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Many classical algorithms are known to efficiently compute the wavelet transforms. How-
ever, those classical algorithms cannot be directly translated to quantum algorithms. Re-

cently, efficient and complete quantum algorithms for two representative wavelet trans-
forms (quantum Haar and quantum Daubechies of fourth order) have been proposed. In
this paper, we generalize these algorithms in order to they can be applied to Daubechies

wavelet kernels of any order. Specifically, we develop a method that efficiently factorize
those kernels. The factorization is compatible with the existing pyramidal and packet
quantum wavelet algorithms. All steps of the algorithm are unitary and easily imple-
mentable on a quantum computer.
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1 Introduction

A quantum computer [1] works with qubits where each qubit can be a zero, a one, or a

quantum superposition of both, allowing for an infinite number of states. In other words, a

qubit can exist simultaneously as both 0 and 1, with a numerical coefficient representing the

probability for each state. An algorithm for a quantum computer must initialize those qubits

in some specified state. In each step of the algorithm, the quantum computer operates by

manipulating those qubits with quantum logic gates. The existence of superposition states in

the qubit provides a new dimension to the concept of computing. Because of superposition

states in qubits, a quantum processor can perform calculations using all possible input values

simultaneously. So, with only one calculation, all the possible outputs corresponding to all the

possible inputs (combinations of zeros and ones) can be computed. In other words, a quantum

computer provides a massive parallelism achieved through superposition. To realize the full

potential of quantum computers, new algorithms must be designed that exploit quantum

parallelism fully.

The quantum computation is encoded into the unitary time evolution of a quantum me-

chanical state vector [2]. The unitary character of the process ensures it is invertible. There-

fore, the paradigm of computation as a quantum process implies that all quantum computa-

tions have to be unitary. In order words, it has to be assured that all steps of a quantum

algorithm are restricted to unitary transformations. This excludes all the classically com-

putable operations that cannot be written as unitary transformations. The bad news is that
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many computations that we would like to perform are not originally described in terms of

unitary operations.

Algorithm design is a complicated task, and in quantum computing it becomes even more

complicated. As each intermediate operation must be unitary, we might need to be quite

creative in encoding a desired computation on a quantum computer. Fortunately, the unitary

transforms such as Fourier, Walsh-Hadamard, cosine, Hartley, and wavelet transforms are

describable naturally in terms of unitary operations [3, 4]. The kernel of these transformations

can be expressed, in matrix form, as an unitary matrix. However, classical algorithms usually

include non unitary operations and therefore they cannot be used in quantum computing.

This is the case of the wavelet algorithms based on lifting steps [5], which are not unitary

operations. Quantum algorithms for the Fourier [1], cosine [6, 7] and Hartley [8] transform

have been proposed.

There is a class of unitary transforms, the wavelet transforms, which are as useful as the

Fourier transform for some applications. Wavelet transforms are used to expose the multi-

scale structure of a signal. A wavelet is a kind of mathematical function used to divide a

given function or continuous-time signal into different frequency components and study each

component with a resolution that matches its scale [9, 10]. The wavelet transform separates

low and high frequencies, just as the Fourier transform. The advantage is that wavelets are

localized in time, since they only are defined on part of the interval of the data, as opposed to

the trigonometric functions used in Fourier analysis which are defined on the entire interval.

A few years after the discovery of the quantum Fourier algorithm, it has been shown that

certain wavelet transforms can also be implemented on a quantum computer in a polyno-

mial number of quantum gates. In fact, explicit quantum circuits were developed for the

most popular discrete wavelet transforms, namely, the Haar and Daubechies of fourth order

wavelets, both for pyramidal and packet algorithms [4, 11, 12, 13]. As it happens in classical

signal analysis, it is natural to expect that quantum wavelet transforms will find important

future applications for the treatment of quantum images, quantum databases, quantum data

compression, and other applications [14].

