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The three-input TOFFOLI gate is the workhorse of circuit synthesis for classical logic oper-
ations on quantum data, e.g., reversible arithmetic circuits. In physical implementations,
however, TOFFOLI gates are decomposed into six CNOT gates and several one-qubit gates.
Though this decomposition has been known for at least 10 years, we provide here the

first demonstration of its CNOT-optimality. We study three-qubit circuits which contain
less than six CNOT gates and implement a block-diagonal operator, then show that they
implicitly describe the cosine-sine decomposition of a related operator. Leveraging the
canonical nature of such decompositions to limit one-qubit gates appearing in respective

circuits, we prove that the n-qubit analogue of the TOFFOLI requires at least 2n CNOT

gates. Additionally, our results offer a complete classification of three-qubit diagonal
operators by their CNOT-cost, which holds even if ancilla qubits are available.
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1 Introduction

The three-qubit TOFFOLI gate appears in key quantum logic circuits, such as those for modular

exponentiation. However, in physical implementations it must be decomposed into one- and

two-qubit gates. Figure 1 reproduces the textbook circuit from [14] with six CNOT gates, as

well as Hadamard (H), T = exp (iπσz/8) and T † gates.

•

=

• • • T •

• • • T �������� T † ��������

�������� H �������� T † �������� T �������� T † �������� T H

Fig. 1 Decomposing the TOFFOLI gate into one-qubit and six CNOT gates.

The pursuit of efficient circuits for standard gates has a long and rich history. DiVincenzo

and Smolin found numerical evidence [4] that five two-qubit gates are necessary and sufficient

to implement the TOFFOLI. Margolus showed that a phase-modified TOFFOLI gate admits a
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462 On the CNOT-cost of TOFFOLI gates

three-CNOT implementation [6, 5], whose optimality was eventually demonstrated by Song and

Klappenecker [20]. Unfortunately, this MARGOLUS gate can replace TOFFOLI only in rare cases.

The detailed case analysis used in the optimality proof from [20] does not extend easily to

circuits with four or five CNOTs. The omnibus Barenco et al. paper offers circuits for many

standard gates, including an eight-CNOT circuit for the TOFFOLI [1, Corollary 6.2], as well as

a six-CNOT circuit for the controlled-controlled-σz, which differs from the TOFFOLI only by

one-qubit operators [1, Section 7]. Problem 4.4b of the textbook by Nielsen and Chuang asks

whether the circuit of Figure 1 could be improved. The problem was marked as unsolved,

and we report the following progress.

Theorem 1 A circuit consisting of CNOT gates and one-qubit gates which implements the

n-qubit TOFFOLI gate without ancillae requires at least 2n CNOT gates. For n = 3, this bound

holds even when ancillae are permitted, and is achieved by the circuit of Figure 1.

Our main tool is the Cartan decomposition in its “KAK” form, which provides a Lie-

theoretic generalization of the singular-value decomposition [8]. Several special cases have

previously proven useful for the synthesis and analysis of quantum circuits, notably the two-

qubit magic decomposition [10, 11, 24, 23, 22, 16, 17], the cosine-sine decomposition [7, 2, 13,

18], and the demultiplexing decomposition [18]. The canonical nature of the two-qubit “magic”

decomposition was used previously to perform CNOT-counting for two-qubit operators [16].

The magic decomposition is a two-qubit phenomenon,cbut the cosine-sine and demultiplexing

decompositions hold for n-qubit operators are similarly canonical. Moreover, the components

of these decompositions are multiplexors [18] — block-diagonal operators that commute with

many common circuit elements. Commutation properties facilitate circuit restructuring that

can dramatically reduce the number of circuit topologies to be considered in proofs. These

results and observations allow us to perform CNOT-counting using the Cartan decomposition

in a divide-and-conquer manner.

In the remaining part of this paper, we first review basic properties of quantum gates

in Section 2 and make several elementary simplifications to reduce the complexity of the

subsequent case analysis. In particular, we pass from the CNOT and TOFFOLI gates to the

symmetric, diagonal CZ and CCZ gates, and recall circuit decompositions which yield operators

commuting with Z and CZ gates. We also define qubit-local CZ-costs, and observe that the total

CZ-cost can be lower-bounded by half the sum of the local CZ counts for each qubit. Though

weak, this bound suffices for our purposes and we can compute it in simple cases. Further

technique is developped in Section 3, where we compute matrix entries to derive constraints

on gates from circuit equations. This approach was employed by Song and Klappenecker in

the two-qubit case, and we generalize several of their results to n-qubit circuits.

Section 4 is the heart of the present work, in which we prove our result on the CNOT-cost

of the TOFFOLI gate. It starts by motivating and outlining the methods involved, previews

key intermediate results, and proves that the CNOT-cost of the TOFFOLI is 6, based on these

results. In Section 4.2, we use the canonicality of the cosine-sine decomposition derive circuit

constraints. Section 4.1, motivated by [17], employs the canonicality of the demultiplexing

decomposition, captured by a spectral invariant, to lower-bound CZ gates required in circuit

cWhile the Cartan decomposition SU(n) = SO(n) · [diagonals] · SO(n) is general, the utility of the magic de-
composition arises from the isomorphism SU(2)×SU(2) ≃ SO(4) being represented as an inner automorphism
of SU(4). Such coincidental isomorphisms are few and confined to low dimensions.
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implementations of operators. The results apply, mutatis mutandis, to CNOT-based implemen-

tations as well. Finally, in Section 4.3, we deduce as corollaries that the three-qubit PERES

gate requires exactly 5 CNOTs and the n-qubit TOFFOLI gate requires at least 2n. In Sec-

tion 5, we extend our techniques to all three-qubit diagonal operators, completely classifying

them according to CZ-cost. Generalizations to circuits with ancillae are obtained in Section

6. Concluding discussion can be found in Section 7.

2 Preliminaries

We review notation and properties of useful quantum gates, then characterize operators that

commute with Pauli-Z gates on multiple qubits. We then review circuit decompositions from

[3, 13, 18]. Finally, we introduce terminology appropriate for quantifying gate costs of unitary

operators in terms of the CNOT and CZ and state elementary but useful observations about

these costs.

2.1 Notation and properties of standard quantum gates

We write X, Y, Z for the Pauli operators, and CX, CCX for CNOT, TOFFOLI. Rotation gates

exp(iZθ) are denoted by Rz(θ), and we analogously use Rx, Ry.d We work throughout on

some fixed number of qubits N . For a one-qubit gate g and a qubit q, we denote by g(q) the

N -qubit operator implemented by applying the gate g on qubit q. Similarly, C(i)
X
(j) is the

operator implemented by a controlled-X with the control on qubit i and target on qubit j.

The controlled-Z being symmetric with respect to exchanging qubits, we do not distinguish

control from target in the notation CZ
(i,j). We similarly denote the operator of a controlled-

controlled-Z on qubits i, j, k by CCZ
(i,j,k). In choosing qubit labels, we follow throughout the

convention that the high-to-low significance order of qubits is the same as the lexicographic

order of their labels.

We follow the standard but sometimes confusing convention that typeset operators act on

vectors from the left, but circuit diagrams process inputs from the right. Consistently with

the established notation for the CNOT gate, we denote the X gate by “⊕” in circuit diagrams.

We denote the Z gate by a “•” symbol, which does not lead to ambiguity in the matching

notation for CZ because CZ is symmetric. Thus the following diagram expresses the identity

CZ
(ℓ,m)

X
(ℓ) = Z

(m)
X
(ℓ)
CZ

(ℓ,m) and rearranges gates in quantum circuits, like de Morgan’s law

does in digital logic.

ℓ �������� •
=

• ��������

m • • •
(1)

Another standard identity relates the X, Z, and one-qubit HADAMARD (H) gates: HXH = Z.

By case analysis on control qubits, one obtains the further identities H(i)
C
(j)X(i)

H
(i) = CZ

(i,j)

and H
(i)
CC

(j,k)
X
(i)
H
(i) = CCZ

(i,j,k). Despite this equivalence, we prefer the X family of gates for

some applications and the Z family for others, as summarized in Table 1.

Circuits consisting entirely of one-qubit gates and CZ (respectively CNOT) gates will be

called CZ-circuits (respectively CNOT-circuits). Using the above identities, CZ-circuits and

CNOT-circuits can be interchanged at the cost of adding one-qubit H gates. It will also be

dWe omit the factor of ±1/2 used by other authors.
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CNOT and TOFFOLI CZ and CCZ

Advantages With one-qubit gates added, either CNOT or CZ would be universal
Implement addition and multiplication Symmetric
Universal for reversible computation Fewer circuit topologies
Block-diagonal Diagonal
With 1-qubit diagonals, implement any diagonal —
Commute with X on target Commute with Z on target

Other Change direction after two H-conjugations
properties One can map back and forth by H-conjugation on target

Applications Circuit synthesis Circuit analysis

Table 1 Relative advantages of standard controlled gates.

convenient to consider CZ(ℓ)-circuits, which by definition are arbitrary circuits where all multi-

qubit gates touching qubit ℓ are CZ. While these are not a subclass of CZ-circuits, a CZ(ℓ)-circuit

can be converted into a CZ-circuit without any changes affecting qubit ℓ.

