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We microscopically model the decoherence dynamics of entangled coherent states of two
optical modes under the influence of vacuum fluctuation. We derive an exact master

equation with time-dependent coefficients reflecting the memory effect of the environ-
ment, by using the Feynman-Vernon influence functional theory in the coherent-state rep-
resentation. Under the Markov approximation, our master equation recovers the widely

used Lindblad equation in quantum optics. We then investigate the non-Markovian
entanglement dynamics of the two-mode entangled coherent states under vacuum fluc-
tuation. Compared with the results in Markov limit, it shows that the non-Markovian
effect enhances the disentanglement to the initially entangled coherent state. Our anal-

ysis also shows that the decoherence behaviors of the entangled coherent states depend
on the symmetrical properties of the entangled coherent states as well as the couplings
between the optical fields and the environment.
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1 Introduction

Optical fields are widely used in quantum communication since quantum information is almost

invariably transmitted using photons. Experimental quantum teleportation has been realized

using the discrete two-photon polarization entanglement states [1] or the continuous two-

mode squeezed entanglement states [2, 3] as quantum channels [4]. Another important type

aEmail address: wzhang@mail.ncku.edu.tw

317



318 Non-Markovian decoherence dynamics of entangled coherent states

of continuous variable entanglement states, entangled coherent states [5, 6, 7, 8, 9, 10], has

also been proposed as a potential quantum channel to teleport unknown quantum states

[11, 12, 13]. In this paper, we shall investigate the non-Markovian decoherence dynamics of

the continuous variable quantum channel in terms of entangled coherent states.

As well known, a realistic analysis of quantum systems for quantum information pro-

cessing must take into account decoherence effect. There has been an increasing interest in

describing various continuous variable quantum channel under noise [14, 15, 16, 17, 18, 19].

Conventional approaches treat the interaction between the quantum system and its environ-

ment perturbatively, which yield equations of motion such as Redfield or master equations

under the Born-Markov approximation [20, 21, 22]. Although the approximation has been

widely employed in the field of quantum optics, where the characteristic time of the envi-

ronmental correlation function is short compared with that of the system investigated [22],

its validity is experiencing more and more challenges in facing new experimental evidences

[23]. Moreover, the Born-Markov approximation is in general invalid in dealing with most

condensed-matter problems, for example, a quantum system hosted in a nanostructured en-

vironment [24, 25, 28, 26, 27], because possible large coupling constants and long correlation

time scales of the environment both require a non-perturbative treatment. Thus, how to

develop a general non-perturbative microscopic description of open quantum systems has

attracted much attention recently [29, 30, 31, 32].

In the present work, we shall focus attention on the influence of vacuum fluctuation on

quantum channels in terms of entangled coherent states. To this end, we model the system

as two optical modes coupled to a bosonic environment at zero temperature. We shall then

develop non-perturbatively a microscopic description to the decoherence dynamics of such

systems. We have noticed that most of previous theoretical works to explore the decoherence

dynamics of the optical field system relied on Born and/or Markov approximation [14, 15,

16, 17, 18, 19]. To derive non-perturbatively the decoherence dynamics of an open quantum

system, we will employ the Feynman-Vernon influence functional theory [33, 34, 35] in the

coherent state path integral formalism [36], which enables us to treat both of the back-actions

from the environment to the system and from the system to the environment self-consistently.

After a careful evaluation of the coherent state path integrals, we obtain an operator form of

the exact master equation with time-dependent coefficients describing the full non-Markovian

dynamics of the back-actions between the system and the environment.

We then investigate the non-Markovian decoherence dynamics of the entangled coherent

states [5] using the exact solution of the reduced density matrix, where the entanglement

is measured by the concurrence [37]. The non-Markovian effect is manifested in the short

time peak of the time dependent coefficients in the master equation, which results in an

enhancement of the disentanglement to the entangled coherent states. Indeed, in a recently

published paper [32], we have already used the exact non-Markovian master equation derived

in this paper to study the decoherence dynamics of another type of the continuous variable

entangled states, i.e. entangled squeezed states, where the entanglement is determined by the

logarithmic negativity [38] rather than the concurrence since the later is not applicable to

entangled squeezed states.

The paper is organized as follows. In Sec. II, we introduce the model of two optical modes

interacting with a common environment in the coherent-state representation. In Sec. III, we
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show the detailed derivation of the influence functional theory to the model. The exact master

equation is derived in Sec. IV. Sec. V is devoted to the study of entanglement dynamics and

the decoherent properties of quantum channels in terms of the entangled coherent states.

Finally, a brief summary is made in Sec. VI.

2 The Hamiltonian of two optical modes in an environment

Our system includes two separated optical modes subject to a common vacuum fluctuation,

which is relevant to quantum network and has been widely investigated [39, 40]. Since we are

interested in the decoherence of the two optical modes mediated by a vacuum electromagnetic

field after the two-mode entangled coherent state is prepared [7, 8], we can omit the terms

regarding the atoms in [39, 40]. The Hamiltonian of the whole system is then given by

H = HS +HE +HI , (1)

where

HS = h̄ω1a
†
1a1 + h̄ω2a

†
2a2 + h̄κ(a†1a2 + a†2a1), (2)

HE =
∑

k

h̄ωkb
†
kbk, (3)

HI =
∑

l,k

h̄(glka
†
l bk + g∗lkalb

†
k), (4)

are, respectively, the Hamiltonians of the two optical modes, the environment (vacuum fluc-

tuation), and the interaction between them. The operators al and a†l (l = 1, 2) are the

corresponding annihilation and creation operators of the l-th optical mode with frequency ωl.

