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In this paper, we investigate limitations imposed by sequential attacks on the perfor-
mance of a differential-phase-shift (DPS) quantum key distribution (QKD) protocol with
weak coherent pulses. Specifically, we analyze a sequential attack based on optimal un-
ambiguous discrimination of the relative phases between consecutive signal states emitted
by the source. We show that this attack can provide tighter upper bounds for the security
of a DPS QKD scheme than those derived from sequential attacks where the eavesdrop-
per aims to identify the state of each signal emitted by the source unambiguously.
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1 Introduction

The main security threat of quantum key distribution (QKD) protocols based on weak co-
herent pulses (WCP) arises from the fact that some signals contain more than one photon
prepared in the same polarization state. In this situation, the eavesdropper (Eve) can per-
form, for instance, the so-called Photon Number Splitting (PNS) attack on the multi-photon
pulses [1]. As a result, it turns out that the BB84 protocol [2] with WCP can give a key
generation rate of order O(η2), where η denotes the transmission efficiency of the quantum
channel [3, 4].

To obtain higher secure key rates over longer distances, different practical QKD schemes,
that are robust against the PNS attack, have been proposed in recent years. One of these
schemes is the so-called decoy-states [5], where the sender (Alice) randomly varies the mean
photon number of the signal states that are forwarded to the receiver (Bob). This method can
deliver a secure key rate of order O(η). Another possibility is based on the transmission of
two non-orthogonal coherent states together with a strong reference pulse [6]. This technique
also provides a key generation rate of order O(η) [7]. Finally, another potential approach
is to use a differential-phase-shift (DPS) QKD protocol [8, 9]. In this scheme, Alice sends
to Bob a train of WCP whose phases are randomly modulated by 0 or π. On the receiving
side, Bob measures out each incoming signal by means of an interferometer whose path-length
difference is set equal to the time difference between two consecutive pulses. In this last case,
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however, a secure key rate of order O(η) has only been proven so far against a special type of
individual attacks where Eve acts and measures photons individually, rather than signals [9],
and also against a particular class of collective attacks where Eve attaches ancillary systems
to each pulse or to each pair of successive pulses sent by Alice [10]. While a complete security
proof of a DPS QKD protocol against the most general attack is still missing, recently it has
been shown that sequential attacks [9] already impose strong restrictions on the performance
of this QKD scheme with WCP. For instance, in [11, 12, 13] it was proven that the long-
distance implementations of DPS QKD reported in [14, 15, 16, 17] would be insecure against
a sequential attack based on unambiguous state discrimination (USD) of Alice’s signal states
[18, 19, 20].

In this paper, we analyze a novel sequential attack based on an improved version of the
unambiguous relative phase discrimination measurement presented in [9]. Moreover, we show
that the measurement strategy investigated is optimal, i.e., it minimizes the probability of
obtaining an inconclusive result when distinguishing all the relative phases of Alice’s signal
states. When combined with a sequential attack, this optimal unambiguous relative phase
discrimination measurement can deliver ultimate upper bounds on the maximal distance
achievable by a DPS QKD scheme as a function of the error rate in the sifted key, and the
mean photon number of the signals sent by Alice. It states that no key distillation protocol can
provide a secret key from the correlations established by the users. We show that a sequential
attack based on such a measurement always delivers tighter upper bounds for the security of
a DPS QKD scheme than those derived from a sequential attack where Eve performs USD of
each signal state emitted by Alice [11, 12, 13].

We consider the so-called uncalibrated device scenario, where Eve can always control some
imperfections in Alice and Bob’s devices (e.g., the detection efficiency, the dark count proba-
bility, and the dead-time of Bob’s detectors), together with the losses in the quantum channel,
and she exploits them to obtain maximal information about the shared key [21].

The paper is organized as follows. In section 2 we describe in more detail a DPS QKD
protocol. Then, in section 3, we present a sequential attack against this QKD scheme based
on optimal unambiguous discrimination of the relative phases between Alice’s signal states.
Here we obtain upper bounds on the performance of a DPS QKD scheme as a function of
the error rate in the sifted key and the mean photon number of Alice’s signal states. Finally,
section 4 concludes the paper with a summary. The manuscript contains as well one appendix
with additional calculations.