2.2 Operators commuting with Z

An operator is diagonal if and only if it commutes with Z
(ℓ) for all qubits ℓ. Similarly, Q

commutes with Z on the highest order qubit if and only if

Q =

[

Q0 0
0 Q1

]

For ℓ any qubit, Q commutes with Z
(ℓ) if and only if the (s, t)-th entry of the matrix of Q

whenever is zero when the binary expansions of s and t differ at digit ℓ. It is more convenient

to write this in the following way:

Observation 2 Let Q be a unitary operator and ℓ be a qubit. The following are equivalent.

1. Q commutes with Z
(ℓ)

2. 〈0|(ℓ)Q |1〉(ℓ) = 0

3. 〈1|(ℓ)Q |0〉(ℓ) = 0

4. Q decomposes as a Q = |0〉 〈0| ⊗ Q0 + |1〉 〈1| ⊗ Q1, where the projectors |i〉 〈i| operate

on qubit ℓ and the unitary Qi operate on the qubits other than ℓ.

5. Q decomposes as a product of a positively ℓ-controlled operator a negatively ℓ-controlled

operator: Q = C
(ℓ)(Q1) · C(ℓ)

(Q0).

The Q0, Q1 of 4 and 5 are the same.

Whenever we have an operator commuting with Z
(ℓ) we will employ subscripts as in Ob-

servation 2 to denote its diagonal blocks. More generally,

Notation. Fix qubits ℓ1, . . . , ℓk, and let Q commute with Z
(ℓi) for all i. For any bitstring

j1 . . . jk we write Qj1...jk
for 〈j1 . . . jk|(ℓ1...ℓk)

Q |j1 . . . jk〉(ℓ1...ℓk)
. Note that Qj1...jk

acts on k

fewer qubits than Q.
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For example, the two-qubit operator U = |0〉 〈0|(i) ⊗Z(j) + |1〉 〈1|(i) ⊗X(j) commutes only

with Zi and hence we would write U0 = Z and U1 = X. Below, we write the matrix of U in

two bases; on the left, i is the most significant qubit, but on the right, j is.








1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

















1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0









i > j j > i

Observe that only the left matrix is block-diagonal.

In circuit diagrams, we indicate that a given operator commutes with Z
(ℓ) by using a

“control-on-box”, as below. The backslash on the bottom line indicates that it represents an

arbitrary number of qubits (a multi-qubit bus).

ℓ

\ U

Unlike the notation for the positively and negatively controlled-U gates, the U above is not

to be understood as acting only on the lower line. By way of illustration, we translate

Observation 2, item 5, into a diagram:

=
• ��
��	
�

\ Q \ Q1 Q0

Observation 3 Let Q,R be two gates such that for every qubit ℓ, either one of them does

not affect ℓ, or both of them commute with Z
(ℓ). Then QR = RQ. In picture:

\
=

\
\ Q \ Q

\ R \ R

We now recall the multiplexed rotation gates [13, 18], which generalize the Rx, Ry, Rz gates.

Let ∆ be a diagonal Hermitian matrix acting on the qubits ℓ1, . . . , ℓk, and fix another qubit

m 6= ℓi. We define the operator R
(m)
z (∆) on the qubits ℓ1, . . . , ℓk,m by the conditions (1) that

it commute with Z
(ℓi) for all i, and (2) for any bitstring j1 . . . jk, we have R

(m)
z (∆)j1...jk

=

Rz(∆ℓ1...ℓk
). Explicitly, R

(m)
z (∆) = exp(iZ(m)∆(ℓ1...ℓk)). Multiplexed Rx, Ry gates are defined

similarly. Since such operators commute with Z
(ℓi), we depict them in circuit diagrams with

the appropriate control-on-boxes.

It is natural to ask when an operator commuting with various Z gates can be implemented

in a CZ-circuit containing only gates commuting with the same Z gates. The answer is given

in terms of the partial determinant.

Definition 1 Fix qubits ℓ1 . . . ℓk, and let U be an operator commuting with Z
(ℓ1), . . . , Z(ℓk).

We define its partial determinant detℓ1...ℓk
(U), to be the diagonal operator acting on the qubits

ℓ1, . . . , ℓk, whose j1 . . . jk’th diagonal entry is det(Uj1...jk
). In short, it is given by the formula

(detℓ1...ℓk
(U))j1...jk

= det(Uj1...jk
).
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When computing partial determinants of a single gate or subcircuit acting on m qubits, we

first tensor respective operators with I2N−m to form operators acting on all N qubits (which

may affect the determinants). When applied to such “full” operators, the partial determinant

mapping is a group homomorphism.

For example, consider a CCZ gate in a three qubit circuit. Then for any two qubits i, j, we

have deti,j(CCZ) = CZ
i,j . However, in a four qubit circuit, we deti,j(CCZ) = I.

Proposition 4 Fix qubits ℓ1 . . . ℓk among N > k qubits. A unitary U commuting with

Z
(ℓ1), . . . , Z(ℓk) can be implemented by a CZ-circuit in which only diagonal gates operate on

qubits ℓi if and only if detℓ1...ℓk
(U) is separable (can be implemented by one-qubit gates).

Proof: (⇒). To establish the result in the forward direction, it suffices to show the separa-

bility of detℓ1...ℓk
(U) for a generating set of operators. By definition, such a generating set is

provided by CZs, one-qubit diagonals on the ℓi, and gates not affecting any of the ℓi.

Note first that any diagonal gate D acting on qubits ℓ1, . . . , ℓk has partial determinant

given by detℓ1...ℓk
(D) = D2N−k

, understood as an operator on qubits ℓ1 . . . ℓk. In particular,

if D were separable, then so is detℓ1...ℓk
(D). If D = CZ

(ℓi,ℓj), then from CZ
2 = I and N > k

we deduce detℓ1...ℓk
(CZ(ℓi,ℓj)) = I. The remaining gates we need to consider are:

(i) any gate not affecting qubits ℓi implements U = Q(1..N)\(ℓ1...ℓk) for some Q.

In this case Uj1...jk
= Q, and furthermore detℓ1...ℓk

(U) = det(Q)I.

(ii) CZ gates connecting qubits ℓi,m /∈ {ℓ1, . . . , ℓk}. We compute detℓ1...ℓk
(CZ(ℓi,m)) =

(Z(ℓi))2
N−k−1

.

(⇐). This part of the result is not used in the rest of the paper, and we therefore defer

the proof to the Appendix.

2.3 Cartan decompositions in quantum logic

This section recalls two important operator decompositions (cosine-sine and demultiplexing)

and casts them as circuit decompositions. Readers willing to accept their use in our proofs

may skip to Section 2.4.

Observe that an operator can be implemented with a single one-qubit gate if and only if

it commutes with the Pauli operators Z and X on all other qubits. Thus to produce a CNOT-

circuit for a given operator U , one may use the following algorithmic framework.

1. Decompose U into a circuit in which each non-CNOT gate, V,W, . . ., commutes with X

and Z on more qubits that U does.

2. Apply the algorithm recursively to V,W, . . . until one-qubit gates are reached.

As Z is self-adjoint, the requirement that U commutes with Z
(i) can be rephrased as the

condition that U is fixed under the involution U 7→ Z
(i)UZ(i). Given such an involution, a

fundamental Lie-theoretic result produces an operator decomposition [8]. Here we recite the

result for completeness, but do not require the reader to understand all terminology.

The Cartan Decomposition. Let G be a reductive Lie group, and ι : G→ G an involution.

Let K = {g : ι(g) = g} and A be maximal over subgroups contained in {g : ι(g) = g−1}.
Then K is reductive, A is abelian, and G = KAK.
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In order to restate decompositions of unitary operators as circuit decompositions, we

employ the notation of set-valued quantum gates [18]. Completely unlabelled gates (as in

Equation 4) denote the set of all gates satisfying all control-on-box commutativity conditions

imposed by the diagram, and gates labelled Rx, Ry, Rz denote the appropriate set of (possibly

multiplexed) rotations. An equivalence of circuits with set-valued gates means that if we pick

an element from each set on one side, there is a way to choose elements on the other so that

the two circuits compute the same operator. The backslashed wires which usually indicate

multiple qubits may also carry zero qubits.

The involution φZ : U 7→ Z
(ℓ)UZ(ℓ) corresponds to the cosine-sine decomposition.e

\
=\

ℓ Ry

(2)

The involution φY : U 7→ Y
(ℓ)UY(ℓ) yields the demultiplexing decomposition [18].

ℓ

=

Rz

\
\

(3)

The map φY restricts to the subgroup of diagonal operators. This group being abelian,

the K and A factors commute, leaving the following decomposition of diagonal operators.

ℓ
=

Rz

\
(4)

The involution φY further restricts to the subgroup of multiplexed Z rotations, which we

can demultiplex again. The K and A factors again commute; the A factor is computed by

the last 3 gates in the circuit below.

ℓ

=

• •
\
Rz Rz

�������� Rz
��������

(5)

To establish the existence of these decompositions, it remains to verify in each case that the

purported K and A satisfy the appropriate properties with respect to the relevant involution.