The parameter κ is a coherent tunneling rate of photons between the two optical systems,

such as two cavities [41, 42], which is proportional to the overlap of the two wave packets

of the optical fields. Such coupled optical array system recently attracts much attention

[41, 42, 43] for the possible materialized in a variety of physical systems, for example, fiber

coupled micro-toroidal cavities [44], arrays of defects in photonic band gap materials [45] and

superconducting qubits coupled through microwave stripline resonators [46].

The environment is modeled, as usual, by a set of harmonic oscillators identifying the

vacuum electromagnetic field with the annihilation and creation operators bk and b†k(k =

1, 2, · · · ), glk are the coupling constants between the optical modes and the environment. In

Eq. (1) we have also suppressed the polarization of the fields for both the systems and the

environment. Since most quantum optical experiments are made currently in low temperature

and under vacuum condition, the vacuum fluctuation should be a main source of decoherence.

Therefore, we take the environment to be at zero temperature throughout this paper.

To apply the influence functional method to an open quantum system, the first step

towards the dynamics of the reduced system is to compute the forward and backward prop-

agators between certain initial and final states of the full system by choosing a convenient

representation. In the present work we use the coherent-state representation [36], in which

the basis of the Hilbert space for the environment consists of multi-mode bosonic coherent

states

|z〉 =
∏

k

|zk〉, |zk〉 = exp(zkb
†
k)|0k〉, (5)
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and that for the two optical modes is the two single-mode bosonic coherent states

|α〉 =

2
∏

l=1

|αl〉, |αl〉 = exp(αla
†
l )|0l〉, (6)

where the shortened notations for the complex variables, z = (z1, z2, · · · ) and α = (α1, α2) ,

are introduced.

The coherent states defined above are eigenstates of annihilation operators,

bk|zk〉 = zk|zk〉, al|αl〉 = αl|αl〉. (7)

As these coherent states are over-complete, they obey the resolution of identity,

∫

dµ(z)|z〉〈z| = 1,

∫

dµ (α) |α〉〈α| = 1, (8)

where the integration measure is defined by dµ(z) =
∏

k e
−z∗kzk

dz∗kdzk

2πi and a similar form for

dµ (α). As it is shown, the bosonic coherent states we used here are not normalized, and the

normalization factors are moved into the above integration measures, which corresponds to

the Bargmann representation of the complex space. Moreover, these coherent states are also

nonorthogonal,

〈z|z′〉 = exp(
∑

k

z∗kz
′
k), 〈α|α

′〉 = exp(
∑

l

α∗
l α

′
l). (9)

The use of the coherent-state representation makes the evaluation of path integrals extremely

simple. In the coherent-state representation, the Hamiltonians of the two optical modes, the

environment (vacuum fluctuation), and the interaction between them are expressed as

HS(ᾱ,α) = h̄

2
∑

l=1

ωlᾱlαl + h̄κ(ᾱ1α2 + ᾱ2α1), (10)

HE(z̄, z) =
∑

k

h̄ωkz̄kzk, (11)

HI(ᾱ, α, z̄, z) =
∑

lk

h̄(glkᾱlzk + g∗lkz̄kαl), (12)

where z̄ and ᾱ denote the complex conjugate of z and α, respectively. With the above

coherent-state representation, we will present in the next two sections a detailed derivation

of the exact master equation for the reduced density matrix of the two optical fields that we

have simply outlined in our early work [32].

3 The influence functional theory

3.1 The influence functional in coherent-state representation

We follow the influence functional method of [47] by expressing the density matrix of the

composite system as a double-path coherent state path integral. After eliminating the degrees

of freedom of the environment, we can incorporate all the environmental effects on the reduced

system in a functional integral named influence functional [33]. Then the dynamics of the
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reduced system will be governed by an effective action retaining all the influences from the

environment in the influence functional.

The total density matrix of the system plus the environment obeys the quantum mechan-

ical equation ih̄∂ρtot(t)/∂t = [H, ρtot(t)], which yields the formal solution:

ρtot (t) = e
−iHt

h̄ ρtot (0) e
iHt

h̄ . (13)

Different from the coordinate representation in [34, 35], the coherent-state representation

leads to,

〈αf , zf |ρtot (t) |α′
f , zf 〉 =

∫

dµ(zi)dµ(αi)dµ(z′i)dµ(α′
i)〈αf , zf ; t|αi, zi; 0〉

×〈 αi, zi|ρtot(0)|α′
i, z

′
i〉〈α

′
i, z

′
i; 0|α

′
f , zf ; t〉, (14)

where the resolutions of identity, Eq.(8), has been used. The density matrix given by Eq. (14)

describes the behavior of the two optical modes plus the environment as a whole. As we

are only interested in dynamics of the two optical modes, we will work with the reduced

density matrix by integrating over the environmental variables. We also assume that the

initial density matrix could be factorized into a direct product of the two-mode state and

the environment state ρtot(0) = ρ(0) ⊗ ρE(0), namely, assuming no correlation between the

environment and the system at t ≤ 0 [48]. Then the reduced density matrix fully describing

the dynamics of the two optical modes is given by

ρ(ᾱf ,α
′
f ; t) =

∫

dµ(αi)dµ(α′
i)ρ(ᾱi,α

′
i; 0)J (ᾱf ,α

′
f ; t|ᾱi,α

′
i; 0), (15)

where ρ(ᾱ,α′; τ) ≡
∫

dµ(z)〈α, z|ρtot(τ)|α
′, z〉, and

J (ᾱf ,α
′
f ; t|ᾱi,α

′
i; 0) =

∫

dµ(zf )dµ(zi)dµ(z′i)〈αf , zf ; t|αi, zi; 0〉ρE(z̄i, z
′
i; 0)〈α′

i, z
′
i; 0|α

′
f , zf ; t〉, (16)

is the propagating function of the reduced density matrix, which contains two propagators

for the total system: the forward and backward propagators, e∓
iHt

h̄ , plus the initial density

matrix of the environment as a matrix element in the coherent-state representation.