2 Differential-phase-shift QKD

The basic setup is illustrated in figure 1. Alice prepares first a train of coherent states |α〉
and, afterwards, she modulates, at random and independently every time, the phase of each
pulse to be 0 or π. As a result, she produces a random train of signal states |α〉 or | − α〉 that
are sent to Bob through the quantum channel. On the receiving side, Bob uses a 50 : 50 beam
splitter to divide the incoming pulses into two possible paths and then he recombines them
again using another 50 : 50 beam splitter. The time delay introduced by Bob’s interferometer
is set equal to the time difference Δt between two consecutive pulses. Whenever the relative
phase between two consecutive signals is 0 (±π) only the photon detector D0 (D1) may
produce a “click” (at least one photon is detected). For each detected event, Bob records the
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WCP PM

Fig. 1. Basic setup of a DPS QKD scheme. PM denotes a phase modulator, BS, a 50 : 50 beam
splitter, M, a mirror, D0 and D1 are two photon detectors and Δt represents the time difference
between two consecutive pulses.

time slot where he obtained a click and the actual detector that fired.
Once the quantum communication phase of the protocol is completed, Bob uses a classical

authenticated channel to announce the time slots where he obtained a click, but he does not
reveal which detector fired each time. From this information provided by Bob, together with
the knowledge of the phase value used to modulate each pulse, Alice can infer which photon
detector had clicked at Bob’s side each given time. Then, Alice and Bob agree, for instance,
to select a bit value “0” whenever the photon detector D0 fired, and a bit value “1” if the
detector D1 clicked. In an ideal scenario, Alice and Bob end up with an identical string of bits
representing the sifted key. Due to the noise introduced by the quantum channel, together with
possible imperfections of Alice and Bob’s devices, however, the sifted key typically contains
some errors. Then, Alice and Bob perform error-correction to reconcile the data and privacy
amplification to decouple the data from Eve. (See, for instance, [22].)

3 Sequential attacks against differential-phase-shift QKD

A sequential attack can be seen as a special type of intercept-resend attack [9, 11, 12, 13].
First, Eve measures out every signal state emitted by Alice with a detection apparatus located
very close to the sender. Afterwards, she transmits each measurement result through a lossless
classical channel to a source close to Bob. Whenever Eve obtains a predetermined number of
consecutive successful measurement outcomes, this source prepares a new train of non-vacuum
signal states that is forwarded to Bob. Otherwise, Eve typically sends vacuum signals to Bob
to avoid errorsa. Whether a measurement result is considered to be successful or not, and
which type of signal states Eve sends to Bob, depends on Eve’s particular eavesdropping
strategy and on her measurement device. Sequential attacks transform the original quantum
channel between Alice and Bob into an entanglement breaking channel [23] and, therefore,
they do not allow the distribution of quantum correlations needed to establish a secret key
[24].

The first sequential attack against a DPS QKD protocol was introduced very briefly in [9].
In this proposal, Eve employs a detection apparatus equivalent to Bob’s setup. A successful
result is associated with Eve obtaining a click in her measurement device. This click identifies
unambiguously the relative phase (0 or ±π) between two consecutive pulses emitted by Alice
and, therefore, it reveals Eve the bit value encoded by the sender. A failure corresponds to

aIn order to simplify our notation, from now on we will employ the term “signal state” only to denote those
light pulses with a mean photon number bigger than zero. A light pulse with an average photon number equal
to zero will be always denoted as a “vacuum state”.
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the absence of a click. However, since Alice emits WCP with typical average photon number
quite low, so is the probability that Eve obtains a successful result in this scenario. In order
to increase Eve’s successful probability other sequential attacks have been proposed more
recently [11, 12, 13]. These attacks are typically based on Eve realizing USD of each signal
state emitted by Alice, since Eve can always access a local oscillator that is phase-locked
to the coherent light source employed by the sender [13]. In particular, when Eve identifies
unambiguously a signal state emitted by Alice, i.e., she determines without error whether it is
|α〉 or | − α〉, then she considers this result as successful. Otherwise, she considers it a failure.
In [11] it was shown that this class of sequential attacks can provide tighter upper bounds on
the performance of a DPS QKD protocol than those derived from a sequential attack where
Eve uses the same measurement apparatus like Bob, or from the class of individual attacks
considered in [9].