This can be checked after passing to the Lie algebra where it is easy. Alternatively, explicit

constructions of the cosine-sine and demultiplexing decompositions are given in [15] and [18],

respectively.

To decompose general n-qubit operators, Equation 2 can be applied iteratively until all

remaining gates are either multiplexed Ry gates or diagonal. The Ry gates can be replaced

by Rz gates at the cost of introducing some one-qubit operators; the Rz and other diagonal

gates can be decomposed as described above; for details and optimizations see [13]. Smaller

eThe terminology comes from the numerical linear algebra literature; see [15] and references therein.
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circuits are obtained by another algorithm, which alternates cosine-sine decompositions with

demultiplexing decompositions; for details and optimizations, see [18].

When circuit decompositions are applied recursively, some gates can be reduced by local

circuit transformations. For example, when iteratively demultiplexing multiplexed Rz gates,

some CNOTs may be cancelled as shown below.

• •

=

• •
• • • •

\
Rz

�������� Rz
�������� Rz

�������� Rz
�������� �������� �������� Rz

�������� Rz
��������

_ _�

�

�

�

�

�

�

�

_ _

_ _�

�

�

�

�

�

�

�

_ _

This technique produces a circuit with 2n
CNOT gates for an n-ply multiplexed Rz gate.

Using Equation 4, we obtain a circuit with 2n−2 CNOT gates for an arbitrary n-qubit diagonal

operator [3]. Applying this result to CCZ gate leads to the circuit in Figure 1.

2.4 Basic facts about CZ-counting

The CZ-cost |U |CZ of anN -qubit operator U is the minimum number of CZs which appear in any

N -qubit CZ-circuit for U ; we define the CNOT-cost analogously. The identity H
(i)
C
(j)X(i)

H
(i) =

CZ
(i,j) ensures that |U |CZ = |U |CNOT. The further identity H

(i)
CC

(j,k)
X
(i)
H
(i) = CCZ

(i,j,k) yields:

Observation 5 |CCZ|CZ = |CCX|CNOT ≤ 6.

By way of illustration, the following modification of the circuit in Figure 1 implements the

CCZ in terms of CZs.

•

=

• • • T •

• • • TH • HT †H • H

• H • HT †H • HTH • HT †H • HT

(6)

It shall prove more convenient to compute |CCZ|CZ rather than |CCZ|CNOT. To do so, we are

going to study the number of CZs which must touch a given qubit in any CZ-circuit for a given

operator. More precisely, the CZ(ℓ)-cost |U |CZ;ℓ is the minimum number of CZ gates incident on

ℓ in any CZ
(ℓ)-circuit for U . These cost functions are related through the following estimate.f

Observation 6 For any operator P ,

|P |CZ ≥
1

2

∑

j

|P |CZ;j

Proof: Each CZ gate touches two qubits.

As the costs |CCZ|CZ;j are the same for j = 1, 2, 3 (by symmetry),

|CCZ|CZ ≥
3

2
|CCZ|CZ;j (7)

fThis bound is very weak in general. It can be shown using the results of [18] that |U |CZ;ℓ < 6N . Thus a
direct application of the techniques developped here cannot yield a bound better than |U |CZ ≥ N(6N − 1).
On the other hand, dimension-counting shows that a generic N -qubit operator U requires on the order of 4N

CZ gates [9].
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We emphasize that the number of qubits, N , is an unspecified parameter in both | · |CZ and

|·|CZ;ℓ. In the presence of ancillae, we define |U |a
CZ

:= mint |U⊗I⊗t
2 |CZ. Obviously |U |a

CZ
≤ |U |CZ.

While |U |a
CZ

= |U |CZ seems unlikely to always hold, we are not aware of any counterexamples.

Indeed, we will show in Section 6 that this equality holds for all two-qubit operators and all

three-qubit diagonal operators.

3 Deriving gate constraints from circuit equations

The circuit decompositions of Section 2.3 are essentially unique, and from one can derive

various constraints on which gates may appear in certain circuit equations. We will pursue

this route in Section 4.2. However, the simplest cases are easier to treat from the more

elementary point of view adopted by Song and Klappenecker in their classification of two-qubit

controlled-U operators by CNOT-cost [19]. Considering the operator computed by a candidate

circuit, they first focus on matrix elements which vanish if the operator is a controlled-U . In

order to produce such zero elements, the gates in the candidate circuit must satisfy certain

constraints. Below we derive a series of more general results for n-qubit circuits. One-qubit

gates which become diagonal when multiplied by X occur frequently; we refer to them as

anti-diagonal.

Lemma 1 The following equation imposes at least one of the following constraints.

1 b a
=

\ P Q

1. a, b are both diagonal or both anti-diagonal.

2. P takes the form d⊗ P0 for some one-qubit diagonal d.

Proof: 0 = 〈0|(1) aPb |1〉(1) = 〈0| a |0〉 〈0| b |1〉P0 + 〈0| a |1〉 〈1| b |1〉P1. As the coefficients do

not vanish, P0 and P1 are linearly dependent. It follows that P = d⊗ P0 for some one-qubit

diagonal d.

Corollary 1 If a(i)
CZ

(i,j)b(i) commutes with Z
(i), then a, b are both diagonal or anti-diagonal.

Corollary 2 In the situation of Lemma 1, there exist one-qubit operators a′, b′ which are

either diagonal or anti-diagonal, such that a′(1)Pb′(1) = Q.

Proof: In Case 1, a = a′ and b = b′. In Case 2, write P = d ⊗ P0. Take a′ = adbd−1 and

b′ = I; then a′(1)Pb′(1) = a(1)Pb(1). As a′(1) = QP † commutes with Z
(1), it is diagonal.

We turn now to circuits with two CZ gates.

Lemma 2 Suppose the following equation holds.

1 b a

=2
P Q\

Then (I) aibj is diagonal for all i, j or (II) one of P , X(2)P commutes with Z
(2).

Proof: We compute:

0 = 〈0|(1) 〈i|(2) aPb |1〉(1) |j〉(2) = 〈0|(1) aibj |1〉(1) 〈i|(2) P |j〉(2)

Either 〈i|(2) P |j〉(2) = 0 for some i, j, or 〈0| aibj |1〉 vanishes for all i, j.
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Corollary 3 Suppose the following equation holds.

1

=

t • s • r

2
M T

•
S

•
R\

Then either (I) an even number of r, s, t are anti-diagonal, and the remainder diagonal, or

(II) S or SX(2) commutes with Z
(2).

Proof: In order to apply Lemma 2, We move R and T to the other side.

=

t • s • r

m
T † M R†

•
S

•
\ \

The cases here will correspond to the cases of Lemma 2. Case II is preserved verbatim. For

Case I, the “aibj” which must be diagonal are rst, rsZt, rZst, rZsZt. Since (rst)†rsZt = tZt†

is diagonal, we deduce that either t or tX is diagonal. Likewise, rZst(rst)† = rZr† is diagonal,

so either r or rX is diagonal. Finally, rst is diagonal, so from what we know about r, t, either

s or sX is diagonal, and the number of r, s, t which are not diagonal is even.

The following reformulation will be useful later.

Corollary 4 Suppose Q commutes with Z
(ℓ) and let C be a CZ

(ℓ)-circuit computing Q in which

exactly two CZs are incident on ℓ, say CZ
(ℓ,m) and CZ

(ℓ,n). Then all non-diagonal one-qubit

gates may be eliminated from qubit ℓ at the cost of possibly (i) replacing CZ
(ℓ,n) with CZ

(ℓ,m)

and (ii) adding one-qubit gates on qubits m,n.

Proof: By hypothesis, C takes the form

Q = [r ⊗R]CZ(ℓ,m)[s⊗ S]CZ(ℓ,n)[t⊗ T ]

where r, s, t are subcircuits of one-qubit operators acting on ℓ, and R,S, T are subcircuits

containing no gates acting on ℓ. We immediately replace r, s, t by the one-qubit operators

they compute. Moreover, if m 6= n, then replace S and T by S · SWAP(m,n) and SWAP
(m,n) · T ,

where SWAP is the gate which exchanges qubits. The swaps will be restored and canceled at

the end of the proof. We are in the situation of Lemma 2.

Case I. We are done, with the exception that the r, s, t may be anti-diagonal rather than

diagonal. In this case, Equation 1 allows the extraneous Xs to be pushed through and cancelled

at the cost of introducing Z gates on qubit m. The diagonal gates remaining on qubit ℓ may be

commuted through the CZs and conglomerated into one. Finally, the possible swap introduced

between the S, T terms may be cancelled.

Case II. Using Equation 1 and replacing s by sZ if necessary, we commute S past one of the

CZs. We now have:

Q = [r ⊗R]CZ(ℓ,m)s(ℓ)CZ(ℓ,m)[t⊗ ST ]

Rearranging the equation,

[I ⊗R†]Q[I ⊗ T †S†] = r(ℓ)CZ(ℓ,m)s(ℓ)CZ(ℓ,m)t(ℓ) (8)
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Let V be the value of either side of the equation above. Then from the LHS we see that V

commutes with Z(ℓ), and from the RHS we see that V is a two-qubit operator commuting

with Z(m). Thus V is a two-qubit diagonal, and admits the following decomposition.