Høyer [11] presented a general technique for developing fast quantum algorithms for com-

puting unitary transforms. It is based on a routine which uses a generalized Kronecker

product. This technique directly gives quantum networks for computing unitary transforms

which are known to be expressible by generalized Kronecker products. Applications include

re-development of the networks for computing the Walsh-Hadamard and the quantum Fourier

transform. Also, new quantum networks implementing the kernel of two wavelet transforms

are found this way. The wavelet kernels considered in that paper are the quantum Haar and

quantum Daubechies of fourth order (D(4)) kernels.

Fijany and Williams [4] developed fast algorithms and efficient circuits for quantum wavelet

transforms. First, they analyze the feasibility and efficiency of the implementation of the

packet and pyramid algorithms by using a given wavelet kernel. They also develop efficient and

complete gate-level circuits for two representative wavelet kernels, the Haar and Daubechies

of fourth order kernels. The approach used is to factor the operators for these transforms into

direct sums, direct products and dot products of unitary matrices. Surprisingly, they found

that the operations that are easy and inexpensive to implement classically are not always

easy and inexpensive to implement quantum mechanically, and vice versa. In particular, the
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computational cost of performing certain permutation matrices is ignored classically because

they can be avoided explicitly. However, quantum mechanically, these permutation operations

must be performed explicitly and hence their cost enters into the full complexity measure of

the quantum transform.

In this paper we present a quantum algorithm for computing Daubechies wavelets of

any order. It is based on a generalization of the factorization proposed by Høyer [11] for the

Daubechies wavelet kernel D(4). Specifically, we develop a method that efficiently factorize any

Daubechies wavelet kernel D(k). With this factorization, we can directly apply the quantum

pyramidal and quantum packet algorithms developed by Fijany and Williams [4]. All steps of

the algorithm are unitary and easily implementable on a quantum computer. The organization

of the rest of the paper is as follows: in section 2, we describe the Høyer’s factorization; the

proposed generalized factorization is developed in section 3; and finally, in section 4, we

present the conclusions.

2 Daubechies wavelet of fourth order

The Daubechies wavelet [9] of fourth order has four scaling function coefficients. Each step

of the wavelet transform applies the wavelet function to the input data. The kernel of this

wavelet for sequences of 2n data elements can be written in matrix form (of size 2n × 2n) as

D
(4)
2n =














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This form is suitable for a classical computation and because of its sparse structure, the

application of D
(4)
2n can be realized with an optimal cost of O(2n). However, the matrix form

of D
(4)
2n as given by (1) is not suitable for a quantum implementation. To achieve a feasible

and efficient quantum implementation, a suitable factorization of D
(4)
2n need be developed [4].

Høyer [11] proposed a factorization of D
(4)
2n as

D
(4)
2n = (I2n−1 ⊗ C1)S2n(I2n−1 ⊗ C0), (2)

with
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(it is not the standard coefficient

ordering [9]), and
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
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S2n is a permutation matrix with a quantum description given by

S2n |a〉 =

{

|a〉 if a even,

|(a − 2)mod2n〉 if a odd.
(5)

S2n can be implemented using a quantum circuit with a complexity of O(n) [4, 11, 15].

Given the factorization of the wavelet kernel (2), its corresponding wavelet transform can

be performed according to a pyramid algorithm or a packet algorithm. Fijany and Williams

[4] proposed the factorization of these algorithms using permutation matrices and developed

efficient quantum circuits that implement them.

3 Quantum wavelet of any order

The order of the wavelet refers to the number of coefficients. Daubechies orthogonal wavelets

D(2) to D(20) (even orders only) are commonly used. Each wavelet has a number of vanishing

moments equal to half the number of coefficients. For example, D(2) (the Haar wavelet)

has two coefficients and one vanishing moment, D(4) has four coefficients and two vanishing

moments, etc. Increasing the number of vanishing moments, the wavelet becomes smoother.

In this section we will develop a method for factoring the kernel of the Daubechies wavelet of

any order suitable for a quantum implementation. It is a generalization of the factorization

given in Eq. (2) for the wavelet of fourth order.