In this section, we introduce an improved version of the unambiguous relative phase dis-
crimination measurement presented in [9], and we investigate again the situation where Eve
tries to identify the relative phases between Alice’s signal states unambiguously. As a result,
we show that the sequential attack considered can provide stronger limitations for the security
of a DPS QKD scheme than those reported in [9, 11, 12, 13].

3.1 Optimal unambiguous discrimination between relative phases

In a DPS QKD protocol Alice sends to Bob a train of WCP each of them prepared in the
state |α〉 or | − α〉. These two coherent states span a two-dimensional Hilbert space H2 and,
therefore, they can always be expressed in some orthogonal basis {|0〉, |1〉} as follows

| ± α〉 = a|0〉 ± b|1〉, (1)

where we assume, without loss of generality, that the coefficients a and b are given by

a =

√
1
2
[1 + exp (−2μα)],

b =

√
1
2
[1 − exp (−2μα)], (2)

with μα = |α|2 denoting the mean photon number of Alice’s signal states. That is, a and b

satisfy: a ∈ R, b ∈ R, a2 + b2 = 1, and a > b.
The state of a block of M consecutive WCP emitted by Alice, that we shall denote as

|ψ(�xM )〉, can be written as

|ψ(�xM )〉 =
M⊗
i=1

|(−1)xiα〉 =
1∑

n1,...,nM=0

(−1)
∑M

i=1 xiniaM−∑M
i=1 nib

∑M
i=1 ni |n1, ..., nM 〉, (3)

with the coefficients a and b given by (2), and where the vector �xM = (x1, ..., xM ), with
xi ∈ {0, 1}, contains the information about the value of the phase (0 or π) imprinted by Alice
in each pulse within the block.

In order to access to the relative phase information encoded in a block of signals sent by
Alice, however, it is not necessary to completely identify the vector �xM . For instance, the
relative phase between pulse N and pulse N−1 in |ψ(�xM )〉, with 2 ≤ N ≤M , is simply given
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by 0 (±π) when xN ⊕ xN−1 = 0 (1). In general, for any given state |ψ(�xM )〉, there exists
always another state |ψ(�xM ⊕�1M )〉, with �xM ⊕�1M = (x1 ⊕ 1, ..., xM ⊕ 1), that has precisely
the same M − 1 relative phases as |ψ(�xM )〉. This means, in particular, that the problem of
determining the relative phases of Alice’s signal states can be formulated as a discrimination
problem between 2M−1 mixed states given by

ρ(�xM ) =
1
2

(
|ψ(�xM )〉〈ψ(�xM )| + |ψ(�xM ⊕�1M )〉〈ψ(�xM ⊕�1M )|

)
, (4)

with the coefficient xM = 0. That is, the vector �xM has now the form

�xM = (x1, ..., xM−1, 0), (5)

with xi ∈ {0, 1}. This last condition arises because ρ(�xM ) satisfies ρ(x1, ..., xM−1, 0) =
ρ(x1 ⊕ 1, ..., xM−1 ⊕ 1, 1). The normalization term 1

2 that appears in (4) is due to the fact
that all the states |ψ(�xM )〉 have equal a priori probabilities.

To distinguish between the signals states given by (4), we shall consider that Eve follows
a USD strategy. That is, the constraint is that the measurement employed by Eve should
never wrongly identify a state ρ(�xM ), but it can provide sometimes an inconclusive result
[18, 19, 20]. The goal is to keep the fraction of inconclusive outcomes as low as possible.