ℓ
V =

Rz(α) • •

m Rz(β) H • H Rz(γ) H • H

Substituting this decomposition for the RHS of Equation 8 and restoring the R,S, T gates

completes the proof.

4 The CNOT-cost of the TOFFOLI gate

So far we have reduced CNOT-counting for the TOFFOLI gate to CZ-counting for the CCZ

gate, with the latter two being diagonal and symmetric. Having derived the inequality

3|CCZ|CZ;ℓ/2 ≤ |CCZ|CZ, we seek to determine the qubit-local costs |CCZ|CZ;ℓ.
The idea is to find an equivalence relation ∼ℓ such that (i) U ∼ℓ V =⇒ |U |CZ;ℓ = |V |CZ;ℓ

and (ii) the equivalence classes of ∼ℓ are easy to characterize.

Definition 2 For P,Q commuting with Z
(ℓ), we write P ∼ℓ Q if there exist a, b, A,B satis-

fying the following equation.

ℓ b a
=

\ B P A Q

(9)

The fact that |·|CZ;ℓ is constant on equivalence classes is obvious; the ability to characterize

the equivalence classes comes from a comparison between Equation 9 and the demultiplexing

decomposition of Equation 3. We construct invariants of the equivalence classes in Theorem

8. The reductions of Section 4.2 provide circuit forms on which the invariants are easy to

compute; as a consequence, we arrive at a complete characterization of U such that |U |CZ;ℓ =

0, 1, 2 in Theorem 9. The CCZ gate falls into none of these classes, and thus |CCZ|CZ;ℓ ≥ 3, and

hence |CCZ|CZ ≥ 5. Unfortunately, qubit-local CZ-counting can take us no further: one can

show by construction that in fact |CCZ|CZ;ℓ = 3.

We now consider a hypothetical five-CZ circuit for the CCZ and seek a contradiction, using

a divide-and-conquer strategy. There are many possible arrangements of the CZs, and we do

not deal with them case by case. Nonetheless, we fix one here for clarity.

1 •

=

f • e • d • c

2 • k • j • i • h • g

3 • o • n • m • l

(10)

We define a, b, P,Q as follows.

a
=

d • c

•
b

=
f • e

•
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=

•

P
j • i • h

• n • m •

=

•

Q
k† • g†

o† • l†

Our circuit decomposition now takes the following form.

1 b a

=2
P Q\

(11)

Up to some two-qubit diagonal fudge factors, this equation says that the cosine-sine de-

composition of b†⊗I is Q†[a⊗I]P . In Section 4.2, we translate the well-known canonicality of

this Cartan decomposition into constraints on the components a, b, P and Q. The formulae of

Theorem 9 further strengthen these constraints in the | · |CZ;ℓ = 3 case. Specifically, we show in

Theorem 10 that if |U |CZ;ℓ = 3 and C computes U using the minimum required three CZ gates

incident on ℓ, then all one-qubit gates on ℓ are diagonal or anti-diagonal. The anti-diagonal

gates can be made diagonal at the cost of introducing Z gates elsewhere in the circuit.

This is the last result needed to determine the CZ-cost of the CCZ. From |CCZ|CZ;ℓ ≥ 3, we

see that in any five-CZ circuit for the CCZ, two of the qubits, m,n touch exactly three CZ gates

and the remaining one touches four. By Theorem 10, we can assume all one-qubit operators

on m,n are diagonal. Proposition 4 would then require detm,n CCZ = CZ
(m,n) to be separable,

which it is not.

Theorem 7 |CCZ|CZ = 6.

We show in Section 6 that the use of ancillae can not lower the CZ-cost of the CCZ.

4.1 CZ counting via the demultiplexing decomposition

We now turn to the study of qubit-local CZ-cost. To apply P ∼ℓ Q =⇒ |P |CZ;ℓ = |Q|CZ;ℓ, we

first seek to determine when P ∼ℓ Q. This will be done under the assumption that P and Q

both commute with Z
(ℓ).

Definition 3 Let U commute with Z
(ℓ). Then the ℓ-mux-spectrum ℑ(ℓ)(U) is the multi-set of

eigenvalues, taken with multiplicity, of U†
1U0. Two multi-sets S, T are said to be congruent,

S ∼= T , if there exists a nonzero scalar λ such that either λS = T or λS = T †.

We note that before taking the ℓ-mux-spectrum of U , it is necessary to fix the number of

qubits on which U acts : ℑ(ℓ)(U ⊗ I) contains dim I copies of ℑ(ℓ)(U).

Theorem 8 Suppose P,Q commute with Z
(ℓ). Then P ∼ℓ Q ⇐⇒ ℑ(ℓ)(P ) ∼= ℑ(ℓ)(Q).

Proof: (⇒). As P ∼ℓ Q, there are gates a, b, A,B such that

ℓ b a
=

\ B P A Q
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By Corollary 1, we may assume that either a, b or aX, bX are diagonal. In the first case,

Q0 = a0b0AP0B and Q1 = a1b1AP1B. Thus Q†
1Q0 = (a1b1)

†a0b0B
†P †

1P0B, which has the

same eigenvalues as (a1b1)
†a0b0P

†
1P0. Thus ℑ(ℓ)(P ) ∼= ℑ(ℓ)(Q).

Otherwise, a′ = aX and b′ = Xb are diagonal. Now Q†
0Q1 = (a′1b

′
1)

†a′0b
′
0B

†P †
0P1B, which

has the same eigenvalues as (a′1b
′
1)

†a′0b
′
0P

†
0P1, whose eigenvalues in turn are the complex

conjugates of those of a′1b
′
1(a

′
0b

′
0)

†P †
1P0; again ℑ(ℓ)(P ) ∼= ℑ(ℓ)(Q).

(⇐). By supposition, the ℑ(ℓ)(P ) ∼= ℑ(ℓ)(Q) We note ℑ(ℓ)(X(ℓ)PX(ℓ)) = ℑ(P )† and

ℑ((R
(ℓ)
z (λ)P ) = e2iλℑ(P ). Therefore we can readily find an operator P ′ ∼ℓ P such that

the ℓ-mux-spectrum of P is identical, rather than merely congruent, to that of Q. It remains

to show that P ′ ∼ℓ Q.

By the demultiplexing decomposition (Equation 3) there exist unitary operators MP , NP

and a real diagonal matrix δP , all of which operate on the qubits other than ℓ, such that

P ′ = [I⊗MP ]R
(ℓ)
z (δP )[I⊗NP ]. Likewise we decompose Q = [I⊗MQ]R

(ℓ)
z (δQ)[I⊗NQ]. If we

let ∆P = exp(iδP ) and ∆Q = exp(iδQ), then the ℓ-mux-spectra of P ′ and Q are respectively

the entries of ∆2
P and ∆2

Q. Since ℑ(ℓ)(P ) = ℑ(ℓ)(Q), there must exist a permutation matrix π

acting on the qubits other than ℓ such that π∆2
Pπ

† = ∆2
Q. Rearranging, we have ∆†

Qπ∆P =

∆Qπ∆†
P . Writing K for this term, [I ⊗MQKM

†
P ]P ′[I ⊗N†

Pπ
†NQ] = Q. Thus P ′ ∼ℓ Q.

We now apply Theorem 8 to prove the following result relating ℑ(ℓ)(P ) and |P |CZ;ℓ. We

emphasize that the number of qubits on which P acts is an unspecified parameter in both of

these functions.

Theorem 9 Let P commute with Z
(ℓ).

• |P |CZ;ℓ = 0 iff ℑ(ℓ)(P ) ∼= {1, 1, . . .}.

• |P |CZ;ℓ = 1 iff ℑ(ℓ)(P ) ∼= {1,−1, 1,−1, . . .}

• |P |CZ;ℓ ≤ 2 iff ℑ(ℓ)(P ) is congruent to some multi-set S of unit norm complex numbers

which come in conjugate pairs.

Proof: The first and second statements follow immediately from Theorem 8 and the calcu-

lations ℑ(ℓ)(I) = {1, 1, . . .} and ℑ(ℓ)(CZ(ℓ,m)) = {1,−1, 1,−1, . . .}. To perform the relevant

calculation for the third statement, we will use Corollary 4.

Let ℓ be the most significant qubit. For δ a diagonal real operator acting on all qubits but

ℓ, define Φ(δ) by

ℓ

=

• •

Φ(δ)
• Ry(δ) •

\ \
By construction, |Φ(δ)|CZ;ℓ ≤ 2. We compute ℑ(ℓ)(Φ(δ)) = {e2iδ0 , e−2iδ0 , e2iδ1 , e−2iδ1 , . . . , }.

