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In this paper, we explore analytically and experimentally a quasi-quantum analogue of
the hitting time of the continuous-time quantum walk on a graph. For the classical

random walk, the hitting time has been shown to be robust to errors in edge weight
structure and to lead to spectral clustering algorithms with improved performance. Our
analysis shows that the quasi-quantum analogue of the hitting time of the continuous-
time quantum walk can be determined via integrals of the Laplacian spectrum, calculated

using Gauss-Laguerre quadrature. We analyse the quantum hitting times with reference
to their classical counterpart. Specifically, we explore the graph embeddings that preserve
hitting time. Experimentally, we show that the quantum hitting times can be used to

emphasise cluster-structure.
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1 Introduction

Random walks have been used to formulate a number of powerful algorithms for the analysis

of graph structure, and these have found applications in areas such as network analysis, circuit

design, pattern recognition and machine learning. One of the attractive features of classical

random walks, is that they can be conveniently analysed using graph-spectral methods. For

instance, the steady state random walk on a graph is determined by the leading eigenvector

of the weighted adjacency matrix or equivalently the Fiedler vector of the Laplacian matrix

[17]. In addition, local properties of the random walk such as hitting and commute times can

also be conveniently computed using the Laplacian spectrum [7]. Commute time (which for

the undirected graphs we are concerned with in this paper is twice the hitting time) has been

used to develop graph-spectral clustering algorithms based on embedding that are robust to

modifications in local edge structure due to noise [24].
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232 Graph embedding using quantum hitting time

Recently, with the growing interest in quantum computation, quantum walks have been

investigated as alternatives to classical walks. The quantum walk differs from the classical

walk in that its state vector is complex-valued rather than real-valued and its evolution is

described by unitary rather than stochastic matrices. The evolution of the classical walk is

random and a state vector can express the probabilities of all the possible outcomes. The

evolution of the quantum walk, on the other hand, is deterministic and the randomness only

manifests itself when measurements are made. That the state vector of the quantum walk is

complex valued allows different paths in the walk to interfere, producing remarkably different

probability distributions on the vertices of the graph. Exponential speed-ups have also been

observed in the hitting times of particular vertices in some graphs. Szegedy [33] reports similar

speed-ups for algorithms based on Markov chains. Magniez et al [10] explore the relationships

between the hitting times of quantum and random walks on the same structure. For reversible

and ergodic Markov chains they report that the quantum analogue of the hitting time goes

as the square-root of the classical counterpart.

The aim in this paper is to explore a quasi-quantum analogue of the hitting time of the

quantum walk and to investigate whether it offers advantages over the classical commute time

for graph embedding. We define the hitting time between a pair of vertices to be the expected

time for the walk to arrive at one vertex given that it started at the other as if we knew the

full state vector of the walk. Note that this would not be possible physically. However, it is

analogous to how the hitting time is defined classically and so allows a direct comparison to

be carried out.

1.1 Related Literature

1.1.1 Classical Walks

The study of random walks has been the focus of sustained research activity in spectral graph

theory. For instance, Lovász has written a useful review of the subject [17], and spectral

bounds have been placed on the properties of random walks, including the mixing times and

hitting times [32].

From a practical perspective, there have been a number of useful applications of random

walks. One of the most important of these is the analysis of routing problems in network

and circuit theory [9]. Of more recent interest is the use of ideas from random walks by

Brin and Page to define the Page-Rank index used by the Googlebot search engine [4]. In

the pattern recognition community there have been several attempts to use random walks for

graph matching. These include the work of Robles-Kelly and Hancock [25, 26] which has used

both a standard spectral method [25] and a more sophisticated one based on ideas from graph

seriation [26] to convert graphs to strings, so that string matching methods may be used to

compare graphs. Gori, Maggini and Sarti [28] on the other hand, have used ideas borrowed

from Page-Rank to associate a spectral index with the vertices of a graph and have then used

standard attributed graph matching methods to match the resulting attributed graphs.

Melia and Shi [20] have used random walks to learn image segmentation. Zhu, Ghahramani

and Lafferty [36] have performed semi-supervised learning using random walks on a labelled

graph structure. Borgwardt et al. have developed a kernel that preserves the path length

distribution of a random walk on a graph, and have used this to analyse protein data [3].

This kernel has been used by Neuhaus and Bunke [22] to kernelise the computation of graph
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edit distance and measure the similarity of graphs. Finally, Qiu and Hancock [24] have shown

how the commute times of random walks can be used to render graph-spectral clustering

algorithms robust to edge weight errors, and have explored the application of the method to

image segmentation, multi-body motion tracking and graph-matching. The commute time

allows the vertices of a graph to be embedded in a low dimensional space, and the geometry

of this embedding allows the vertices to be clustered into disjoint subsets.