Let the set of binary vectors Vy,M , with y ∈ {A,B}, be defined as

Vy,M =
{
(n1, ..., nM ) | ni ∈ {0, 1}, and

M∑
i=1

ni even if y = A, odd if y = B
}
, (6)

and let YM denote the subspace spanned by the orthogonal states {|n1, ..., nM 〉}, with the
vectors (n1, ..., nM ) ∈ Vy,M . The signal states ρ(�xM ) given by (4) can be written in a block-
diagonal form as

ρ(�xM ) =
∑

y∈{A,B}
py,M |ψy(�xM )〉〈ψy(�xM )|, (7)

where the probabilities py,M are given by

py,M =
1∑

n1,...,nM=0

�nM∈Vy,M

(
aM−∑M

i=1 nib
∑M

i=1 ni

)2

, (8)

with the vector �nM ≡ (n1, ..., nM ), and where the states |ψy(�xM )〉 have the form

|ψy(�xM )〉 =
1√
py,M

1∑
n1,...,nM=0

�nM∈Vy,M

(−1)
∑M−1

i=1 xiniaM−∑M
i=1 nib

∑M
i=1 ni |n1, ..., nM 〉. (9)

That is, the signals |ψy(�xM )〉 ∈ YM.
This means, in particular, that we can always assume, without loss of generality, that

Eve’s measurement strategy includes an initial step which projects the mixed states ρ(�xM )
onto the orthogonal subspaces AM and BM. This projective measurement is characterized
by the following two operators: Πy,M =

∑1
n1,...,nM=0,�nM∈Vy,M

|n1, ..., nM 〉〈n1, ..., nM | with
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y ∈ {A,B}. It satisfies [Tr(Πy,Mρ(�xM ))]−1Πy,Mρ(�xM )Π†
y,M = |ψy(�xM )〉〈ψy(�xM )|. That is,

it outputs the state |ψy(�xM )〉 with probability py,M .
The question of discriminating the 2M−1 mixed states given by (4) can then be reduced

to the problem of distinguishing 2M−1 pure states |ψy(�xM )〉. To discriminate between the
signals |ψy(�xM )〉, we shall consider a measurement strategy which can involve at most M − 1
steps. Before providing the exact details of the measurement, let us sketch very briefly
its principal parts. Eve starts by performing a filter operation on |ψy(�xM )〉. If the filter
operation succeeds, Eve obtains xM−1 ⊕ xM . That is, Eve learns with certainty the relative
phase between the first two pulses in the block. Moreover, this filter operation also outputs a
quantum state which still contains complete information about the remaining M − 2 relative
phases within the block. On the contrary, if the filter operation fails, the value of xM−1 is not
accessible anymore, and Eve cannot obtain the first two relative phases (i.e., xM−1⊕xM , and
xM−2⊕xM−1) within the block. In this last case, however, the filter operation outputs a state
which contains information about the remaining M − 3 relative phases within the block. Eve
repeats the same procedure several times, but now applied to the quantum state provided by
the filter operation in the previous step. To gain full information about all the relative phases
contained in |ψy(�xM )〉, Eve needs to obtain M − 1 consecutive successful filtering results.

The main motivation to select such a particular implementation of a USD measurement
is closely related to Eve’s eavesdropping strategy, which will be introduced in section 3.2.
The principal idea behind this method is that, with some finite probability, Eve can always
determine the value of some relative phases in |ψy(�xM )〉, even if she is not able to identify
all of them. Moreover, as we show in Appendix A, it turns out that this measurement
strategy is optimal, i.e., it minimizes the probability of obtaining an inconclusive result when
distinguishing all the M − 1 relative phases of Alice’s signal states. Next, we provide the
technical details of Eve’s measurement.

The set of M − 1 possible filter operations employed by Eve is defined by the following
two Kraus operators:

Fsucc,y,N = Gy,N−1 ⊗ |0〉〈0| + IN−1 ⊗ |1〉〈1|,
Ffail,y,N = (IN−1 −G†

y,N−1Gy,N−1)1/2 ⊗ |0〉〈0|, (10)

with 2 ≤ N ≤M , and where IN−1 denotes the identity operator in H2N−1, and the operator
Gy,N−1 is given by

Gy,N−1 =
1∑

n1,...,nN−1=0

�nN−1∈Vy,N−1

(
b

a

)2(nN−1⊕1)

|n1, n2, ..., nN−1 ⊕ 1〉〈n1, n2, ..., nN−1|. (11)