(⇐) Write the entries of S as eiφ ·{eiθ0 , e−iθ0 , eiθ1 , e−iθ1 , . . .}, and let θ be the real diagonal

operator acting on all qubits but ℓ whose diagonal entries are θ0, θ1, . . .. By construction,

ℑ(ℓ)(Φ(θ/2)) = S, and S ∼= ℑ(ℓ)(Q) by hypothesis. By Theorem 8, Φ(θ/2) ∼ℓ Q are ℓ-

equivalent. It follows that |Q|CZ;ℓ = |Φ(θ/2)|CZ;ℓ ≤ 2.

(⇒) By hypothesis |Q|CZ;ℓ ≤ 2. If in fact |Q|CZ;ℓ = 0, 1, note by the first two statements

of the Theorem, which have been proven, the ℓ-mux-spectrum of Q has the desired property.
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Thus we assume |Q|CZ;ℓ = 2. Let C be a circuit in which this minimal CZ count is achieved.

By Corollary 4, we can find an equivalent circuit C′ of the following form.

=

Rz(θ) • •

Q A

•
B C•

\ \
We have drawn the CZs with different lower contacts, but of course they might be the same.

Actually, we prefer the latter case, and ensure it by incorporating swaps into B,C if necessary.

We take a cosine-sine decomposition (see Equation 2) of B

=

Rz(θ) • •

Q A
• Ry(β) •

C
\ \ BL BR

Note that the BL and BR gates commute with the CZs. Thus Q ∼ℓ Φ(β). By Theorem 8, the

ℑ(ℓ)(Q) ∼= ℑ(ℓ)(Φ(β)). But we have already seen that ℑ(ℓ)(Φ(·)) always consists of conjugate

pairs of unit-norm complex numbers.

4.2 Circuit constraints from the cosine-sine decomposition

This section is devoted to the study of Equation 11. We take cosine-sine decompositions of

a, b. Below, Al, Ar, Bl, Br are two-qubit diagonal operators, and α, β are 2 × 2 real diagonal

matrices of angular parameters.

1 b
= BL

Ry(−β)
BR

2

(12)

1 a
= AL

Ry(α)
AR

2

(13)

Define P̃ = ALPBR and Q̃ = A†
RQB

†
L to obtain:

1 Ry(−β) Ry(α)

=2
P̃ Q̃\

(14)

We recall the standard argument used to measure the uniqueness of the KAK decom-

position [8]. Throughout this discussion, we will write simply Ry(α) for R
(1)
y (α(2)), and

similarly for Ry(β). Rearrange the equation to obtain Q̃†Ry(α)P̃ = Ry(β). Transforming

the equation by k 7→ Z
(1)k†Z(1), we get P̃ †Ry(α)Q̃ = Ry(β). Multiplying these equations

yields P̃ †Ry(2α)P̃ = Ry(2β). Thus Ry(2α) and Ry(2β) have the same eigenvalues. One can

check that in fact they are conjugate under an element of the group W generated by X
(2) and

CZ
(1,2); note that these operators commute with Z

(1). That is, there exists w ∈ W such that

wRy(2α)w† = Ry(2β). Now let t = wRy(α)w†Ry(−β). We have both t = Ry(ξ) for some
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2 × 2 real diagonal matrix ξ acting on qubit 2, and t2 = I; it follows that t ∈ {±I,±Z(2)}.
Defining P̄ = P̃ · [tw ⊗ I] and Q̄ = Q̃ · [w ⊗ I] reduces our equation to the following.

1 Ry(−α) Ry(α)

=2
P̄ Q̄\

(15)

By an argument similar to that given for P̃ and Q̃, the operators P̄ and Q̄ both commute

with Ry(2α). Conjugation by Ry(α) is an involution on the set of operators commuting with

Ry(2α); Equation 15 says that P and Q are interchanged by this involution. In fact, this

involution always has a simpler description:

Lemma 3 Equation 15 also holds for some α̃ for which α̃i is an integer or half-integer mul-

tiple of π. Half-integers occur if and only if 2αi is an odd integer multiple of π.

Proof: Decompose 2αi = φi + ψi (mod 2π) where φi ∈ (−π, π), where ψi = 0 unless φi = 0,

and ψi ∈ {0, π} in any event. Then any operator which commutes with Ry(2α) also commutes

with Ry(φ/2). Thus, on operators commuting with Ry(2α), conjugation by Ry(α) is the same

as conjugation by Ry(α − φ/2) = Ry(α − φ/2 − ψ/2)Ry(ψ/2). But 2(α − φ/2 − ψ/2) = 0

(mod 2π).

We also record the constraints imposed on possible P̄ , Q̄ by the value of θ = 2α.

Lemma 4 Fix distinct qubits ℓ,m. Let U be a unitary operator commuting with Z
(ℓ), and let

θ be a two-by-two real diagonal matrix of angular parameters which is understood to operate

on m. Then U commutes with R
(ℓ)
y (θ) if and only if one of the following holds:

1. cos(θ) is scalar, and either

(a) sin(θ) = 0.

(b) sin(θ) is a nonzero scalar and U0 = U1.

(c) Z sin(θ) is a nonzero scalar and U0 = Z
(m)U1Z

(m).

2. cos(θ) is not scalar, U commutes with Z
(m), and either

(a) sin(θ0) = 0 and sin(θ1) = 0.

(b) sin(θ0) = 0 and sin(θ1) 6= 0 and U01 = U11.

(c) sin(θ0) 6= 0 and sin(θ1) = 0 and U00 = U10.

(d) sin(θ0) 6= 0 and sin(θ1) 6= 0 and U0 = U1.

Proof: The (⇐) direction is trivial. For (⇒), suppose [R
(ℓ)
y (θ(m)), U ] = 0 and expand

using the expression R
(ℓ)
y (θ(m)) = exp(iY(ℓ)θ(m)) = cos(θ)(m) + iY (ℓ) sin(θ)(m) in order to

observe that U0 and U1 both commute with cos(θ)(m), and U0 sin(θ)(m) = sin(θ)(m)U1. Now

repeatedly apply the fact that two-by-two matrices which commute with a two-by-two diagonal

matrix with distinct entries are themselves diagonal.

Finally, we translate these results back to the original operators P,Q.

Lemma 5 In the situation of Equation 11, at least one of the following must hold.

1. Either a, b are diagonal or aX(1), bX(1) are diagonal.
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2. There exists a two-qubit operator U and two-qubit diagonals D,D′ such that

= D′ D

P U

Similarly, there exists a two-qubit operator V and two-qubit diagonals C,C ′ such that

= C ′ C
Q V

3. Either P or PX(2) commute with Z
(2). There exist replacements a′, b′ for a, b which are

in the subgroup generated by two-qubit diagonal operators on qubits 1 and 2, C(2)
X
(1),

and X
(1), such that Equation 11 continues to hold.

Proof: This amounts to unwinding the above discussion in light of Lemma 4. Case I comes

from Case 1.a of the Lemma; the X appears because of the 2 in θ = 2α. Case II comes from

Cases 1.b and 1.c. The first claim in Case III is just Case 2 of the Lemma; the possible X here

comes from the w factor in P̄ = P̃ tw from the discussion above. The second claim follows

from Lemma 3.

While we cannot completely characterize operators with | · |CZ;ℓ = 3, we can characterize

CZ
(ℓ)-minimal circuits which compute them.

Theorem 10 Fix a qubit ℓ, and suppose M commutes with Z
(ℓ). Suppose |M |CZ;j = 3, and

let C be a CZ
(j)-circuit exhibiting this bound. Then all one-qubit gates of C on ℓ are diagonal

or anti-diagonal.

Proof: Consider M, C satisfying the hypothesis. Without loss of generality, ℓ = 1 and C takes

the form

1 h • g • f • e

2
H

•
G

•
F

•
E\

The CZs may have originally had different terminals, but we can incorporate swaps into

E,F,G,H to suppress this behavior. This affects neither the hypothesis nor the conclusion.

(*) Define P by

1
=

•
2

P G
•

F\
If PX(2) commutes with Z

(2), then return to (*) and replace G by GX(2), H by X
(2)H, and h

by Z(1)h. This does not affect the conclusion, and by Equation 1, the resulting circuit still

computes M . We have ensured that if one of P, PX(2) commutes with Z
(2), then it is P .

Define a, b,Q by

1 a
=

f • e

2 •
1 b

=
h • g

2 •
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1
=2

Q H† M E†
\

Note |Q|CZ;1 = |M |CZ;1. We also have Q = [a⊗I]P [b⊗I], hence are in the situation of Equation

11. Lemma 5 allows us to reduce to the following cases.

Case I. a, b are diagonal, or aX(1), bX(1) are diagonal. In either case, Corollary 1 applied to

the circuits defining a, b shows that e, f, g, h are each diagonal or anti-diagonal.

Case II. Q takes the form

1
= C ′ C

2
Q V\

The cosine-sine decomposition (see Equation 2) of V along qubit 2 determines unitary oper-

ators R,S and a real diagonal operator δ such that:

2
V =

Ry(δ)

\ S R

(16)

We substitute, commute the S, T outwards past C,C ′, and decompose the diagonals C,C ′.

