of Φ ⊗ Ω, i.e.

HΦ⊗Ω(ρ) =
∑

j

pjS((Φ ⊗ Ω)(ρj)) =
∑

j

pjS((Φ ⊗ Id)(ρ̃j)), (45)
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with ρ̃j = (Id ⊗ Ω)(ρj). Applying Lemma 2 to each term in the sum on the right hand side

of the above equation we get

HΦ⊗Ω(ρ) ≥
∑

j

pj [ǫS(Ω(TrH(ρj))) + (1 − ǫ)S((Id ⊗ Ω)(ρj)) + S(Φ(TrK(ρj)))] .

Notice also that
∑

j

pjS((Id ⊗ Ω)(ρj)) ≥ HId⊗Ω(ρ) ≥ HΩ(TrH(ρ))

because the strong superadditivity conjecture holds for the noiseless channel [15]. Then, the

result of Theorem 8 follows. �.

6.4. The quantum depolarizing channel

The quantum depolarizing channel in the Hilbert space H of dimension d is defined as [17]

Φ(ρ) := (1 − p)ρ +
p

d
IH, (46)

with ρ ∈ S(H), 0 ≤ p ≤ d2/(d2 − 1).

Theorem 9 Let Φ be the quantum depolarizing channel (46), then the inequality

HΦ⊗Ω(ρ) ≥ HΦ(TrK(ρ)) + HΩ(TrH(ρ)), (47)

holds for an arbitrary quantum channel Ω : S(K) → S(K).

To prove Theorem 9 we need of some properties of the quantum depolarizing channel.

Following Ref.[8], by choosing an orthonormal basis {|fj〉} in H, we can define a set of

orthonormal bases {{|ek
j 〉}d−1

j=0}2d2

k=1 as

|ek
j 〉 :=

d−1
∑

s=0

exp

(

i
2πs2k

2d2

)

exp

(

i
2πj

d

)

|fs〉, (48)

with 1 ≤ k ≤ 2d2. Moreover, let

U :=
d−1
∑

s=0

exp

(

i
2πs

d

)

|fs〉〈fs|,

Vk :=

d−1
∑

s=0

exp

(

i
2πs

d

)

|ek
s〉〈ek

s |,

be unitary operators in H. We introduce phase damping channels as follows

Ψk(ρ) =

(

1 − d − 1

d
p

)

ρ +
p

d

d−1
∑

s=1

V s
k ρV s

k , (49)

with ρ ∈ S(H), 0 ≤ p ≤ 1 and 1 ≤ k ≤ 2d2.
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Then, the quantum depolarizing Φ can be expressed in terms of the above phase damping

channels as

Φ(ρ) =
1 − p

1 + (d − 1)(1 − p)

1

2d

2d2

∑

k=1

Ψk(ρ)

+
p

1 + (d − 1)(1 − p)

1

2d3

d−1
∑

j=1

2d2

∑

k=1

U jΨk(ρ)U∗j ,

(50)

with ρ ∈ S(H). By defining

Ek(ρ) :=
1

d

d−1
∑

s=0

V s
k ρU∗s

k , (51)

the conditional expectations on the algebras of fixed elements for the phase dampings Ψk, we

have

Ek(|fj〉〈fj |) =
1

d
IH, (52)

for 1 ≤ k ≤ 2d2, 0 ≤ j ≤ d − 1. This property guarantees that the basis {|fj〉} is mutually

unbiased with respect to all the bases {|ek〉} defined by (48).

Proof. Theorem 9 Let us take the optimal ensemble corresponding to the state ρ such

that

HΦ⊗Ω(ρ) =
∑

s

πsS((Φ ⊗ Ω)(ρs)).

In the following we shall estimate S((Φ ⊗ Ω)(ρs)) for each fixed s.

Let us consider ̺ instead of a ρs. Let us choose a unitary operator T such that the state

˜̺ = (T ⊗ IK)(Id ⊗ Ω)(̺)(T ∗ ⊗ IK), (53)

satisfies the property

Ek(TrK(˜̺)) =
1

d
IH. (54)

Using the covariance property Φ(σ) = T ∗Φ(TσT ∗)T , taking place for all states σ ∈ S(H),

we can rewrite the decomposition (50) as follows

Φ(σ) =
1 − p

1 + (d − 1)(1 − p)

1

2d

2d2

∑

k=1

Ψ̃k(σ)

+
p

1 + (d − 1)(1 − p)

1

2d3

d−1
∑

j=1

2d2

∑

k=1

T ∗U jT Ψ̃k(σ)TU∗jT ∗,

(55)

where Ψ̃k(σ) = T ∗Ψk(TσT ∗)T are the phase damping channels with the property

Tr(Ẽk(TrK(̺))) =
1

d
IH. (56)
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Here Ẽk(σ) = T ∗Ek(TσT ∗)T , ̺ ∈ S(H⊗K) and σ ∈ S(H). The above equality guarantees

that the state ̺ is unbiased with respect to all the orthonormal bases which form the unitary

operators determining the action of the phase damping channels Ψk, 0 ≤ k ≤ d − 1.

It follows from the decomposition (55) that

S((Φ ⊗ Ω)(̺)) ≥ 1

d

d−1
∑

k=0

S((Ψ̃k ⊗ Ω)(̺)). (57)

Applying Theorem 4 to each term of the sum in the right hand side and taking into account

that −
d−1
∑

j=0

λj log λj = HΦ(TrK(̺)) for λ0 = 1 − d−1
d p, λj = p

d , 1 ≤ j ≤ d − 1 due to (56), we

get

S((Φ ⊗ Ω)(ρs)) ≥ HΦ(TrK(ρs)) + HΩ(TrH(ρs)), (58)

hence the result of Theorem 9. �.

7. Conclusion

By using the decreasing property of the relative entropy, we have proved the strong super-

additivity for a class of quantum channels. This class includes the channels for which the

property was already shown by using other methods (thus giving an alternative proof) as well

as others channels (thus providing an extension of the class).

We guess that the decreasing property of the relative entropy could be a powerful tool for

a further extension of such class of channels. More generally, it could constitute a universal

method to investigate relevant properties of memoryless quantum channels. In fact, as a

consequence of the strong superadditivity property we get the additivity property. Thus for

our class of channels, the additivity results automatically proved.

The perspective of determining the broadest class of channels for which additivity holds

through strong superadditivity seems fascinating and motivate further investigations, espe-

cially in consideration of the limits of other methods [11, 12].
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