1.1.2 Quantum Walks

Quantum walks have been introduced as quantum counterparts of random walks; a good

summary is given by Kempe [14]. As noted above, the behaviour of quantum walks is governed

by unitary rather than stochastic matrices. The stochastic matrix of a classical random walk

is such that its columns sum to unity. A unitary matrix, on the other hand, has complex

entries. For a unitary matrix the squares of the entries in the columns sum to unity. Quantum

walks possess a number of interesting properties not exhibited by classical random walks. For

instance, because the evolution of the quantum walk is unitary and therefore reversible, the

walks are non-ergodic, and what is more, they do not have a limiting distribution.

Quantum walks provide an attractive route to designing quantum algorithms since they

lend themselves to physical intuition. There are two different models for the quantum ran-

dom walk, both of which can be simulated on an arbitrary graph. The first of these is the

continuous-time quantum walk proposed by Fahri and Gutmann [11]. They take the vertices

of the graph as the basis vectors of the Hilbert space in which the walk takes place. The evo-

lution of the walk is then given by Schrödinger’s equation with the graph Laplacian playing

the role of a Hamiltonian. The second model is the discrete-time quantum walk, which is the

quantum analogue of the classical random walk. The quantum version of the discrete-time

quantum walk on an arbitrary graph was formalised by Aharonov, Ambainis and Kempe [1],

although the discrete quantum walk had already been considered, albeit in less generality, for

example, by Ambainis et al. on the line [2].

Fahri and Gutmann also note that many problems of interest can be formulated in terms

of decision trees and solved by considering a random walk on the trees. When a problem is

formulated in terms of a decision tree, the question is often to determine whether the tree

contains a vertex at the rth level. To solve this problem efficiently it is necessary for the

random walk to be able to hit a vertex that is at the rth level in a time polynomial in r.

Fahri and Gutmann show that if the classical Markov process is able to penetrate a family

of trees in polynomial time, then the quantum walk that they define is also able to. They go

on to give an example of a family of trees that cannot be penetrated in polynomial time by

the classical Markov process, but can be by their quantum walk. They are not able to use

this walk to construct a solution to any classically hard problems and, in fact, show that a

different classical algorithm can solve the example that they give. However, their contribution

is to show that there may be other ways to achieve algorithmic speed-ups in a manner, which

unlike Shor’s factorisation algorithm [31], does not rely on the quantum Fourier transform.

By making use of the exponentially faster hitting times that are observed for continuous-

time quantum walks on graphs [15] [5], Childs et al showed that it is possible to create an

oracle based algorithm using a continuous-time quantum walk that is provably exponentially

faster than any possible classical algorithm [6].
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An exponential speed-up for the hitting time was observed by Kempe [15], using the

discrete-time quantum walk. Kempe considered the walk on the n-dimensional hypercube

and was able to show that the hitting time from one vertex to the one opposite is polynomial

in n [15]. In general, the discrete-time quantum walk is not easily analysed. Kempe was able

to do so for the hypercube due to its regular structure. She demonstrates how this polynomial

hitting time could be of use for a routing problem, and also, in a later paper, shows that it

could be used to solve the 2-SAT problem efficiently [14] (note that this problem can also be

solved efficiently using a classical algorithm). Since it has been demonstrated by Aharonov

et al. that the mixing times for discrete-time quantum walk is at most quadratically quicker

than that for the classical walk [1], this work demonstrates that hitting times may be of more

importance.

Shenvi, Kempe and Whaley [29] showed that the problem of searching an unordered

database, previously considered by Grover [12], could be set in the framework of a discrete-

time quantum walk. Representing the 2n elements of a set by the vertices of the n dimensional

hypercube, they simulate a walk on the hypercube using a biased coin. The coin is such that

its operation on the target state (the element being searched for) is different from its operation

on all other states. Again, the walk is started in a superposition of all possible states and,

after approximately
√
N steps, the result of a measurement is the target state with probability

1
2 − O(1/n). The algorithm is very similar to Grover’s algorithm and both make use of the

Grover diffusion operator.

1.2 Contribution

The many interesting properties exhibited by quantum walks and the fact that their behaviour

is dictated by the structure of the graphs supporting them suggests that they could be a very

useful tool for graph analysis. Having said this, there are, as yet, few algorithms based on

quantum walks. One approach is that of Shiau, Joynt and Coppersmith [30] who make use

of ideas of Rudolph [27] to construct graph invariants based on the walks generated by two

particles on a graph obeying Fermi statistics.They then use these invariants to distinguish

between graphs.

The aim in this paper is to take the study of continuous time quantum walks one step

further. Results for hitting times on certain graphs with high levels of symmetry have been

studied [5]. However, to date there has been little effort devoted to the study of properties

such as hitting time of walks on more general graphs. Specifically, our aim is to explore

whether a quasi-quantum analogue of the hitting time associated with the continuous-time

quantum walk can be used to embed the nodes of a graph in a low dimensional vector space

and to explore the properties of the embedding.