1 • • Rz • •

2 Rz
�������� Rz(θ) �������� Ry(δ) �������� Rz(φ) �������� Rz

\ S R

Evidently ℑ(1)(Q) depends only on θ, δ, φ. We calculate that, up to a global scalar multiple,

ℑ(1)(Q) consists of the roots of the following quadratics in T :

T 2 − 2T (cos(2θ + 2φ) cos(δi)
2 + cos(2θ − 2φ) sin(δi)

2) + 1

The equations being real, each has complex conjugate roots. By Theorem 9, |M |CZ;1 =

|Q|CZ;1 = 2, contrary to hypothesis.

Case III. We have already ensured that P , rather than PX(2), commutes with Z
(2). We replace

a, b by the a′, b′ of Lemma 5. We demultiplex P (see Equation 3) to obtain a decomposition

of the following form, where D is diagonal.

1

= D2

\ P S R

The operators S,R commute past a′, b′ to the edges of the circuit, and thus do not affect

the CZ-cost of Q. That is, |Q|CZ;ℓ = |[a′ ⊗ I]D[b′ ⊗ I]|CZ;ℓ.
By construction, |P |CZ;ℓ = |D|CZ;ℓ = 1. If D = |0〉 〈0|(ℓ) ⊗D0 + |1〉 〈1|(ℓ) ⊗D1, Theorem 9

asserts the entries of D†
0D1 are eiθ{1,−1, 1,−1, . . .}. Thus D can be written as

1

D =

Rz(−θ/2) •

2
π

•
π† D0\
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for some permutation π. We set N := X
(1)([a′ ⊗ I]D[b′ ⊗ I])†X(1)[a′ ⊗ I]D[b′ ⊗ I], so that

ℑ(1)([a′⊗ I]D[b′⊗ I]) is given by the entries of 〈0|(1)N |0〉(1). Evidently D0 commutes past a′

and cancels with D†
0. Applying Equation 1 to eliminate X gates, the following circuit computes

N .

b′ Rz(−θ/2) • a′ �������� (a′)† �������� • Rz(−θ/2) �������� (b′)† ��������

π
•

π† π
• •

π†

The condition on a′ implies that (a′)†X(1)a′X(1) is diagonal. It follows that the subcircuit

sandwiched between the two CZs computes a diagonal operator, and so the CZs cancel. Then

the π, π† pair on the left cancel. The π†
Z
(m)π term on the right commutes past the (b′)†.

What remains is a circuit of the form

1
F

2
π

•
π†

\
By construction, N commutes with both Z

(1) and Z
(2). It follows that F is diagonal. Then f =

〈0|(1) F |0〉(1) is some one-qubit diagonal acting on m. We have 〈0|(1)N |0〉(1) = π†
Z
(2)πf (2).

Denote by f0, f1 the entries of f . Then the entries of 〈0|(1)N |0〉(1) are f0, f1,−f0,−f1, and

moreover f0 will occur with the same multiplicity as −f1; likewise −f0 will occur with the

same multiplicity as f1. We see that
√

−f0/f1ℑ(1)([a′ ⊗ I]D[b′ ⊗ I]) come in conjugate pairs.

By Theorem 9, |[a′⊗I]D[b′⊗I]|CZ;1 ≤ 2. But now |M |CZ;1 = |Q|CZ;1 = |[a′⊗I]D[b′⊗I]|CZ;1,

contrary to hypothesis.

4.3 Corollaries

The PERES gate implements a three-qubit transformation from classical reversible logic PERES(ℓ;m;n) =

C
(ℓ)
X
(m) · CC(ℓ,m)X(n). As shown in [12], it can be a useful alternative to the TOFFOLI gate in

reversible circuits.

Corollary 5 |PERES|CZ = 5.

Proof: As is clear from its definition, the PERES gate can be implemented by the circuit of

Figure 1, save the rightmost CNOT. Thus, |PERES|CZ ≤ 5. On the other hand, it also follows

from the definition that any circuit for the PERES can, with the addition of a single CNOT,

become a circuit for the TOFFOLI. Thus |PERES|CZ ≥ |TOFFOLI|CZ − 1 = 5, and all inequalities

are equalities.

In a different direction, we consider below multiply-controlled Z gates:

Corollary 6 |(n− 1)-controlled-Z|CZ ≥ 2n for any n ≥ 3.

Proof: We proceed by induction on n. Suppose the Corollary is false; choose minimal

falsifying n, and a falsifying circuit C. By Theorem 7, n > 2. As before, at least three CZ

gates are incident to each qubit, and counting shows that at least one, say ℓ touches exactly

three. As before, we can assume that all one-qubit operators which appear on ℓ are diagonal.

Form the circuit C′ = 〈1|(ℓ) C |1〉(ℓ) by replacing every gate g of C with g′ = 〈1|(ℓ) g |1〉(ℓ). This

has no effect on gates which do not touch ℓ; it turns one-qubit gates on ℓ into scalars, and

replaces CZ
(ℓ,s) with Z

(s). At any rate, C′ is a CZ-circuit on (n − 1) qubits which computes

the (n− 2)-controlled-Z. We deduce by induction that it contains at least 2(n− 1) CZ gates.

Adding the (at least) three CZs incident to ℓ, there are at least 2n+ 1 total CZs in C.
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5 Three-qubit diagonal operators

We give here a complete classification of three-qubit diagonal operators by their CZ-cost.

Throughout this section, we assume no ancillae are available and label our qubits 1, 2, 3,

from most significant to least significant. We abbreviate 〈i|(1) 〈j|(2) 〈k|(3)D |i〉(1) |j〉(2) |k〉(3)
by Dijk. We also write ∆(η) for the one-qubit gate given by |0〉 〈0| + |1〉 〈1| η. Define

λ1(D) =
D011D000

D001D010
, λ2(D) =

D101D000

D100D001
, λ3(D) =

D110D000

D100D010
, ξ(D) =

D111D
2
000

D100D010D001

Then any three-qubit diagonal D admits the expansion

D = D000·∆
(

D100

D000

)(1)

·∆
(

D010

D000

)(2)

·∆
(

D001

D000

)(3)

·diag(1, 1, 1, λ1(D), 1, λ2(D), λ3(D), ξ(D))

The λi(D) are multiplicative, λi(DD
′) = λi(D)λi(D

′), and likewise for ξ. We denote by S(D)

the ordered quadruple (λ1(D), λ2(D), λ3(D), ξ(D)).

Observation 11 For D,D′ three-qubit diagonal operators, S(D) = S(D′) iff S(D†D′) =

(1, 1, 1, 1) iff D†D′ is a tensor product of one-qubit diagonal operators. It follows that S(D) =

S(D′) =⇒ |D|CZ;i = |D′|CZ;i.
Observation 12 ℑ(i)(D) = {1, λj(D)†, λk(D)†, ξ(D)†λi(D)} where {i, j, k} = {1, 2, 3}.
Lemma 6 A three-qubit diagonal D can be implemented in a three-qubit CZ-circuit with:

• 0 CZs on touching qubit 1 iff S(D) = (ξ, 1, 1; ξ).

• 1 CZ touching qubit 1 iff S(D) = (ξ,−1,−1; ξ), (−ξ, 1,−1; ξ), (−xi,−1, 1 ξ).

• 2 CZs touching qubit 1 iff S(D) = (a, b, c; abc), (a, b, c; ab/c), (a, b, c; ac/b).

Proof: This is just a translation of Theorem 9 using Observation 12, involving a straightfor-

ward but tedious calculation which we omit.

The two possibilities S(D) = (a, b, c; abc), (a, b, c; ab/c) are quite different, and the follow-

ing result helps distinguish between them.

Lemma 7 Let D be a three-qubit diagonal operator and u be a one-qubit gate. Suppose

|Du(3)
CZ

(1,3)|CZ;1 = 1 or |CZ(1,3)u(3)D|CZ;1 = 1. Then λ1(D)λ2(D) = λ3(D)ξ(D).

Proof: The conclusion being stable under D → D†, we assume |Du(3)
CZ

(1,3)|CZ;1 = 1. De-

compose u† = eiθRz(α)Ry(β)Rz(γ). Then ℑ(ℓ)(A) is given by the roots of the polynomials

x2 − cos(2β)(1 − λ2(D))x− λ2(D)

x2 − cos(2β)(λ3(D) − ξ/(D)λ1(D))x− λ3(D)ξ(D)/λ1(D)

For these to have roots either {p, p,−p,−p} or {p, p, p, p}, the two equations must have the

same constant terms – either both p2 or both −p2.

We turn to computing CZ-costs. These being invariant under relabelling of qubits, we

write s(D) for (λ1(D), λ2(D), λ3(D); ξ(D)), where we ignore the order of the λi.

Observation 13 Given two three-qubit diagonals D,D′, s(D) = s(D′) if and only if there

exist one-qubit diagonals d, d′, d′′ and a wire permutation ω such that D′ = (d⊗d′⊗d′′)·ωDω†.

Thus s(D) = s(D′) =⇒ |D|CZ = |D′|CZ.
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Theorem 14 Let D be a three-qubit diagonal operator. Then there exists a CZ-circuit for

D containing

• 0 CZs iff s(D) = (1, 1, 1; 1).

• 1 CZ iff s(D) = (1, 1,−1;−1).

• 2 CZs iff s(D) = (1, 1, ξ; ξ), (1,−1,−1; 1).