Let |φy(�xN )〉 denote a quantum state of the form

|φy(�xN )〉 =
1√
py,N

1∑
n1,...,nN=0

�nN∈Vy,N

(−1)
∑N−1

i=1 (xi⊕xN )niaN−∑N
i=1 nib

∑N
i=1 ni |n1, ..., nN〉, (12)

with 1 ≤ N ≤M . That is, when N = M these states satisfy |φy(�xM )〉 = |ψy(�xM )〉 for all �xM

given by (5). Let �xN−1 denote the vector that is formed by the first N − 1 elements of �xM .
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For any N satisfying 2 ≤ N ≤M , the signal states given by (12) can be written as a function
of |φy(�xN−1)〉 and |φȳ(�xN−1)〉, with ȳ = B when y = A and ȳ = A when y = B, as

|φy(�xN )〉 =
1√
py,N

(
a
√
py,N−1|φy(�xN−1)〉|0〉 + (−1)xN−1⊕xN b

√
pȳ,N−1|φȳ(�xN−1)〉|1〉

)
, (13)

up to a global phase.
Suppose now that the filter operation defined by (10) receives as input the state |ψy(�xM )〉 ≡

|φy(�xM )〉. The probability of getting a successful result, that we shall represent as psucc,y,M ,
can be calculated as psucc,y,M = 〈φy(�xM )|F †

succ,y,MFsucc,y,M |φy(�xM )〉. This quantity is given
by psucc,y,M = (py,M )−12b2pȳ,M−1. If the filter operation succeeded, the resulting normalized
filtered state, that we shall denote as |φsucc,y(�xM )〉, can be calculated as |φsucc,y(�xM )〉 =
(√psucc,y,M )−1Fsucc,y,M |φy(�xM )〉. We obtain |φsucc,y(�xM )〉 = |φȳ(�xM−1)〉 ⊗ |ψM 〉, with the
state |ψM 〉 given by |ψM 〉 = (

√
2)−1[|0〉 + (−1)xM−1⊕xM |1〉], up to a global phase. That is,

the relative phase between pulse M and pulse M −1 is now completely accessible to Eve. She
only has to measure the state |ψM 〉 in the orthogonal basis |±〉 = (

√
2)−1(|0〉 ± |1〉) to learn

its value.
On the contrary, the probability of obtaining a failure, that we shall denote as pfail,y,M ,

can be calculated as pfail,y,M = 〈φy(�xM )|F †
fail,y,MFfail,y,M |φy(�xM )〉. This quantity is given

by pfail,y,M = (py,M )−1(1 − 2b2)py,M−2 = 1 − psucc,y,M . Whenever the filter operation
failed, the resulting normalized filtered state, that we shall denote as |φfail,y(�xM )〉, can be
calculated as |φfail,y(�xM )〉 = (√pfail,y,M )−1Ffail,y,M |φy(�xM )〉. We obtain |φfail,y(�xM )〉 =
|φy(�xM−2)〉⊗|00〉, up to a global phase. That is, if Eve fails when filtering the state |φy(�xM )〉,
then the value of xM−1 is not accessible to her anymore, and Eve cannot obtain the relative
phase information between pulse M and pulse M −1, and also between pulse M−1 and pulse
M − 2, within the block.

Once the first filter operation finished, Eve is left with a quantum state which contains the
signal |φȳ(�xM−1)〉 if the filter succeeded, or the signal |φy(�xM−2)〉 if it failed. Then, she can
repeat the same procedure again, and filter these signal states to try to obtain xM−2⊕xM−1 if
the original state was |φȳ(�xM−1)〉, or xM−3⊕xM−2 if it was |φy(�xM−2)〉. In general, whenever
a filter operation given by (10) receives as input the state |φy(�xN )〉, with 2 ≤ N ≤ M , then
the probability of getting a successful result is given by

psucc,y,N = 2b2
pȳ,N−1

py,N
. (14)

If the filter operation succeeded, the resulting normalized filtered state has the form

|φsucc,y(�xN )〉 = |φȳ(�xN−1)〉 ⊗ |ψN 〉, (15)

with the signal |ψN 〉 given by

|ψN 〉 =
1√
2

[
|0〉 + (−1)xN−1⊕xN |1〉

]
, (16)

up to a global phase. On the contrary, the probability of obtaining a failure can be expressed
as

pfail,y,N = (1 − 2b2)
py,N−2

py,N
, (17)
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with the probabilities pA,0 ≡ 1 and pB,0 ≡ 0. In this last case, the resulting normalized
filtered state is given by