This is of course not a full quantum analysis of the walk. To do so would require us to

specify a measurement process which would lead to the observation of the hitting time. Such

a set-up would require a means by which the initial state-vector can be prepared, and then a

means by which the state-vector of the walk can be collapsed to yield an observation. This is

the approach adopted by Varbanov, Krovi and Brun [19]. Their approach is to measure the

quantum walk at random times sampled from a Poisson process. They analyse the dependance

of the hitting time of the quantum walk on the rate-parameter of the Poisson process. An

alternative is to work with the discrete time quantum walk [21, 35, 16, 15]. However, here the
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analysis is not tractable in closed form and the calculation of hitting time must be performed

by simulation.

Nonetheless, our analysis leads to a quantity which when contrasted with that for the clas-

sical walk possesses a number of interesting properties. First, while the embedding associated

with the classical hitting time is close to unidimensional, that associated with the quantum

walk needs more dimensions to capture its behaviour. Second, although mean hitting times

of the quantum and classical walks are both correlated with path length, in any particular

instance they are not correlated with each other: both measure different properties of the

graph. Thirdly, the embeddings obtained can distinguish clusters more clearly than those

obtained using the classical hitting times.

The outline of this paper is as follows. In Section 2 we review the theory of the classical

random walk, its relationship to the Laplacian spectrum and the definition of hitting time.

Section 3 introduces the continuous time quantum walk. In Section 4 we show how a hitting

time for the continuous time quantum walk can be computed from integrals of the Lapla-

cian spectrum, and how these integrals can be numerically evaluated using Gauss-Laguerre

quadrature. Section 5 analyses empirically the properties of the quantum hitting time and

compares it with its classical counterpart. In Section 6, we illustrate the application of quan-

tum hitting time to a data clustering problem. Finally, Section 7 offers some conclusions and

directions for future research.

2 Graph Laplacian and Classical Hitting Time

In this section, we briefly review some of the properties of the classical random walk on

a graph, and the relationship between the hitting time and the Laplacian spectrum. To

commence, consider the graph G = (V, E) where V is the set of vertices, E ⊆ V × V is the set

of edges. The adjacency matrix of the graph has elements

A(u, v) =

{

1 if (u, v) ∈ E
0 otherwise

(1)

Further, let D = diag(degu;u ∈ V) be the diagonal degree matrix with elements degu =
∑n

v=1A(u, v), where n = |V| is the number of vertices in the graph. The Laplacian matrix is

given by L = D −A. The spectral decomposition of the Laplacian is L = ΦΛΦT , where Λ =

diag(λ1, λ2, ..., λn) is the diagonal matrix with the ordered eigenvalues as elements satisfying

the condition 0 = λ1 ≤ λ2 . . . ≤ λn and Φ = (φ1|φ2|....|φn) is the matrix with the ordered

eigenvectors as columns.

Hitting time is a property of a diffusion process on a graph, which is governed by the heat

equation, i.e. a partial differential equation associated with the graph Laplacian by

∂Ht

∂t
= −LHt (2)

where Ht is the heat kernel and t is time. The solution of the heat-equation is found by

exponentiating the Laplacian spectrum with time i.e.

Ht = exp[−tL] = Φ exp[−tΛ]ΦT (3)
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For the nodes u and v of the graph G the element of the matrix is

Ht(u, v) =

n
∑

j=1

exp[−λjt]φj(u)φj(v) (4)

For a continuous time random walk, the probability state-vector pt (i.e. the vector whose

components are the probabilities of the walk visiting the different nodes of the graph at time

t) is also governed by the diffusion equation

∂pt

∂t
= −Lpt (5)

The solution of the above differential equation is

pt = exp[−tL]p0 = Htp0 (6)

where p0 is the initial probability state-vector.

To elucidate the relationship between hitting time and the spectrum of the Laplacian, we

need to introduce the pseudo inverse of the Laplacian matrix (or Green’s function for the

graph)

G(u, v) =

n
∑

j=2

1

λj
φj(u)φj(v) (7)

We note that the hitting time O(u, v) of a random walk on a graph is defined as the expected

number of steps before node v is visited, commencing from node u. The commute time,

C(u, v), on the other hand, is the expected time for the random walk to travel from vertex u

to vertex v and then return. For undirected graphs this is simply twice the hitting time. The

hitting time O(u, v) is given by [7]

O(u, v) =

{

G(v, v) − G(u, v)

}

(8)

Substituting the spectral expression for the Green’s function into the definition of the

hitting time, it is straightforward to show that in terms of the eigenvectors of the normalized

Laplacian

O(u, v) =
1

4

n
∑

j=2

1

λj
(φj(u) − φj(v))

2
(9)

Let Y be an embedding matrix with the node co-ordinates as columns. The embedding that

preserves commute time is

Y =
1

2
Λ−1/2ΦT (10)

The Gram matrix for the embedding is hence

Y TY =
1

4
ΦΛ−1ΦT =

1

4
G (11)

So the Green’s function (pseudo inverse) is a multiple of the kernel matrix for the embedding.
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3 The Continuous-time Quantum Walk

Like the classical random walk on a graph, the state-space of the continuous-time quantum

walk is the set of vertices of the graph. However, the probability of being at a certain state

is given by the square of the amplitude of that state, rather then just the amplitude of the

state (as is the case classically). This allows destructive as well as constructive interference

to take place.