• 3 CZs iff s(D) = (1, 1, ξ; ξ), (ξ,−1,−1; ξ), (−ξ, 1,−1; ξ).

• 4 CZs iff s(D) = (a, b, c; ab/c).

• 5 CZs iff s(D) = (a, b, c; ab/c), (a, b, c; abc).

• 6 CZs always.

Proof: We assume without loss of generality thatD takes the form diag(1, 1, 1, λ1, 1, λ2, λ3, ξ).

We number the qubits 1,2,3 from most to least significant.

(⇐). We can assume that in fact S(D) takes the form given. Our constructions will use

the CX, which may be replaced by the CZ at the cost of inserting HADAMARD gates.

Case 0. S(D) = (1, 1, 1; 1) =⇒ D = I.

Case 1. S(D) = (1, 1,−1;−1) =⇒ D = CZ
(1,2).

Case 2a. S(D) = (ξ, 1, 1; ξ). Fix η =
√
ξ;

1

D =2 ∆(η) • •

3 ∆(η) �������� ∆(1/η) ��������

Case 2b. S(D) = (1,−1,−1; 1) =⇒ D = CZ
(1,3)

CZ
(1,2).

Case 3a. S(D) = (ξ, 1, 1; ξ). By Case 2a, the CZ can be implemented in a circuit

containing 2 CZs. It follows that any operator that can be implemented with n > 0 CZs can be

implemented with n+1. Thus since D can be implemented with 2 CZs, it can be implemented

with 3.

Case 3b. S(D) = (ξ,−1,−1; ξ). Fix η =
√
ξ;

1

D =

•

2 ∆(η) • •

3 ∆(η) �������� ∆(1/η) • ��������

Case 3c. S(D) = (−ξ, 1,−1; ξ). Fix η =
√
−ξ.

1

D =

•

2 ∆(η) • • •

3 ∆(η) �������� ∆(1/η) ��������
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Case 4. S(D) = (a, b, c; ab/c). Fix square roots α, β, γ for a, b, c;

1

D =

∆(β) • •

2 ∆(α) • •

3 ∆(αβ/γ) �������� ∆(γ/α) �������� ∆(1/γ) �������� ∆(γ/β) ��������

Case 5a. S(D) = (a, b, c; ab/c). As D can be implemented with 4 CZs, it can be imple-

mented with 5.

Case 5b. S(D) = (a, b, c; abc). Fix square roots α, β, γ for a, b, c;

1

D =

∆(βγ) • • •

2 ∆(αγ) • �������� • ∆(1/γ) ��������

3 ∆(αβ) �������� ∆(1/α) �������� ∆(1/β) ��������

Case 6. More generally, any n-qubit diagonal operator has CZ-cost bounded by 2n − 2.

See [3] or Section 2.3.

(⇒).

Case 0. D must be locally equivalent to I, hence s(D) = (1, 1, 1; 1).

Case 1. D must be locally equivalent to some CZ, hence s(D) = (1, 1,−1;−1).

Case 2 Suppose there exists a minimal implementation of D in which both CZ gates

connect the same two qubits. Then D is locally equivalent to a two-qubit diagonal; in which

case one can compute s(D) = (ξ, 1, 1; ξ).

Otherwise, there is a minimal implementation of D in which the two CZ gates are CZ
(i,j),

CZ
(j,k). By Corollary 4, we may pass to an implementation with only diagonal one-qubit

gates along j; by Corollary 2, we may pass to an implementation with only diagonal one-

qubit gates along i, k as well. But then D is locally equivalent to CZ
(i,j)

CZ
(j,k) and we may

compute s(D) = (1,−1,−1; 1).

Case 3. It suffices to show that |D|CZ;j ≤ 1 for some j. For, if |D|CZ;j = 0, then

D is a two-qubit diagonal, with s(D) = (ξ, 1, 1; ξ), and if |D|CZ;j = 1, then by Lemma 6,

s(D) = (−ξ, 1,−1; ξ) or (ξ,−1,−1; ξ).

Consider an implementation of D containing three CZs. We have |D|CZ;ℓ ≤ 1 for some ℓ

unless the CZs are distributed so that each qubit touches exactly two. Let j be a qubit touching

the middle CZ. By Corollary 4, we can assume the circuit contains only diagonal gates on

qubit j; it follows by inspection that D ∼j CZ
(i,j)

CZ
(j,k). But we have already determined

that |CZ(i,j)
CZ

(j,k)|CZ;j = 1.

Case 4. Consider an implementation of D containing four CZs. If any qubit touches fewer

than two CZs, we reduce to the previous case and observe that the desired condition on s holds.

Thus suppose each qubit touches at least two CZs. Then there are only two possibilities for

the number of CZs touched by each qubit: (2, 2, 4) and (2, 3, 3).

For the configuration (2, 2, 4), say qubits ℓ,m touch two CZs and qubit n touches four. Note

that no CZs connect ℓ,m. Thus we may assume by Corollary 4 all one-qubit gates on ℓ,m

are diagonal. By Proposition 4, detℓ,mD is separable; this says precisely that λℓ(D)λm(D) =

λn(D)ξ(D).
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For the configuration (2, 3, 3), say qubit 1 touches two CZs and qubits 2,3 touch three.

Then there are two CZs connecting qubits 2 and 3, one connecting qubits 1 and 3 and one

connecting qubits 1 and 2. By Corollary 4, we ensure that all one-qubit gates on qubit 1 are

diagonal. If the CZs connecting qubits 2 and 3 are outermost, D ∼ℓ CZ
(1,2)

CZ
(1,3), hence can

be implemented with three CZ s by Case 3. Otherwise, one of the CZs incident on qubit 1 is

outermost; without loss of generality let it be CZ
(1,3). Then we have an equation of the form

D = u(3)
CZ

(1,3)A where by construction A commutes with Z
(1) and |A|CZ;1 = 1. Lemma 7

yields the desired result.

Case 5. It suffices by Lemma 6 to show that |D|CZ;ℓ ≤ 2 for some ℓ. Suppose not; then

in any five-CZ implementation for D, each qubit must touch three CZs. It follows that two

of the qubits, say ℓ,m touch exactly three CZs, and the remaining qubit touches four. By

Theorem 10, all one-qubit gates on ℓ,m are diagonal or anti-diagonal. Enough applications

of Equation 1 will ensure that all one-qubit gates on ℓ,m are in fact diagonal. Move the CZ

which connects ℓ,m to the edge of the circuit. This yields D = CZ
(ℓ,m)A, where |A|CZ;ℓ ≤ 2.

By Lemma 6, it follows that |D|CZ;ℓ ≤ 2 as well.

6 Circuits with ancillae

The proofs of Theorems 7 and 14 assume that only three qubits were present, and use this

assumption when enumerating possible circuit configurations with a given total number of CZ

gates. This dependency can be eliminated. Indeed, these cases involved so few CZs that one

could eliminate configurations with ancillae by performing explicit checks.

More significant is the use of Proposition 4 and the characterization by Theorem 9 of

|D|CZ;ℓ ≤ 2. Both of these statements are true for any fixed N , but suffer when N is allowed

to vary. For example if only N = 3 qubits are available, then det1,2 CCZ
(1,2,3) = CZ

(1,2), so

by Proposition 4, the CCZ cannot be implemented in any three-qubit CZ-circuit in which all

gates commute with Z
(1), Z(2). But if N = 4 qubits are present, det1,2(CCZ

(1,2,3)) = I(1,2), so

CCZ
(1,2,3) ⊗ I(4) can be implemented in a four-qubit CZ-circuit in which all one-qubit gates

commute with Z
(1) and Z

(2).

Similarly, for N = 3 qubits, we have ℑ(ℓ)(CCZ) = {1, 1, 1,−1} and thus by Theorem 9

|CCZ|CZ;ℓ ≥ 3. However, for N = 4 qubits, ℑℓ(CCZ(ℓ,m,n)) = {1, 1, 1,−1, 1, 1, 1,−1}, so now

Theorem 9 implies that |CCZ(1,2,3) ⊗ I(4)|CZ;1 = 2. Indeed:

•

=

• •
H • H • H • H •

• • •
• • •

On the other hand, the properties ℑ(ℓ)(U) ∼= {1, 1, . . .} and ℑ(ℓ)(U) ∼= {1,−1, 1,−1 . . .} are

stable under adding ancillae. By Theorem 9, so are the properties |U |CZ;ℓ = 0 and |U |CZ;ℓ = 1.

Since only these properties are used in the proof of Lemma 7, it too holds even in the presence

of ancillae. This leads to an extension of the CZ-cost classification of three-qubit diagonals to

the case where ancilla qubits are permitted.

Lemma 8 Let A be a unitary operator; let C be qubit minimal among CZ-circuits computing

A, possibly with the use of ancillae, using only |A|a
CZ

CZ gates. Then every ancilla in C touches

at least three CZ gates.
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Proof: Fix an ancilla qubit ℓ. If no CZ gates touch ℓ, then it may be removed. If one

(respectively two) CZ touches ℓ, then by Corollary 2 (respectively Corollary 4), then there is

a circuit with no more CZs in which the only one-qubit gates on a are diagonal.