|φfail,y(�xN )〉 = |φy(�xN−2)〉 ⊗ |00〉, (18)

up to a global phase.
Let us now calculate the probability that Eve learns the first k ∈ [1,M −1] relative phases

of ρ(�xM ). As we have seen above, to obtain the relative phase between pulse N and pulse
N − 1 within a block of M signals sent by Alice, Eve has to successfully filter a state of the
form |φy(�xN )〉. Let psucc,N denote the probability that Eve obtains the value of xN−1 ⊕ xN

conditioned on the fact that Eve has access to a signal |φy(�xN )〉, with y ∈ {A,B}. This
probability can be written as

psucc,N =
∑

y∈{A,B}
py

Npsucc,y,N , (19)

where py
N represents the probability that the state filtered by Eve when trying to obtain

xN−1 ⊕ xN belongs to the subspace YN . When N = M , we have that py
M is simply given by

py
M = py,M , with py,M of the form (8). This means, in particular, that psucc,M = 2b2(py,M−1+
pȳ,M−1) = 2b2, since py,M−1 + pȳ,M−1 = 1. If N = M − 1, the probabilities py

M−1 can
be expressed as py

M−1 = (psucc,M )−1pȳ
Mpsucc,ȳ,M . Using (14), together with the fact that

psucc,M = 2b2 and pȳ
M = pȳ,M , we obtain py

M−1 = py,M−1. That is, psucc,M−1 is given by
psucc,M−1 = 2b2(py,M−2 +pȳ,M−2) = 2b2. Similarly, when 2 ≤ N ≤M −2, the state |φy(�xN )〉
can only arise from a filter operation on a signal |φȳ(�xN+1)〉 that succeeded, or from a filter
operation on a signal |φy(�xN+2)〉 that failed. If it comes from a successful filter operation on
|φȳ(�xN+1)〉, then py

N can be written as py
N = (psucc,N+1)−1pȳ

N+1psucc,ȳ,N+1. Starting with
the case N = M − 2, we already showed that psucc,M−1 = 2b2 and pȳ

M−1 = pȳ,M−1. This
means, therefore, that py

M−2 = py,M−2. If the state |φy(�xN )〉 arises from a filter operation on
|φy(�xN+2)〉 which failed, then py

N is given by py
N = (pfail,N+2)−1py

N+2pfail,y,N+2. Starting
again with the case N = M − 2, and using (17) together with the fact that pfail,M =
1 − psucc,M = 1 − 2b2 and py

M = py,M , we have that py
M−2 = py,M−2 also in this scenario.

Finally, from (19) we obtain that psucc,M−2 satisfies psucc,M−2 = 2b2. Following a recursive
argumentation, it is straightforward to show that

psucc,N = 2b2 = 1 − exp (−2μα), (20)

for all N satisfying 2 ≤ N ≤M , and where in the last equality we have used (2). This means,
in particular, that the probability that Eve learns the first k ∈ [1,M − 1] relative phases of
ρ(�xM ) can now be expressed as

k−1∏
i=0

psucc,M−i = [1 − exp (−2μα)]k. (21)

As already mentioned before, it can be proven that this measurement is optimal, i.e., it
minimizes the probability of having an inconclusive result when distinguishing all the relative
phases of Alice’s signal states. (See Appendix A.)
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3.2 Eavesdropping strategy

For simplicity, we shall consider that Eve treats all the signal states sent by Alice as a single
block of signals, and she tries to discriminate each relative phase within the block. Whenever
she identifies unambiguously a predetermined number of consecutive relative phases sent by
Alice, i.e., she determines without error whether each relative phase is 0 or ±π, she considers
this sequence of measurement outcomes successful. Otherwise she considers it a failure. We
define the integer parameterMmin as the minimum number of consecutive relative phases that
Eve needs to correctly identify in order to consider the sequence of measurement outcomes
successful. More precisely, if k ≥ 0 denotes the total number of consecutive relative phases
unambiguously identified by Eve before her filter operation fails, then, whenever k > Mmin,
Eve prepares a new train of signal states that is forwarded to Bob. On the other hand, if
k < Mmin Eve sends to Bob k+ 2 vacuum states, where the last vacuum state corresponds to
Eve’s failure when using her filter operation. Finally, whenever k = Mmin we shall consider
that Eve employs a probabilistic strategy that combines the two previous ones. In particular,
we assume that Eve sends to Bob a new train of signal states with probability q and, with
probability 1− q, she sends to Bob Mmin + 2 vacuum states. That is, the parameter q allows
Eve to smoothly fit her eavesdropping strategy to the observed data [11].