In the following we will show how to calculate the forward propagator in terms of the

coherent state path integral [49, 36]. The similar calculation could be done for the backward

one. To evaluate the forward propagator operator e
−iHt

h̄ between the initial (|αi, zi〉) and

the final (〈αf , zf |) coherent states, one can generally divide the time interval tf − ti into

N subintervals. Then by inserting the resolution of identity (N − 1) times between each

subintervals and taking the limit of large N , we have the forward propagator in terms of the

coherent state path integral,

〈αf , zf ; t| αi, zi; 0〉 =

∫

D2zD2
α exp

{ i

h̄

(

SS [ᾱ,α] + SI [z̄, z, ᾱ,α] + SE [ z̄, z]
)

}

, (17)

where SS , SE , and SI are the actions corresponding to the two optical modes, the environment,
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and the interaction Hamiltonian HS , HE , and HI , respectively,

SS [ᾱ,α] =
∑

l

{

− ih̄ᾱlαl (t) +

∫ t

0

dτ [ih̄ᾱlα̇l(τ)−HS(ᾱ,α)]
}

, (18)

SE [z̄, z] =
∑

k

{

− ih̄z̄kzk(t) +

∫ t

0

dτ [ih̄z̄kżk(τ)−HE(z̄, z)]
}

, (19)

SI [z̄, z, ᾱ,α] = −

∫ t

0

dτHI(ᾱ, α, z̄, z). (20)

All the functional integrations are carried out over paths z̄(τ), z(τ), ᾱ(τ), and α(τ) with

endpoints z̄(t) = z̄f , z(0) = zi, ᾱ(t) = αf , and α(0) = αi. Substituting Eq. (17) and a

similar expression for the backward propagator into Eq. (16), we obtain

J (ᾱf ,α
′
f ; t|ᾱi,α

′
i; 0) =

∫

D2
αD2

α
′ exp

{ i

h̄
(SS [ᾱ,α]− S∗

S [ᾱ′, α
′])

}

F [ᾱ, α, ᾱ
′,α′], (21)

where

F [ᾱ,α, ᾱ
′,α′] =

∫

dµ(zf )dµ(zi)dµ(z′i)D
2zD2z′ρE(z̄i, z

′
i; 0)

× exp
{ i

h̄
(SE [z̄, z]− S∗

E [z̄′, z′] + SI [z̄, z, ᾱ,α]− S∗
I [z̄

′, z′, ᾱ′,α′])
}

(22)

is defined as the Feynman-Vernon influence functional in the coherent state representation,

which contains all the environmental effects on the two optical modes.

3.2 Evaluation of the influence functional

Now we can calculate explicitly the influence functional of our model using the coherent-state

path-integral formalism presented above. Substituting the model Hamiltonian into the actions

of Eq. (18-20), we obtain the explicit form of the forward propagator. The path integral of

the environmental part of the propagator can be done by the stationary phase method [49, 36]

with the boundary conditions zk(0) = zki and z̄k(t) = z̄kf , which results in the equations of

motion,

żk + iωkzk = −i
∑

l

g∗lkαl, ˙̄zk − iωkz̄k = i
∑

l

glkᾱl, (23)

where the paths regarding ᾱ and α are taken as external sources. The solution to the

stationary path equation (23) are

zk(τ) = zkie
−iωkτ − i

∑

l

g∗lk

∫ τ

0

dτ ′e−iωk(τ−τ ′)αl(τ
′), (24)

z̄k(τ) = z̄kfe
iωk(τ−t) − i

∑

l

glk

∫ t

τ

dτ ′eiωk(τ−τ ′)ᾱl(τ
′). (25)

Note that the prefactor under the contribution of stationary path in the coherent-state path

integral is unity, and the stationary phase method to treat the environmental part here is

exact for the action being only a quadratic function of the dynamical variables. The path
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integral of the environmental part for the backward propagator 〈α′
i, z

′
i; 0|α

′
f , zf ; t〉 can be

evaluated in the same way.

Since we only consider the vacuum fluctuation, the environment is initially in the equi-

librium state at zero temperature, we then have ρE(z̄i, z
′
i; 0) = 1. Substituting the solution

(24-25) for zk(τ), z̄k(τ) and a similar solution for z̄′k(τ), z
′
k(τ) together into Eq. (22), and

using the Gaussian integral identity
∫

d2z
π
e−γz̄z+λz+νz̄ = 1

γ
e

λν
γ repeatedly for the integral over

zi, z
′
i, zf , we reach the final form of the influence functional that we have used in [32],

F [ᾱ,α, ᾱ
′,α′] = exp

{

∫ t

0

dτ

∫ τ

0

dτ ′
[

∑

l,m

(ᾱ′
l(τ)− ᾱl(τ))µlm(τ − τ ′)αm(τ ′)

+(αl(τ)− α
′
l(τ))µ

∗
lm(τ − τ ′)ᾱ′

m(τ ′)
]}

, (26)

where µlm(x) =
∑

k e
−iωkxglkg

∗
mk is the dissipation-noise kernel.