Now form the circuit 〈0|(ℓ) C |0〉(ℓ) as in the proof of Corollary 6. This circuit computes

the operator A using one fewer ancilla, fewer CZs than C.

Corollary 7 For any two-qubit operator V , |V |a
CZ

= |V |CZ.
Proof: If no ancillae are needed to minimize CZ-count, then the result holds. Otherwise,

each ancilla used in a qubit-minimal CZ-minimal implementation must touch at least three

CZgates. Thus | · |CZ ≥ | · |a
CZ

≥ 3. However it is known [23, 22, 16] that two-qubit operators

have | · |CZ ≤ 3. Thus all the inequalities are equalities.

Proposition 15 For any three-qubit diagonal operator, D, |D|a
CZ

= |D|CZ.
Proof: Suppose |D|a

CZ
< |D|CZ. By Lemma 8, a qubit-minimal circuit for D achieving the

bound for |D|a
CZ

contains at least three CZ gates incident on each ancilla. By assumption at

least one ancilla is used, so |D|CZ > |D|a
CZ

≥ 3. It follows from Theorem 14 and Lemma 6

that |D|CZ;ℓ > 1 for the three qubits ℓ = 1, 2, 3. By Theorem 9, this property is stable under

addition of ancilla. Thus a qubit-minimal circuit for D achieving the bound for |D|a
CZ

contains

at least 3 CZs incident to each ancilla, and at least 2 CZs incident to each non-ancilla qubit. If

k ancillae are used, then we have |D|a
CZ

≥ (3k + 6)/2. From Theorem 14 and the supposition

we have |D|a
CZ
< |D|CZ = 6; it follows that k = 1, that |D|a

CZ
= 5, and that |D|CZ = 6.

In any four-qubit, five-CZ circuit for D, we must have two of the non-ancilla, say x1, x2

touching two CZs, and both the remaining non-ancilla z and the ancilla a touching three.

By Corollary 4, we can assume that the only one-qubit operators appearing on x1, x2 are

diagonal. We may also assume that the graph where vertices are qubits and edges are CZ

gates is connected; otherwise D could be split into the tensor product of a two-qubit and a

one-qubit diagonal, and hence would have |D| ≤ 2. Then there are only three possibilities

regarding which wires are connected by CZs.

I (x1, x2) (x1, z) (x2, a) (z, a) (z, a)
II (x1, z) (x1, z) (x2, a) (x2, a) (z, a)
III (x1, z) (x1, a) (x2, z) (x2, a) (z, a)

We will show that any circuit with those CZ gates can be transformed so that (i) one of the

outermost CZgates does not touch the ancilla, and (ii) one of the x-qubits on which this CZ

gate acts has the property that all one-qubit gates acting on it are diagonal. As this x-qubit

only touched 2 CZ gates to begin with, it follows from Lemma 7 that s(D) takes the form

(a, b, c; ab/c). By Theorem 14, |D|CZ = 4, which is a contradiction.

We return to checking (i) and (ii). Eliminate non-diagonal one-qubit gates on xi using

Corollary 4. In Case (I), the (x1, x2) CZ can therefore only be prevented from moving by the

(x1, a). This can be on only one side, so the (x1, x2) can be moved outwards to the other.

Similarly, in Case (II), an (x, z) can only be blocked by (z, a) and the other (x, z). In this

case, the second (x, z) is blocked on only one side and can be moved to the edge. In Case

(III), we use Corollary 4 to clear both the x1 and x2 qubits of non-diagonal gates; the possible

additional one-qubit gates will only fall on the z and a qubits. Now the (x1, z) can only be

blocked by the (x2, z) and the (z, a), and also the (x2, z) can only be blocked by (z, a) and

(x1, z). Thus one of (x1, z) and (x2, z) can be made outermost.
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Corollary 8 |CCZ|a
CZ

= |TOFFOLI|a
CZ

= 6 and |PERES|a
CZ

= 5.

7 Conclusion

While our work is primarily focused on quantum circuit implementations, the TOFFOLI gate

originally arose as a universal gate for classical reversible logic [21]. In contrast, the NOT and

CNOT gates are not universal for reversible logic: their action on bit-strings is affine-linear over

F2, and thus the same is true for any operator computed by any circuit containing only these

gates.

Augmenting CNOT gates with single-qubit rotations to express the TOFFOLI gate provides

the lacking non-linearity. Thus the number of one-qubit gates (excluding inverters) needed

to express the TOFFOLI, or more generally any reversible computation, can be thought of as

a measure of its non-linearity. In this inverted cost model (also relevant to some quantum

implementation technologies) the following question remains open: how many one-qubit gates

are needed to implement the TOFFOLI? Furthermore, are there circuits that simultaneously

minimize the number of CNOT and one-qubit gates ?

In a different direction, recall our results showing that diagonality and block-diagonality

of an operator impose strong constraints on small circuits that compute this operator. We

believe other conditions may act in a similar way. In particular, we ask what can be said

about minimal quantum circuits for operators computable by classical reversible circuits, i.e.,

operators expressed by 0-1 matrices? Very little is known even for three-qubit operators. In

particular, the CNOT-cost of the controlled-swap (Fredkin gate) remains unresolved.

Closest to our present work, the exact CNOT-cost of the n-qubit analogue of the TOFFOLI

gate remains unknown. We have shown that 2n CNOTs are necessary if ancillae are not per-

mitted, but already for n = 4 we only know that 8 ≤ |CCCZ|CZ ≤ 14, where the upper bound is

provided by a generic decomposition of diagonal operators [3]. Existing constructions of the

n-qubit TOFFOLI gate require a quadratic number of CNOT gates without the use of ancillae.

With one ancilla, such constructions require linearly many CNOTs, but the leading coefficient

is in double-digits [1, 12].

Finally, we hope that our proof can be simplified and our techniques generalized. In par-

ticular, we have relied on repeated comparisons of various Cartan decompositions to each

other. A careful study of the proof will reveal the simultaneous use of six Cartan decomposi-

tions — those corresponding to conjugation by X and Z on each of three wires. Keeping track

of these decompositions in a more systematic manner may simplify the proof, while using

additional decompositions may lead to new results. A related challenge is gauging the power

of the qubit-by-qubit gate counting we have used. It follows from the results of [18] that

|U |CZ;ℓ < 6(n − 1) for U an n-qubit operator, and hence no technique relying solely on this

process can achieve better than a quadratic lower bound. On the other hand, we have only

been able to characterize cases when |U |CZ;ℓ > 2, and thus have achieved only linear lower

bounds.
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Appendix: Proof of Proposition 4

Below we restate Proposition 4 and complete its proof.

Proposition 5 Fix qubits ℓ1 . . . ℓk among N > k qubits. A unitary U commuting with

Z
(ℓ1), . . . , Z(ℓk) can be implemented by a CZ-circuit in which only diagonal gates operate on

qubits ℓi if and only if detℓ1...ℓk
(U) is separable (can be implemented by one-qubit gates).
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Proof: (⇒). It suffices to show the separability of detℓ1...ℓk
(U) for a small generating set of

operators. Direct calculation confirms this for (i) CZ gates, (ii) diagonal one-qubit gates on

the ℓi, and (iii) any gate not affecting qubits ℓi.

(⇐). By hypothesis, detℓ1...ℓk
(U), and hence D = detℓ1...ℓk

(U)−2k−N

, can be implemented

using only one-qubit diagonal gates. It remains to implement Ũ = U/D, which satisfies the

normalization Ũj1...jk
∈ iSU(2N−k). We will construct a circuit for Ũ by multiplexing circuits

for Ũj1...jk
. Let C be a (N − k)-qubit circuit containing only CZs and one-qubit Rx, Ry, Rz

gates such that any operator in iSU(2N−k) can be implemented by making the appropriate

choice of parameter for the Rx, Ry, Rz gates. Such universal circuits exist [1]; see Section 2.3

for modern constructions. Choose specifications Cj1...jk
implementing the Ũji...jk

; let the s-th

rotation gate in Cj1...jk
be given by Rd(s)(θj1...jk

(s))(q(s)), where q(s) is a qubit, θj1...jk
(s) is

an angle, and d(s) = x, y, z. Define Θ(s) to be the real diagonal operator on qubits ℓi . . . ℓk
such that Θ(s)ji...jk

= θj1...jk
(s). Form the N -qubit circuit C̃ by replacing the s-th rotation

gate of C by the multiplexed rotation Rd(s)(Θ(s))(q(s)); then C̃ implements Ũ . Implement

Rd(s)(Θ(s))(q(s)) by a CZ-circuit containing no one-qubit operator on any qubit save q(s),

which is not one of the ℓi (see [13] or Section 2.3).

Corollary 9 N -qubit operators which commute with Z on k qubits can be implemented using

on the order of 2k4N−k one-qubit and CZ gates.g

Proof: This follows from the construction in the proof of Proposition 4 and the known

estimates in the cases k = 0, N − 1 [13] and k = N [3].

gDimension-counting following [9] shows that roughly this many are necessary for almost all such operators.