Let A
(k)
2n (with k even) be a matrix with a similar form to the Daubechies wavelet kernel

of kth order but with arbitrary coefficient values limited only by the unitary (orthogonality)

condition. For example, the sixth order matrix A
(6)
2n can be written as

A
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In the case that the coefficient values of A
(k)
2n are the same than those in the Daubechies

matrix, we can write A
(k)
2n = D

(k)
2n and ai = hi. When it is necessary to indicate in the

coefficients the order of the matrix, we will write a
(k)
i instead of ai.

We can generalize the factorization (2) from the particular case of D
(4)
2n to the general case

of A
(k)
2n . Specifically, we can write a matrix of order k as the multiplication of a matrix of

order k − 2 and two auxiliary orthogonal matrices,

A
(k)
2n = (I2n−1 ⊗ C2)S2nA

(k−2)
2n , (7)

with S2n given by (4) and

C2 =

(

ca cb

−cb ca

)

. (8)

Expression (7) implies a system of equations that relates the coefficients ca, cb and a
(k−2)
i

to the coefficients a
(k)
i . Solving these equations, we obtain the following expressions:

α =

√

(a
(k)
0 )2 + (a

(k)
k−1)

2, (9)

ca =
1

α
a
(k)
0 , (10)

cb = −
1

α
a
(k)
k−1, (11)

a
(k−2)
0 = α, (12)

a
(k−2)
1 = −α

a
(k)
k−2

a
(k)
k−1

, (13)

a
(k−2)
i =

1

α

(

a
(k)
0 a

(k)
i + (−1)ia

(k)
k−1a

(k)
k−i−1

)

, i = 2, . . . , k − 3. (14)

This construction is linear in k, though for all practical purposes, k is a constant. By

recursively applying Eq. (7) and expressions (9)-(14), the factorization of the Daubechies

wavelet of any order k can be easily obtained as

D
(k)
2n = (I2n−1 ⊗ C2,k)S2n(I2n−1 ⊗ C2,k−2)S2n · · · (I2n−1 ⊗ C2,4)S2n(I2n−1 ⊗ A

(2)
2 ), (15)

where we have used a second subindex to distinguish matrices C2 with different coefficient

values. This equation is the generalization of (2) to any order k.

The factorization given by Eq. (15) has a efficient implementation on a quantum computer.

All factors are unitary matrices and can be implemented with a complexity of O(n). Figure 1

shows a block-level circuit implementation of this equation. The circuit can be used as kernel

in the pyramid and packet quantum algorithms proposed in [4].

3.1 Example

As a example, we will develop the factorization of Daubechies wavelet kernel of sixth order,

D(6). The kernel D
(6)
2n is given in matrix form by Eq. (6) with the followings coefficients [9]:
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..
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...

...

...

...0

1

n−1

n−2

Fig. 1. A block-level circuit for implementation of D
(k)
2n based on Eq. (15).

h0 = 0.3326705529500825
h1 = 0.8068915093110924
h2 = 0.4598775021184914
h3 = −0.1350110200102546
h4 = −0.0854412738820267
h5 = 0.0352262918857095

(16)

We apply recursively Eq. (7). In the first step, D
(6)
2n = (I2n−1 ⊗ C2,6)S2nA

(4)
2n , and using

expressions (9)-(14),

α =
√

h2
0 + h2

5, (17)

c4 =
1

α
h0, (18)

c5 = −
1

α
h5, (19)

a
(4)
0 = α, (20)

a
(4)
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h4

h5
, (21)

a
(4)
2 =

1

α
(h0h2 + h5h3), (22)

a
(4)
3 =

1

α
(h0h3 − h5h2). (23)

In the second step, A
(4)
2n = (I2n−1 ⊗ C2,4)S2nA

(2)
2n , and
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√
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3 )2, (24)
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a
(2)
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a
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(4)
2

a
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3
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As a result, we obtain the factorization of D
(6)
2n as