4 The exact non-Markovian master equation

4.1 The propagating function of the reduced density matrix

In the above derivation of the influence functional, the back-actions between the two optical

modes and the environment have been treated self-consistently. All the effects from environ-

ment on the two optical modes are incorporated in the influence functional which leads to a

modification to the action of the two optical modes,

J (ᾱf ,α
′
f ; t|ᾱi,α

′
i; 0) =

∫

D2
αD2

α
′ exp

{

2
∑

l=1

(

ᾱlαl (t) + ᾱ′
lα

′
l (t)

)

−

∫ t

0

dτ
[

2
∑

l=1

(

ᾱlα̇l + ˙̄α′
lα

′
l

)

+ iHS(ᾱ,α)− iHS(ᾱ′,α′)
]

}

F [ᾱ, α, ᾱ
′,α′].

(27)

To execute the path integral of Eq. (27), again we resort to the stationary phase method and

obtain the equations of motion as (l 6= l′ )

α̇l + i(ωlαl + καl′) = −

∫ τ

0

dτ ′
2

∑

m=1

µlm (τ − τ ′)αm (τ ′) , (28)

˙̄α′
l − i(ωlᾱ

′
l + κᾱ′

l′) = −

∫ τ

0

dτ ′
2

∑

m=1

µ∗
lm (τ − τ ′) ᾱ′

m (τ ′) . (29)

with the boundary conditions αl (0) = αli and ᾱ′
l (0) = ᾱ′

li.

The integro-differential equations render the reduced dynamics non-Markovian, with the

memory of the environmental dynamics registered in the time-nonlocal kernels. To simplify

the discussion, we further assume that the two optical modes are identical, i.e., ω1 = ω2 ≡ ω0.

Then the coupling strength to the common environment should also be the same: g1k =

eiφg2k ≡ gk, where the phase factor eiφ ≡ λ models the phase difference between the two

optical modes coupled with the environment. In the present work we will consider two special

cases: the two optical modes couple with the environment in phase (a constructive interference
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coupling with φ = 0 → λ = 1) and out of phase (a destructive interference coupling with

φ = π so that λ = −1). By introducing the new variables

αl(τ) = αliu(τ)− αl′iv(τ), ᾱ′
l(τ) = ᾱ′

liū(τ)− ᾱ
′
l′iv̄(τ), (30)

and using the equations of motion (28-29), we obtain the propagating function of the reduced

density matrix as

J (ᾱf ,α
′
f ; t|ᾱi,α

′
i; 0) = exp

{

2
∑

l=1

[

uᾱlfαli + ūᾱ′
liα

′
lf − (ūu+ v̄v − 1)ᾱ′

liαli
]

−
2

∑

〈l,l′〉

[

vᾱlfαl′i + v̄ᾱ′
liα

′
l′f − (ūv + v̄u)ᾱ′

liαl′i
]

}

. (31)

where u, v are solutions of Eq. (30) at time τ = t. The exact reduced density matrix is

then easy to be obtained by substituting the above solution of the propagating function into

Eq. (15) and integrating over the initial state.

4.2 The exact non-Markovian master equation

Eq. (31) is an exact result. In this section, we will deduce the master equation from Eqs. (15)

and (31). From Eq.(31), we obtain

αliJ =
u δJ
δᾱlf

+ v δJ
δᾱl′f

u2 − v2
, ᾱ′

liJ =
ū δJ
δα′

lf

+ v̄ δJ
δα′

l′f

ū2 − v̄2
, (32)

which will be used to eliminate the dependence on the initial values ᾱi,α
′
i in Eq. (15).

Combining Eqs. (31) and (15) together, and using the identities of Eq. (32), the evolution

equation of the reduced density matrix is given by

ρ̇(ᾱ,α′; t) =

2
∑

l=1

{

− iΩ(t)
[

ᾱl
δρ(ᾱ,α′; t)

δᾱl
−
δρ(ᾱ,α′; t)

δαl
αl

]

+ Γ(t)
[

2
δ2ρ(ᾱ, α

′; t)

δαlδᾱl
− ᾱl

δρ(ᾱ,α′; t)

δᾱl
−
δρ(ᾱ,α′; t)

δαl
αl

]

}

+
2

∑

〈l,l′〉

{

− iΩ′(t)
[

ᾱl
δρ(ᾱ,α′; t)

δᾱl′
−
δρ(ᾱ,α′; t)

δαl
αl′

]

+ Γ′(t)
[

2
δ2ρ(ᾱ,α′; t)

δᾱlδαl′
− ᾱl

δρ(ᾱ,α′; t)

δᾱl′
−
δρ(ᾱ,α′; t)

δαl
αl′

]

}

(33)

where

Γ(t) + iΩ(t) = −
uu̇− vv̇

u2 − v2
, Γ′(t) + iΩ′(t) = −

vu̇− uv̇

u2 − v2
. (34)

Eq. (33) is the exact master equation of the reduced density matrix for the dynamics of the two

optical modes in the coherent-state representation, in which Ω(t) plays the role of a shifted

time-dependent frequency of the two modes, Ω′(t) accounts for a shifted time-dependent

coherent interaction between the two modes, Γ(t) represents a time-dependent individual
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decay rate of each mode, and Γ′(t) is for a correlated decay rate of the two modes induced by

the environment.