The state space for the continuous-time quantum walk on a graph, G = (V, E), is the

set of vertices, V, as is the case for the classical random walk. In addition, transitions only

occur between adjacent vertices. If the walk is at vertex u, the components of the state vector

corresponding to vertices adjacent to u change at a rate proportional to 1
d(u) . The basis states

for the continuous-time quantum walk are vectors corresponding to particular vertices, as is

the case for the classical random walk. The basis state corresponding to the walk being at

u ∈ V is written, in Dirac notation, as |u〉. A general state of the walk is a complex-linear

combination of these basis states and so the state of the walk at time t is given by a vector,

|ψt〉 ∈ C
|V|, which we write componentwise as

|ψt〉 =
∑

u∈V

αu(t)|u〉. (12)

Thus, the amplitudes αu(t) ∈ C.

If measured, the probability of the walk being in a particular state is given by the square

of the amplitude of that state. In practice, the measurement process alters the state. As

a result the walk is not in state |ψt > but is projected onto |u >. So measuring the walk

alters its state and hence its subsequent dynamics. Hence, our definition of hitting time is

not accurate from the perspective of quantum observables, but instead a classical average.

Nonetheless, let Xt be the random variable giving the location of the walk at time t. The

probability of being at u ∈ V at time t is given by

Pr(Xt = u) = αuα
∗
u (13)

where α∗
u is the complex conjugate of αu. As the total probability must sum to unity, we

have that |αu(t)| ∈ [0, 1] for all u ∈ V, t ∈ R
+, and

∑

u∈V αu(t)α∗
u(t) = 1 for all t ∈ R

+.

The evolution of the state vector is given by

d

dt
|ψt〉 = −iL|ψt〉. (14)

We note that, unlike the classical walk, the quantum walk is not strictly a Markov chain.

That is, the evolution of the probability vector of the walk being measured at time t depends

on the state vector of the walk, and not the probability vector alone. However, the state

vector itself is a Markov chain.

Given an initial state for the walk, |ψ0〉, Equation 14 can be solved to give

|ψt〉 = e−iLt|ψ0〉. (15)

Thus, given the initial state, we can calculate the state of the walk at an time, t.
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4 The Quantum Hitting Time

In this section we develop a measure of the hitting time for the continuous-time quantum walk

based on having full knowledge of the state vector of the walk. Mathematically, this is clearly

possible. However, since we do not base this concept on a realisable measurement process,

the hitting time developed does not correspond to a physically observable quantity. Instead,

we compute a quasi-quantum analogue of the hitting time for the continuous time quantum

walk. This commences by recalling that the classical hitting time is the expected value of the

time taken for the walk to traverse the set of paths between a pair of nodes. We make use of

the state vector of the continuous-time quantum walk to compute the transition probabilities

required in this computation. An experimental comparison of the resulting hitting time reveals

deep differences between the classical and quantum continuous time walks.

To commence, we consider the expected time for the quantum walk to travel between each

pair of vertices in a graph. For the walk with starting state |ψ0〉 = |u〉, letXt
(u) be the observed

random variable giving the measured state of the walk at time t based on full knowledge of

the state vector. That is, we define Xt
(u) to be such that Pr(Xt

(u) = v) = |〈v|e−iLt|u〉|2.
Similarly, let H(u, v) be the random variable giving the first hitting time of the vertex v.

That is, H(u, v) = min{t|Xt
(u) = v}. We note that, due to the symmetry of the Laplacian

matrix, L, the first hitting times are symmetric, that is, H(u, v) = H(v, u). The expected

hitting time between a pair of vertices, O(u, v), can be calculated using

O(u, v) =

∫ ∞

0

Pr
(

H(u, v) = t
)

t dt (16)

Of course, the above definition violates the strict notion of observability in quantum systems.

While Xt
(u) has a physical meaning, H(u, v) has none since it would require the walk to be

continually measured. This of course would alter the dynamics of the walk.

To calculate Pr
(

H(u, v) = t
)

, we consider the state vector, |ψt〉 = e−iLt|u〉. Let the

number of vertices in the graph be n and let the eigenvalues and corresponding eigenvectors

of L be λk and φk respectively (1 ≤ k ≤ n). The probability of observing the walk at node v

at time t is given by

Pr(Xt
(u) = v) = |〈v|e−iLt|u〉|2 (17)

= |〈v|Φe−iΛtΦT |u〉|2 (18)

=

( n
∑

j=1

φj(u)φj(v)e
−iλjt

)( n
∑

k=1

φk(u)φk(v)e−iλkt

)∗

(19)

=

n
∑

j=1

n
∑

k=1

φj(u)φj(v)φk(u)φk(v)e−i(λj−λk)t. (20)