Moreover, for simplicity, we define the integer parameter Mmax > Mmin as the maximum
number of consecutive unambiguous discrimination successful results that Eve can obtain in
order to send to Bob a train of signal states. That is, whenever Eve determines unambiguously
Mmax consecutive relative phases within a block of them then she discards the next two
phases, sends to Bob a train of signal states, and begins again the measurement process of
the remaining phases. The reason to discard two consecutive relative phases in this scenario is
just to guarantee that between any two blocks of signal states sent by Eve there always exists,
at least, one vacuum state. Specifically, suppose, for instance, that after Mmax successful
results, Eve’s filter operation outputs, with probability py

N , a state |φy(�xN )〉 given by (12).
For N > 2, the state |φy(�xN )〉 can be written as

|φy(�xN )〉 =
1√
py,N

{√
py,N−2|φy(�xN−2)〉[a2|00〉C + (−1)xN−1⊕xN b2|11〉C ]

+ab
√
pȳ,N−2|φȳ(�xN−2)〉[(−1)xN−2⊕xN |01〉C + (−1)xN−2⊕xN−1|10〉C ]

}
, (22)

up to a global phase. If now Eve discards subsystem C, the resulting signal state can be
expressed as

∑
y∈{A,B} p

y
NTrC(|φy(�xN )〉〈φy(�xN )|). After some calculations, and using the

fact that py
N = py,N (see Section 3.1), we obtain that this state is of the form given by (7),

with M = N − 2. That is, the value of xN−1 is not accessible anymore, but Eve can start
again her measurement strategy on ρ(�xN−2).

Let us now introduce the type of signal states that Eve forwards to Bob when she obtains
Mmin ≤ k ≤ Mmax consecutive successful measurement outcomes. To guarantee that Eve’s
presence remains unnoticeable to the legitimate users, she needs to select these signal states
such that they can reproduce the statistics expected by the legitimate users after their mea-
surements. For this, we shall consider the standard version of a DPS QKD protocol, where
Alice and Bob only monitor the raw bit rate (before the key distillation phase) together with
the time instances in which Bob obtains a click. It was shown in [13] that the main limita-
tion on the class of signal states that Eve can send to Bob in this scenario arises from the
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dead-time of Bobs detectors. In particular, to be able to mimic the expected dead-time of the
detectors, Eve has to select trains of signal states that can produce only one click on Bob’s
side within a dead-time periodb. To achieve this goal, we shall assume that whenever Eve
identifies k consecutive relative phases encoded by Alice then she chooses her signal states,
that we denote as |ψk

e 〉, containing only one photon distributed among k+1 temporal modes.
These modes correspond to k + 1 consecutive pulses sent by Alice, i.e., the time difference
between any two consecutive temporal modes is set equal to the time difference Δt between
two consecutive pulses. Specifically, we shall consider that the states |ψk

e 〉 are given by [12, 13]

|ψk
e 〉 =

k+1∑
n=1

A(k)
n exp (iθn)â†n|vac〉, (23)

with the coefficients A(k)
n ∈ C and where the normalization condition

∑k+1
n=1 |A(k)

n |2 = 1 is
always satisfied. The angles θn are selected such that they reproduce the relative phases
identified by Eve’s measurement, i.e., θn − θn−1, with 1 < n ≤ k + 1, is equal to the relative
phase between pulse n and pulse n− 1 sent by Alice. The operator â†n represents a creation
operator for one photon in temporal mode n, and the state |vac〉 refers to the vacuum state.
The superscript k labeling the coefficients A(k)

n emphasizes the fact that the value of these
coefficients may depend on the number of temporal modes contained in |ψk

e 〉.
Eve also appends some vacuum states to each signal |ψk

e 〉. The main idea behind this
procedure is to guarantee that whenever Bob obtains a click on his detection apparatus, then
he cannot obtain any other click afterwards during a period of time at least equal to the
dead-time of his detectors. The minimum number of vacuum states that Eve needs to send
to Bob after each signal |ψk