D
(6)
2n = (I2n−1 ⊗ C2,6)S2n(I2n−1 ⊗ C2,4)S2n(I2n−1 ⊗ A

(2)
2 ), (29)

with

A
(2)
2 =

(

a0 a1

a1 −a0

)

, (30)

C2,4 =

(

c2 c3

−c3 c2

)

, (31)

C2,6 =

(

c4 c5

−c5 c4

)

, (32)

α =
√

h2
0 + h2

5, (33)

β = α

√

1 +

(

h0h3 − h5h2

h2
0 + h2

5

)2

, (34)

a0 = β, (35)

a1 = β
h0h2 + h3h5

h2h5 − h0h3
, (36)

c2 =
α

β
, (37)

c3 =
1

αβ
(h2h5 − h0h3), (38)

c4 =
1

α
h0, (39)

c5 = −
1

α
h5. (40)

Table 1 shows the coefficient values obtained with our method for some wavelet transforms.

4 Concluding remarks

In this paper we have proposed a fast quantum algorithm for wavelet transforms of any order.

Specifically, we have developed a method for factorizing a generic Daubechies wavelet kernel.

With this factorization, the wavelet kernel can be efficiency implemented with a complexity

of O(n). This implies the feasibility and efficiency of the quantum implementation of both

the pyramid and packet algorithms by using our factorization for the wavelet kernel.

The quantum wavelet transform can be computed efficiently, but few applications are

known. The most basic wavelet, the Haar transform, has been used in quantum searching,

sorting, and element distinctness [16], and to replace the Fourier transform in the Grover algo-

rithm [17]. This wavelet might also be applicable in other problems where the input function is

guaranteed to be piecewise constant. For more smooth input functions, a Daubechies wavelet

transform of higher order would probably do better [16]. We believe it is a very interesting

question to study the use of the wavelet transforms and of other related transformations to

replace the Fourier transform in many quantum applications.
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Table 1. Coefficient values obtained in the factorization of some wavelet transforms.

Daubechies D(6)

a0 = 0.3811623112547295
a1 = 0.9245081354314583
c2 = 0.8776586509122140
c3 = 0.4792862323069094
c4 = 0.9944404247714915
c5 = −0.1053007197520300

Daubechies D(8)

a0 = 0.3067400413031922
a1 = 0.9517933321214848
c2 = 0.7767099476830462
c3 = 0.6298584421679204
c4 = 0.9679887560642052
c5 = −0.2509935619359045
c6 = 0.9989436716376567
c7 = 0.0459515059065259

Daubechies D(10)

a0 = 0.2562893254436279
a1 = 0.9666001146615028
c2 = 0.6848711679863367
c3 = 0.7286641772867876
c4 = 0.9203874725141433
c5 = −0.3910075452456475
c6 = 0.9912472113188926
c7 = 0.1320188094648594
c8 = 0.9997830230904323
c9 = −0.0208304282278630

Daubechies D(12)

a0 = 0.2199821557649779
a1 = 0.9755038960172864
c2 = 0.6072614608381266
c3 = 0.7945020567504809
c4 = 0.8614131902113027
c5 = −0.5079048294021096
c6 = 0.9717186051810308
c7 = 0.2361418055851860
c8 = 0.9975589756036319
c9 = −0.0698290068140210
c10 = 0.9999533612666631
c11 = 0.0096579134134792

Daubechies D(14)

a0 = 0.1926509552582037
a1 = 0.9812673486040248
c2 = 0.5429835256039748
c3 = 0.8397433482455683
c4 = 0.7999360902765198
c5 = −0.6000852035112311
c6 = 0.9403783419491656
c7 = 0.3401302309306516
c8 = 0.9900484148597817
c9 = −0.1407271694934331
c10 = 0.9993149766026649
c11 = 0.0370078037394183
c12 = 0.9999896788726393
c13 = −0.0045433630930678