As P (Xt
(u) = v) is a real number we need only consider the real parts, since the imaginary

parts must cancel. Hence, we have that
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Pr(Xt
(u) = v) =

n
∑

j=1

(

2
∑

k>j : λj 6=λk

φj(u)φj(v)φk(u)φk(v) cos((λk − λj)t) (21)

· · · +
∑

k : λj=λk

φ2
k(u)φ2

k(v)

)

(22)

= F +
∑

(A,B)∈X

A cos(Bt), (23)

where the pairs (A,B) ∈ X , and are defined by

X =

{(

φj(u)φj(v)φk(u)φk(v), λj − λk

)
∣

∣

∣

∣

1 ≤ j ≤ n, 1 ≤ k < j, λk 6= λj

}

(24)

and

F =
∑

j,k : λj=λk

φj(u)φj(v)φk(u)φk(v). (25)

For a particular pair of vertices u, v ∈ V, let r(t) be the probability density function for the

first hitting time, r(t) = Pr(H(u, v) = t), and R(t) =
∫ t

0
r(t′)dt′ the cumulative distribution

function. The initial conditions for R(t) are R(0) = 0 if u 6= v and R(0) = 1 if u = v. The

quantity P (Xt
(u) = v) can be regarded as the hazard function for the walk. It is such that

the probability of the walk arriving at v in the time interval (τ, τ + dτ), given that it has not

previously arrived at v, is given by P (Xτ
(u) = v)dτ . Here we diverge from the approach taken

by Varbanov, Krovi and Brun [19]. We take a classical viewpoint and assume that the arrival

of the walk can be observed in the time interval. Varbanov, Krovi and Brun on the other

hand, adopt a quantum observation process where the observation times are sampled from a

Poisson distribution.

Thus, for a given hazard function P (Xt
(u) = v), we have that

d

dt
(1 −R(t)) = −P (Xt

(u) = v)(1 −R(t)). (26)

Hence, integrating both sides with respect to time we have

1 −R(t) = (1 −R(0)) exp

(

−
∫ t

0

F +
∑

(A,B)∈X

A cos(Bτ) dτ

)

(27)

= exp

(

− Ft−
∑

(A,B)∈X

A

B
sin(Bt)

)

, (28)

if u 6= v and R(t) = 1 if u = v. Thus, O(u, u) = 0 for all u ∈ V.If u 6= v, the probability

density function for the random variable H(u, v) is then given by

r(t) = (1 −R(t)) Pr(Xt
(u) = v). (29)

Hence, by substitution

r(t) =

{

exp
(

− Ft−
∑

(A,B)∈X

A

B
sin(Bt)

)

}(

F +
∑

(A,B)∈X

A cos(Bt)

)

. (30)
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Thus, using Equation 16, we can calculate the hitting time for the vertex v for the walk

starting at u.

O(u, v) =

∫ ∞

0

t
(

F +
∑

(A,B)∈X

A cos(Bt)
)

e−Ft−
∑

(A,B)∈X

A
B

sin(Bt)dt (31)

=
[

− te−Ft−
∑

(A,B)∈X

A
B

sin(Bt)
]∞

0
+

∫ ∞

0

e−Ft−
∑

(A,B)∈X

A
B

sin(Bt)dt (32)

=

∫ ∞

0

e−Ft−
∑

(A,B)∈X

A
B

sin(Bt)dt (33)

In order to calculate this numerically we use Gauss-Laguerre quadrature [13]. Given a

function, f ∈ L1(0,∞) we have that

∫ ∞

0

f(x)dx =

∫ ∞

0

e−x[exf(x)]dx ≃
n
∑

k=1

w(xk)exkf(xk). (34)

The abscissas, for xk (k = 1, . . . , n) for the quadrature order n are given by the roots of the

nth order Laguerre polynomial

Ln(x) =
ex

n!

dn

dxn
(e−xxn) (35)

and the weights are

w(xk) =
xk

(n+ 1)2(Ln+1(xk))2
. (36)

In the remainder of the this paper, we refer to the quasi-quantum analogue of the hitting time

of the continuous time quantum walk simply the “quantum hitting time”.

At this point it is worth pausing to consider the relationship between our work and that

of Varbanov, Krovi and Brun [19], who base their observation process on random samples

from a Poisson distribution. Their estimate of the hitting time therefore depends on the rate

parameter of the Poisson process, and can mis-estimate the hitting time if it is mismatched to

the rate parameter. As noted earlier, we do not specify a measurement process, but instead

use Pr(Xt
(u) = v) to compute a density function r(t) for the classical hitting time. We could

modify our definition to include a Poisson sampling process of the type used by Varbanov,

Krovi and Brun. However, the resulting estmates would be dependant on the rate-parameter

and would be of limited use in the experimental study conducted later. Our approach is hence

only pseudo-quantum.