If we define a new variable F±(τ) = u(τ)± v(τ), then Eqs. (28-29) is reduced to

Ḟ±(τ) + i(ω0 − λκ)F±(τ) + (1∓ λ)

∫ τ

0

dτ ′µ(τ − τ ′)F±(τ ′) = 0, (35)

with µ(x) =
∑

k e
−iωkx|gk|

2 and λ = ±1. The explicit forms of Ω(t), Ω′(t), and Γ(t) in the

master equation are given by

Ω(t) = ω0 + Im [Gλ(t)] ,

Ω′(t) = κ+ λ Im [Gλ(t)] , (36)

Γ(t) = λΓ′(t) = Re [Gλ(t)] ,

where

Gλ(t) = −
1

2

[ Ḟ−λ(t)

F−λ(t)
+ i(ω0 + λκ)

]

=
1

F−λ(t)

∫ t

0

dτµ(t− τ)F−λ(τ). (37)

This result has the similar form as the coefficients in the non-Markovian master equation of

a two-level atom derived in [29].

To obtain the operator form of the master equation, we should introduce the following

functional differential relations in the coherent-state representation (i.e., the Bargmann repre-

sentation of operators [51], and it is also called the D-algebra in coherent state representation

[36]),

ᾱl
δρ(ᾱ, α

′; t)

δᾱm
←→ a†l amρ(t),

δρ(ᾱ,α′; t)

δαl
αm ←→ ρ(t)a†l am, (38)

δ2ρ(ᾱ,α′; t)

δᾱlδαm
←→ alρ(t)a

†
m,

with which we arrive at an operator form of the master equation shown below,

ρ̇(t) =−
i

h̄
[H ′(t), ρ(t)] + Γ(t)

2
∑

k=1

[2akρ(t)a
†
k − a

†
kakρ(t)− ρ(t)a

†
kak]

+ Γ′(t)
∑

k 6=k′

[2akρ(t)a
†
k′ − a

†
kak′ρ(t)− ρ(t)a

†
kak′ ], (39)

where

H ′(t) = h̄Ω(t)(a†1a1 + a†2a2) + h̄Ω′(t)(a†1a2 + a†2a1), (40)

is the renormalized Hamiltonian of the two optical modes. From Eq. (39), we can see that

besides the spontaneous decay of the individual mode, the environment, even only the vacuum

fluctuation is considered, will result in a coherent interaction and a correlated spontaneous

decay between the two modes. More importantly, our derivation of the master equation is

fully non-perturbative, which goes beyond the Born-Markov approximation and contains all
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the back-actions between environment and the optical modes. The non-Markovian character

resides in the time-dependent coefficients of the exact master equation. These formulae have

been used to study the non-Markovian entanglement dynamics of two squeezed states [32].

The time-dependent coefficients in the exact master equation, determined by Eq. (35),

crucially depend on the so-called spectral density, which characterizes the coupling strength

of the environment to the system with respect to the frequencies of the environment. It is

defined as J(ω) =
∑

k |gk|
2
δ(ω − ωl). In the continuum limit the spectral density may have

the form

J(ω) = ηω
( ω

ωc

)n−1

e−
ω

ωc , (41)

where ωc is an exponential cutoff frequency, and η is a dimensionless coupling constant. The

environment is classified as Ohmic if n = 1, sub-Ohmic if 0 < n < 1, and super-Ohmic for

n > 1 [48]. Different spectral densities manifest different non-Markovian dynamics.

It is worth mentioning that an exact master equation has also been obtained very recently

for the system of two harmonic oscillators bilinearly coupled with a thermal environment [31],

where the master equation is derived in the Wigner representation rather than the operator

form of Eq. (39). Also the bilinear coupling in [31] is defined in terms of the coordinate

variables of harmonic oscillators which is different from the interacting Hamiltonian we used

in Eq. (4). In terms of quantum optics language, the coupling between the system and the

environment used in [31] involves simultaneously photon-photon scattering process and two-

photon creation and annihilation process with the same coupling strength. Note that photon-

photon scatterings are linear optical processes while two-photon creation and annihilation

processes are non-linear optical processes, they cannot have the same coupling strength in

quantum optics. Therefore, the model used in [31] might describe a physical system quite

different from the optical system we considered in the present work.

4.3 The Markov approximation

It is interesting to see that one can reproduce the conventional Markov solution from our exact

non-Markovian master equation under certain approximation. By redefining the dynamical

variables of the system as αl(τ) = xl(τ)e
−iω0τ , and ᾱ′

l(τ) = x′l(τ)e
iω0τ , we can recast Eq. (28-

29) into

ẋl + iκxl′ +

∫ ∞

0

dωJ(ω)

∫ τ

0

dτ ′ei(ω0−ω)(τ−τ ′)[xl (τ
′) + λxl′ (τ ′)] = 0, (42)

˙̄x′l − iκx̄
′
l′ +

∫ ∞

0

dωJ(ω)

∫ τ

0

dτ ′e−i(ω0−ω)(τ−τ ′)[x̄′l (τ
′) + λx̄′l′ (τ ′)] = 0. (43)

Then, we take the so-called Markov approximation,

x (τ ′) ∼= x(τ), x̄′ (τ ′) ∼= x̄′ (τ) , (44)

namely, approximately taking the dynamical variables to the ones that depend only on the

present time so that any memory regarding the earlier time is ignored [52].

The Markov approximation is mainly based on the physical assumption that the correlation

time of environment is very small compared with the typical time scale of system evolution.
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Also under this assumption we can extend the upper limit of the τ ′ integration in Eqs. (42-43)

to infinity and use the equality

lim
τ→∞

∫ τ

0

dτ ′e±i(ω0−ω)(τ−τ ′) = πδ(ω − ω0)∓ iP
( 1

ω − ω0

)

, (45)

where P and the delta-function denote the Cauchy principal value and the singularity, re-

spectively. The integro-differential equations in (42-43) are thus reduced to a couple of linear

ordinary differential equations. The solutions of xl and x̄′l, as well as αl and ᾱ′
l can then be

easily obtained, which result in

u =
e−i(ω0−λκ)τ + e[−i(ω0+λκ)−2(πJ(ω0)−iδω)]τ

2
, (46)

v =
e−i(ω0−λκ)τ − e[−i(ω0+λκ)−2(πJ(ω0)−iδω)]τ

2λ
, (47)

where δω = P
∫ ∞

0
J(ω)dω
ω−ω0

. Using the solutions (46-47), one can verify from Eqs. (34) that,

Ω(t) = ω0 − δω,

Ω′(t) = κ− λδω, (48)

Γ(t) = λΓ′(t) = πJ(ω0),

which is exactly the coefficients in the Markov master equation of the optical system [22]. This

result can also be obtained easier by directly applying the Markov approximation Eqs. (44-45)

to Eqs. (36-37).

As shown above, all the coefficients in the master equation have become time-independent,

and the non-Markovian master equation (39) is reduced to the Markov master equation under

the Markov approximation. This Markov approximation is valid to all kinds of spectral

densities, including Ohmic, super-Ohmic and sub-Ohmic cases, while a different spectral

density does produce the frequency shift, δω = P
∫ ∞

0
J(ω)dω
ω−ω0

, and decay rate, Γ = πJ(ω0),

differently. As a result, we conclude that our exact non-Markovian master equation can not

only explore more complicated situation where Markov approximation is unreachable, but

also examine different spectral densities between the system and the environment even in the

Markov limit. This actually provides a simple way to reveal the underlying mechanism of

quantum decoherence.

5 Decoherence dynamics of entangled coherent states

There are two different types of continuous variable entangled states. One is the entangled

squeezed states, and the other is the entangled coherent states[5]. We have used the ex-

act non-Markovian master equation derived here to study the non-Markovian entanglement

dynamics of two squeezed states in a recent published paper [32]. In this section, we will

analyze the decoherence properties of the entangled coherent states. The decoherence dy-

namics of the two coherent modes is also fully described by the master equation (39) with

the non-Markovian character residing in its time-dependent coefficients. The time-dependent

coefficients in the master equation are determined by F±(t) as the solution of Eq. (35) for

a specific environmental spectral density. In the present work, we will consider the Ohmic

spectral density, i.e., n = 1 in Eq. (41), which is often the case for optical communication.
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In Figs. 1 and 2, we plot the numerical results of the frequency shift δω(t) and decay rate

Γ(t) of the individual optical field as well as their corresponding Markov values. It shows that

the non-Markovian dissipation-noise dynamics is characterized by two time scales: τ1 = 1/ωc
(the shortest time scale of the environment) and τ2 = 1/ω0 (the time scale of the optical

modes). When t < τ1, both coefficients, δω(t) and Γ(t), grow very quickly, while after τ1,

δω(t) and Γ(t) approach to the corresponding Markov values, given by Eq. (48), gradually

when the time approaches to the time scale τ2. It clearly evidences that the non-Markovian

effect has a huge deviation from the Markov effect within the time scale τ2. This deviation

will influence the dynamics later on significantly as a historical memory effect. The time

dependent coefficients in the exact master equation (39) contain all the back-action effects

between the system and the environment. The non-Markovian decoherence dynamics of the

quantum optical field system thus becomes transparent due to the sensitive time dependence

of these coefficients within the time scale τ2.

In the following, we will investigate the decoherence dynamics of the entangled coherent

states under the influence of the vacuum fluctuation. The entangled coherent states are

defined as

|ψ±〉 =
1

√

N±

(

|α,−α〉 ± | − α, α〉
)

, |φ±〉 =
1

√

N±

(

|α, α〉 ± | − α,−α〉
)

, (49)

which were studied as quasi-Bell states [5, 53], where N± = 2(e2|α|
2

± e−2|α|2) are the nor-

malization constants. Many schemes to generate such states have been proposed in optical

systems and also in other systems [7, 8, 9, 54, 55]. It has also proposed to use these entangled

coherent states for teleporting the superposed coherent states [11, 56].

The time evolutions of these entangled coherent states are given by

ρψ±
(t) =

1

N±

[

eA+(t)
(

|a+(t),−a+(t)〉〈ā+(t),−ā+(t)|+ | − a+(t), a+(t)〉〈−ā+(t), ā+(t)|
)

± e−A+(t)
(

|a+(t),−a+(t)〉〈−ā+(t), ā+(t)|+ | − a+(t), a+(t)〉〈ā+(t),−ā+(t)|
)

]

,

ρφ±
(t) =

1

N±

[

eA−(t)
(

|a−(t), a−(t)〉〈ā−(t), ā−(t)|+ | − a−(t),−a−(t)〉〈−ā−(t),−ā−(t)|
)

± e−A−(t)
(

|a−(t), a−(t)〉〈−ā−(t),−ā−(t)|+ | − a−(t),−a−(t)〉〈ā−(t), ā−(t)|
)

]

,

(50)

respectively, where A±(t) = 2(|α|
2
−|a±(t)|

2
), and a±(t) = αF±(t). Eqs. (50) can be obtained

directly from the exact solution of the reduced density matrix, Eq. (15) plus Eq. (31) by

integrating over the initial variables. From Eq. (35) one can verify that for λ = 1, the

entangled coherent states |ψ±〉 remain in pure states (decoherence free states) because a+(t) =

αF+(t) = αe−i(ω0−κ)t, namely the time evolution of |ψ±〉 is independent of the decay rate

Γ(t) and the shift frequency δω(t) which are determined by F−(t) when λ = 1 [see Eqs. (36)

and (37)] and only affect on the time evolution of the other two entangled coherent state |φ±〉.