5 Analysis of the Quantum Hitting Time

In this section we analyse the differences between the quantum and classical hitting times

and their corresponding embeddings. We begin by considering the hitting times on graphs

randomly generated according to one of two different models. The first model is the randomly

connected graph. Here edges between the n vertices are randomly generated with connection

probability p. Our second model is the banded adjacency graph [8]. The banded adjacency

graphs have three parameters: n is the number of vertices, b is the width of the band in which

vertices can be connected, and p is the probability that a pair of vertices in this band are
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Fig. 1. The average quantum hitting time (left) and average classical hitting time (right) as a
function of path length for a banded adjacency graph on 50 vertices with band width 10 and

p=0.3.

connected. For the purposes of constructing each graph we take a set of vertices numbered 1 to

n. With probability p, the vertex u is connected to each vertex, v ∈ {u−b, u−b+1, . . . , u+b}.
In terms of its adjacency matrix, such a graph only has non-zero entries within a band of

width 2b centred on the main diagonal. Such graphs approximate many real-world structures,

for example, molecules or VLSI circuits. The randomly generated graphs model graphs where

no such restriction is obvious.

5.1 Hitting Times and Path Length

We begin by considering the relationship between hitting times and path length. The path

length between a pair of vertices is the number of edges that must be traversed along the

shortest path between them. It is a less sophisticated measure of distance than hitting time

since it only takes into account the single shortest path between a pair of vertices. The hitting

time, on the other hand, decreases as the number of alternative paths between the vertices

increases. This expresses mathematically the understanding that a pair of vertices with many

paths between them of length l should be considered more closely connected than a pair of

vertices with just one path of length l between them.

Figure 1 shows the mean quantum hitting times and mean classical hitting times as a

function of path length. We see that the functions are both monotonically increasing. How-

ever, the quantum hitting time has a non-linear relationship with path length. Larger path

lengths do not correspond to proportionally larger quantum hitting times, as they do in the

classical case. Similar behaviour has been observed for the quantum walk on the line [21] and

the circle [14] where hitting times were shown to be quadratically faster. We will see that

this behaviour has important consequences when we consider the treatment of outliers in the

embedding of graphs via hitting times.

Although Figure 1 shows that the mean quantum and classical hitting times are functions

of path length, the standard deviation about these functions are large. Thus, we wish to

investigate if there is a relationship between the quantum hitting time, Q(u, v), and the

classical hitting time, C(u, v), for a given pair of vertices. Figure 2a shows a scatter plot
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plots.
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Fig. 3. Quantum Hitting Time Embeddings of Random Graphs: Graph embeddings using the
quantum hitting time (left) and the classical hitting time (right) for a graph with 30 vertices and

probability of each pair of vertices being connected 0.3

of the classical hitting times between pairs of vertices versus the quantum hitting times for

a set of 10 randomly connected graphs with n = 10, p = 0.3. We see that there is very

little correlation between the hitting times for particular vertices. However, as the classical

(or quantum) hitting time increases, the lower bound for the corresponding quantum (or

classical) hitting time does also increase by a proportionally smaller amount. This shows that

given a classical/quantum hitting time, the corresponding quantum/classical hitting time

cannot be arbitrarily small.

To further investigate any correlation, let dC
k be the kth decile for the classical hitting times

and dQ
j the jth decile for the quantum hitting times for a particular graph. We consider the

set of probabilities Pr(C(u, v) < dC
k |Q(u, v) < dQ

j ). Figure 2b shows a plot of this function.

The figure shows that Pr(C(u, v) < dC
k ) is almost completely independent of any condition

of the form Q(u, v) < dQ
j . This demonstrates that the two hitting times emphasise different

measures of distance.

5.2 Quantum and Classical Hitting Time Embeddings

We now give some example embeddings, using both the classical and quantum hitting times.

In the case of the classical hitting time the matrix of embedding co-ordinates is given by

Y = 1
2Λ−1/2ΦT . The vectors of embedding co-ordinates for the nodes of a graph are the

columns of the matrix Y . We confine or attention to embeddings on the plane, and so we use

just the first two rows of Y to give us the 2D embedding co-ordinates.

The quantum hitting time, on the other hand, is evaluated numerically. To perform

the embedding, we therefore use multidimensional scaling (MDS) [34]. MDS is a procedure

which allows data specified in terms of a matrix of pairwise distances to be embedded in a

Euclidean space. Let n be the number of nodes in the graph under consideration. The first

step of MDS is to calculate a similarity matrix, F , whose element with row r and column c is

given by F (r, c) = − 1
2{C(r, c)−Ĉ(r, .)−Ĉ(., c)+Ĉ(., .)}, where Ĉ(r, .) = 1

n

∑n
c=1 C(r, c) is the

average hitting-time for the rth row, Ĉ(., c) is the average hitting-time over the cth column

and Ĉ(., .) = 1
n2

∑n
r=1

∑n
c=1 C(r, c) is the average hitting-time over all rows and columns.



244 Graph embedding using quantum hitting time

−150 −100 −50 0 50 100 150 200
−150

−100

−50

0

50

100

150

1

2

3

4

5

6
7

8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

232425
26

27

28

2930

31

32

33

3435

36
37

38

39

40

41

42
43

44

45

46

47

4849

50

Quantun

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
−8

−6

−4

−2

0

2

4
x 10

−3

12

3

4

5

6

78

9

10

11

12

13
1415

16
1718

19202122

2324252627 28293031
32 33

3435
3637

38 39

4041
4243 4445

4647
484950

Classical

Fig. 4. Quantum Hitting Time Embeddings of Banded Adjacency Graphs: Graph embeddings
using the quantum hitting time (left) and the classical hitting time (right) for a banded adjacency

graph with 50 vertices, band width b = 5 and probability of each pair of vertices in the band being
connected p = 0.5

We perform the eigendecomposition F = ΨEΨT on the disimilarity matrix, where E is the

diagonal matrix with the ordered eigenvalues along the diagonal, and Ψ is the matrix with

the correspondingly ordered eigenvectors as columns. If the rank of F is k, where k < n, then

we will have k non-zero eigenvalues. The matrix with the vectors of embedding coordinates

for the nodes as columns is Y =
√
EΨT . We again take the first two rows of Y to give us a

2D visualisation of the graph.

Figure 3 shows an example of the quantum and classical hitting time embeddings for

a randomly connected graph. The most obvious difference between the two embeddings is

the classical hitting time embedding’s tendency to produce a few outliers while confining the

majority of the vertices to a small area. The problem of one distance outweighing all remaining

ones is much less of a problem for the quantum hitting time embedding, and consequently

the vertices are distributed more evenly.

Embeddings of a banded adjacency graph are given in Figure 4. The classical hitting time

embedding allows the distance along the band to outweigh the remaining distances, causing

the graph to lie almost entirely along a curve, obscuring almost all of the local structure.

The quantum hitting time embedding, however, shows both the band structure (principally

captured by the x-component of the embedding) and the local structure along the band

(principally captured by the y-component).

5.3 Symmetric Graphs

We now turn our attention to graphs which possess some form of symmetry. If the graph on

which the walk takes place has some kind of symmetry, certain paths can cancel each other

out while others reinforce each other. It is also on graphs with symmetries that exponentially

faster hitting times have been observed and so we would expect the quantum and classical

embeddings for such graphs to be different. Two graphs on which this has been observed are

the hypercube [15] and the graph obtained by randomly connecting a pair of n-level binary

trees at the nodes [6].
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Fig. 5. Graph formed by randomly connecting a pair of 5-level binary trees at the ‘leaves’.
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graph can be seen in Figure 5. The vertices of the one graph are plotted as circles, those of the

other as stars. Vertices at different levels of the trees are different colours.
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In Figure 5 we show a graph formed by randomly connecting a pair of 5-level binary trees

at the ‘leaves’. Figure 6 gives the classical and quantum hitting time embeddings for this

graph. We can see that whereas the classical hitting time embedding does not reveal the

structure of the graph, the quantum hitting time embedding does. Furthermore, the level of a

vertex in one of the two trees is given by the first component of the embedding, and different

vertices at each level are separated by the second component of the embedding. However,

the graph appears as though it has been folded in half. For example, the hitting times from

one of the root vertices to all other vertices in the graph is very similar to the hitting times

to those vertices from the other root vertex. This is regardless in which of the two original

trees the vertices lie. Consequently, the two root vertices are almost exactly coincident in the

quantum hitting time embedding (the red circle and red star in Figure 6). Figure 7 shows

the hitting time from one of the root vertices to all the other vertices. This figure shows that

the hitting time from the root vertex to a vertex in the nth level of the same tree as itself is

almost exactly the same as the hitting time to a vertex in the nth level of the other tree.

Figure 8 shows the embeddings of the 3 by 3 grid. The classical hitting time embedding of

the graph clearly shows the structure of the graph. However, as we saw for the joined binary

trees, a number of vertices in the quantum hitting time embedding are coincident. For the

grid, the corner vertices are coincident with each other, the opposite sides of the grid are each

coincident, and the central vertex is plotted singularly. This again reveals the symmetries in

the quantum hitting times.

We can consider the pattern of quantum hitting times on a graph in terms of which

dimension of an MDS embedding would separate which vertices. Figure 9 shows this for the

3 by 3 grid. We see that different dimensions of the embedding identify different symmetries

of the graph by plotting different vertices as coincident points. Although opposite corners of

the grid are coincident in the 2D embedding, the hitting times from these vertices to each
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Fig. 8. Quantum and classical hitting time embeddings of the 3 by 3 grid with the vertices labelled.

of the other vertices in the grid are not identical, and consequently the 5th dimension of the

embedding separates them. Figure 10 shows the symmetries of the 8×8 grid identified by the

quantum hitting time embedding. As before, various symmetries between opposite vertices

are identified.