Similarly, when λ = −1, the entangled coherent states |φ±〉 becomes decoherence free states

since a−(t) = αF−(t) = αe−i(ω0+κ)t, while the decay rate Γ(t) and the shift frequency δω(t)

are determined by F+(t) which only affects the states |ψ±〉. Since λ = 1 (or −1) corresponds

to the case of the two optical modes coupling to the environment in phase (or out of phase),
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the above result indicates that two of the four entangled coherent states in Eq. (49) become

decoherence-free states [15] if the two optical modes couple to the environment in phase (a

constructive interference coupling) or out of phase (a destructive interference coupling).

The reason that the ψ-type and φ-type entangled coherent states in Eq. (49) have different

decoherence behaviors comes from different symmetric properties of these entangled coherent

states. The ψ-type and φ-type coherent states correspond to the center-of-mass and relative

motions of two-field coherent states, respectively. This property becomes clear by defining the

center-of-mass and relative motional variables of the two subsystems as A† = (a†1 + a†2) and

a† = (a†1−a
†
2). As one can find, |ψ±〉 consist of only the relative motion, while |φ±〉 lie only on

the center-of-mass motion. When the two optical modes couple to the environment in phase,

namely, g1k = g2k = gk, the interaction between the optical modes and the environment only

affects the center-of-mass motion so that the entangled coherent states of the relative motion,

|ψ±〉, become decoherence-free states. On the other hand, if the two optical modes couple to

the environment out of phase, i.e. g1k = −g2k = gk, the interaction between them only affects

the relative motion but leaves the entangled coherent states of the center-of-mass motion,

|φ±〉, free from decoherence. This is indeed a consequence of the sufficient condition for the

decoherence-free space protected by symmetry[57].
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Fig. 1. Comparison of the decay rate Γ(t) [= λΓ′(t)] between the non-Markovian (solid line) and

Markov (dashed line) results. The parameters κ/ω0 = 0.5, ωc/ω0 = 30.0, and η = 0.005 used in
the numerical calculation.

We shall quantify the entanglement degree of the entangled coherent states by the familiar

concept of concurrence usually used in a discrete basis [37]. To do so, we may rewrite Eq. (50)

in terms of the orthogonal basis [53],

|0〉 = e−
|a±(t)|2

2 |a±(t)〉, |1〉 =
e−

|a±(t)|2

2 | − a±(t)〉 − p±(t)|0〉
√

1− p±(t)2
, (51)

with p±(t) = e−2|a±(t)|2 . Above change from the coherent state basis to the |0〉 and |1〉

basis is equivalent to a local unitary transformation of the states, which does not modify

the entanglement degree in the original states. In this discrete basis, the concurrence can be

calculated as usual. It is not difficult to find that the concurrence Cφ−
(0) = Cψ−

(0) = 1, which
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Fig. 2. Comparison of the frequency shift δω(t) between the non-Markovian (solid line) and Markov

(dashed line) results. The parameters used in the numerical calculation are the same as that in
Fig. 1.

is maximally entangled irrespective of the amplitude α, while Cφ+
(0) = Cψ+

(0) = tanh 2 |α|
2
,

which imply that the φ+ and ψ+ states are not initially maximally entangled. One can also

show that when the two optical modes couple with the environment in phase, i.e. λ = 1, the

concurrence Cψ−
(t) = 1, and Cψ+

(t) = tanh 2 |α|
2
, namely, the entanglement of |ψ±〉 remain

unchanged during the time evolution. While |φ±〉 are sensitive to decoherence. In contrast, if

the two optical modes interact with the environment out of phase, i.e. λ = −1, Cφ−
(t) = 1,

and Cφ+
(t) = tanh 2 |α|

2
, while Cψ−

(t) and Cψ+
(t) will decay (disentanglement) due to the

decoherence.

In Fig. 3, we show the concurrence evolution in time for the entangled coherent states

|φ±〉 and |ψ±〉. With the in-phase coupling between the optical modes and the environment

(λ = 1), our numerical results verify that the entanglement degrees of |φ±〉 (given by the

solid and dot-dashed lines in Fig. 3) suffer from a fast decay during the time evolution while

the entanglement degrees of |ψ±〉 remain unchanged (the dot-dot-dashed and dot-dot-dot-

dashed lines in Fig. 3). To compare the non-Markovian entanglement dynamics with the

Markov dynamics, we also plot the concurrence evolution for |φ±〉 under the Markov approx-

imation, denoted by the dashed and dotted lines, respectively, in Fig. 3. As one can see, the

non-Markovian effect accelerates the disentanglement. This is mainly a contribution of the

short time peak in the decay rate Γ(t) as a memory effect. It is also worth noting that no

entanglement oscillator is observed in above solution even there has coherent coupling Ω′(t)

presented. This is because the two-optical-field coupling Ω′(t) contributes only a global phase

to the entangled coherent states during the time evolution, which has no influence on the

entanglement degree of the states. While as expected, |ψ±〉 are decoherence-free irrespective

of Markov or non-Markovian dynamics being considered.

For the case of out-of-phase coupling between the optical modes and the environment,

namely λ = −1, the roles of the decoherence effect on the φ-type and the ψ-type entangled

coherent states are exchanged. The φ-type entangled coherent states remain unchanged, while

the ψ -type entangled coherent states are disentangled by decoherence. The numerical results

of the entanglement evolution for |ψ±〉 and |φ±〉 are given by the same curves in Fig. 3 with
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Fig. 3. Time evolution of the concurrences for different initial states. The solid and dot-dashed
lines show the non-Markovian time evolution of the concurrences for |φ−〉 and |φ+〉 with λ = 1
(or |ψ−〉 and |ψ+〉 with λ = −1), respectively. Their corresponding Markov behaviors are shown

as the dashed and dotted lines, respectively. The dot-dot-dashed and dot-dot-dot-dashed lines are
the concurrences for |ψ−〉 and |ψ+〉 with λ = 1 (or |φ−〉 and |φ+〉 with λ = −1), respectively,
which remain unchanged during the time evolution. The initial coherent state parameter α = 0.8,

and other parameters are the same as in Fig. 1.

the exchange between |ψ±〉 and |φ±〉 states as in the in-phase coupling case.

From the above analysis, one can find that when the two identical optical modes couple to a

common environment in an arbitrary phase difference, no decoherence-free entangled coherent

state can exist among the four entangled coherent states. All the four entangled states could

be disentangled by the vacuum fluctuation in time. The non-Markovian dynamics will speed

up the disentanglement process with respect to the Markov approximation. However, the

parameter λ models the phase difference between the two optical modes coupled with the

environment. Physically, it is always possible to adjust the two optical modes such that the

couplings of the two optical fields with the environment are either in phase (λ = −1) or

out of phase (λ = −1). Then two decoherence free states among the four entangled coherent

states can always be constructed in principle. It is certainly interesting in seeing experimental

evidences on the preservation of two decoherence free entangled coherent states as well as the

non-Markovian disentanglement enhancement to the other two entangled coherent states.

6 Summary and Discussions

In summary, we have studied the detrimental effects of environment on the entangled coherent

states. We microscopically modeled the decoherence dynamics of entangled coherent states

under the influence of vacuum fluctuation. An exact master equation with time-dependent

coefficients reflecting the full memory effect of the reduced system has been derived by using

the Feynman-Vernon influence functional theory in the coherent-state path-integral repre-

sentation, which enables us to treat both of the back-actions from the environment to the

system and from the system to the environment self-consistently. In addition, we have also

explicitly deduced the well-known Markov dynamics for the optical modes from our exact

non-Markovian master equation in the Markov approximation. The analytical analysis of the

difference between the non-Markovian dynamics and its Markov approximation presented in
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this paper may provide a quantitative way to experimentally explore the non-Markovian effect

as well as the spectral densities between the system and the environment even in the Markov

limit.

We then investigated the non-Markovian dynamics of the entangled coherent states, one

of two typical continuous variable entanglement states often used in quantum information

processing. The other type of continuous variable states, the entangled squeezed states, has

already be studied by two of us based the same master equation derived here [32]. Our

first-principle analysis shows that the non-Markovian effect accelerates the disentanglement

compared with the results based on Markov approximation. It is the short time peak of the

time dependent coefficients in the master equation, which is incorporated with the system’s

dynamics as a historical memory effect, that contributed to this acceleration. Although the

Born-Markov approximation has been widely employed in the field of quantum optics, we ar-

gue that our investigation might be helpful for understanding decoherence in nanoscale cavity

devices and ultrafast optical processes. For example, we have noticed the rapid development

of optical cavity technology, which has been employed to confine a single atom [58] or a single

quantum dot [59, 60] in strong coupling regime, the prerequisite of quantum network. The

strong interaction occuring in nanometer size subject to vacuum fluctuation suffers from some

unpredictable incoherence errors [58], which should involve the non-Markovian effects. In this

sense, our study of non-Markovian dynamics, although with a simplified model, paves a way

toward clarification of the mechanism regarding those incoherence sources.

We have also shown how the decoherence behaviors of the different entangled coherent

states depend on the symmetrical properties of these entangled coherent states as well as

the interference properties of couplings between the two optical modes with the vacuum elec-

tromagnetic environment. Since the exact non-Markovian master equation has been derived

non-perturbatively and exactly, decoherence dynamics subject to different spectral densities

of environment would be naturally available by our treatment. In fact, the non-Markovian

master equation (i.e., Eq. (39)) derived in this paper has been used in treating the decoherence

dynamics of entanged squeezed states with sub-Ohmic and super-Ohmic spectral densities of

the environment [32]. More complicated cases, e.g., the environment at finite temperature,

would be hopefully figured out by the similar way to the derivation of Eq. (31). As a final

remark, we would like to mention a very recent experiment for distinguishing different co-

herent states [61], which shows a potential of using entangled coherent states for quantum

communication. The entangled coherent states have significantly different properties from

the entangled squeezed states and have been proposed as another type of continuous variable

quantum channels. As robustness of the quantum channel is essential in view of decoherence,

we expect that our consideration of decoherence dynamics of entangled coherent states would

be useful for understanding quantum communication experiments with realistic ultrafast op-

tical processes in nanocavities and nanophotonic systems.
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