We now consider the graph obtained by making connections between the vertices in a

cycle. We connect 2 pairs of vertices from the cycle with 32 vertices to give a graph we refer

to as a ‘wheel’ with 4 ‘spokes’. The hitting time embeddings are shown in Figure 11. In the

two dimensional quantum embedding the vertices connected to the spokes are all coincident

and a four-fold symmetry has been identified. The symmetries of the first four dimensions of

the embedding are shown in Figure 12. The third dimension of the embedding, for example,

identifies a different four-fold symmetry.

6 Experiments

We consider the problem of emphasising the cluster structure of a dataset. We do this using

distance between the Laplacian spectra of a set of graphs. Given a set of graphs we calculate

distances between them using the Euclidean distance between their Laplacian spectra. We

use the Laplacian spectra as a vehicle to test our approach, its use in this context has been

well studied in the literature [18]. We represent the set of graphs using a weighted data

similarity graph (WDSG). The vertices of the WDSG graph are the original graphs from the

set we wish to cluster. We then use the classical and quantum hitting times to embed these

graphs. We also embed the graphs directly using MDS directly on the matrix of distances for

comparison.

Let S be our set of m graphs. We denote by zk the vector of the ordered eigenvalues of the

Laplacian matrix, Lk, of the the kth graph. We append zeros to the shorter vectors so that

all the vectors of eigenvalues are of the same length. The WDSG representing this dataset is

the complete graph G = (V, E ,W ), where V = {1, . . . ,m}, E = {{u, v}|u, v ∈ V, u 6= v} and

the weights are given by W (u, v) = e−||zu−zv||, where ||zu − zv|| is the standard Euclidean

distance.

We use the standard CMU, MOVI and chalet house sequences as our dataset [18]. The
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Fig. 9. Coincident vertices in the dth dimension of the quantum hitting time embedding of the
3 × 3 grid. Coincident vertices are labelled with the same colour and number.
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Fig. 10. Coincident vertices in the dth dimension of the quantum hitting time embedding of the
8 × 8 grid. Coincident vertices are labelled with the same colour and number.
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Fig. 11. Quantum and classical hitting time embeddings of the 32 vertex ‘wheel’ with 4 ‘spokes’.
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Fig. 12. Coincident vertices in the dth dimension of the quantum hitting time embedding of the 32
vertex ‘wheel’ with 4 ‘spokes’. Coincident vertices are labelled with the same colour and number.
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Fig. 13. Embeddings of the house sequences using the spectral and the quantum hitting time.
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Fig. 14. Embeddings of the house sequences using MDS on the classical hitting times.
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Fig. 15. Embeddings of the house sequences using MDS on the spectral distances directly.

houses are viewed at angular intervals and Delaunay triangulations are derived from these to

form the set of graphs. The embedding obtained using the quantum hitting time is shown

in Figure 13, the embedding using the classical hitting time is shown in Figure 14 and the

embedding using MDS directly on the matrix of spectral distances is shown in Figure 15. The

embedding using the quantum hitting times clearly distinguishes between the 3 clusters. A

reasonably good separation of the houses is also obtained using MDS on the spectral distances

directly. However, the embedding using MDS on the spectral distances directly is effectively

one dimensional, this is a common problem with using MDS on graph spectral distances [18].

For datasets with more than three classes this is likely to prevent this method from successfully

clustering different classes separately. The quantum hitting time embedding, however, fully

utilizes the available dimensions.

The embedding using the quantum hitting times distinguishes between the different classes

far more clearly than the embedding using the classical hitting time is able to. The embedding

using the classical hitting time produces a number of outliers resulting in the majority of the

nodes being confined to a very small area of the embedding. What is more, looking at this

central cluster where the majority of the nodes lie shows that, even here, the nodes are not

clearly clustered according to their separate classes.

7 Conclusions

We have shown how a quasi-quantum analogue of the hitting time between a pair of vertices

in a graph can be calculated for the continuous time quantum walk on a graph. The hitting

time can be used as a more robust measure of distance between vertices than the path length

between vertices. We analyse how the quantum hitting time compares with the classical

hitting time which was considered in [23]. The hitting times between the vertices of a graph

can be used to embed that graph in a low dimensional space. We show how the quantum
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hitting time produces embeddings of graphs that are prone problems caused by outliers than

classical hitting time embeddings. In addition, quantum hitting time embeddings make full

use of both dimensions of the 2D embedding space rather than restricting the graph to a

submanifold, as can occur with classical hitting time embeddings. We show how quantum

hitting time embeddings can be used to cluster real-world datasets effectively. Additionally,

we show how the quantum hitting time embedding can be used to identify symmetries in

graphs.

There are number of directions for future work. First, as mentioned in the introduction,

our analysis falls well short of defining a physical observable of the continuous-time quantum

walk since we do not specify a measurement process. This would require a deeper analysis of

the dynamics of the walk, and it is not clear that a convenient observable or a corresponding

measurement process exists. Second, it would be interesting to extend the experimental

analysis provided in the paper to hitting times computed for the discrete-time quantum walk

.
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