e 〉 is given by 1 + d, with d = �tdfc�, and where td and fc denote,
respectively, the dead-time of Bob’s detectors and the clock frequency of the system [13].
The minimum value of d arises from the case where Bob obtains a click in the last possible
temporal mode. Whenever Eve forwards to Bob a state |ψk

e 〉 together with 1 + d vacuum
states then she also has to discard some extra relative phases of |φy(�xN )〉 according to the
procedure explained above before she begins again with her measurement of the remaining
relative phases within the block.

In section 3.1 we showed that, given ρ(�xM ), the probability that Eve learns the first
k ∈ [1,M − 1] relative phases of ρ(�xM ) is given by pk with

p = 1 − exp (−2μα). (24)

This means, in particular, that the probability that Eve sends to Bob a train of signal states
|ψk

e 〉, together with 1 + d vacuum states, is given by

ps(k) =

⎧⎪⎪⎨
⎪⎪⎩

qpMmin(1 − p) if k = Mmin

pk(1 − p) if Mmin < k < Mmax

pMmax if k = Mmax

0 otherwise,

(25)

bIn order to simplify our analysis, we shall assume that both detectors D0 and D1 in figure 1 are indistin-
guishable. Moreover, we shall consider a conservative scenario where every time that one of these detectors
clicks, then both detectors do not respond to any other incident photon during a period of time equal to the
dead-time, i.e., we shall assume that after a click both detectors suffer simultaneously from a dead time [13].
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with p given by (24). Similarly, we shall denote with pv(k) the probability that Eve sends to
Bob k + 2 vacuum states. This probability is given by

pv(k) =

⎧⎨
⎩

pk(1 − p) if 0 ≤ k < Mmin

(1 − q)pMmin(1 − p) if k = Mmin

0 otherwise.
(26)

We illustrate all these possible cases in figure 2, where we also include the different a priori
probabilities to be in each of these scenarios.

|ψ  〉e
k1+d vacuum{ {A)

... ...

p  (k)s
     M       ≤ k  ≤  M     min max

k+2 vacuum{B)

...

p  (k)v
          0   ≤  k  ≤  M     min

Fig. 2. Possible signal states that Eve sends to Bob together with their a priori probabilities. The
arrow indicates the transmission direction.

Next, we obtain an expression for the gain, i.e., the probability that Bob obtains a click
per signal state sent by Alice, together with the quantum bit error rate (QBER) introduced
by Eve with this sequential attack. The analysis is analogous to that included in [13], but
now taking into account the a priori probabilities ps(k) and pv(k) given by (25) and (26),
respectively.

3.3 Gain

The gain, that we shall denote as G, can be expressed as G = Nclicks/Ns, where Nclicks

represents the average total number of clicks obtained by Bob, and Ns is the total number of
signal states sent by Alice. The parameterNclicks can be expressed asNclicks = (Ns/N

e)N e
clicks,

with N e denoting the average total number of pulses of the signal states sent by Eve (see
figure 2), and whereN e

clicks represents the average total number of clicks obtained by Bob when
Eve sends to him precisely these signal states. With this notation, the gain of a sequential
attack can be written as

G =
N e

clicks

N e
. (27)

Let us start by calculating N e
clicks. Whenever Eve sends to Bob a signal state |ψk

e 〉 followed
by 1 + d vacuum states (Case A in figure 2) Bob always obtains one click in his detection
apparatus. On the other hand, if Eve sends to Bob only vacuum states (Case B in figure 2)
Bob never obtains a click. This means, in particular, that N e

clicks can be expressed as

N e
clicks =

Mmax∑
k=Mmin

ps(k) = pMmin(p+ q − pq). (28)

The analysis to obtain N e is similar. A signal state |ψk
e 〉 followed by 1 + d vacuum states

can be seen as containing k+ 2 + d pulses. On the other hand, the number of vacuum pulses
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alone that Eve sends to Bob can vary from 2 to Mmin + 2 (see figure 2). Adding all these
terms together, and taking into account their a priori probabilities, we obtain that N e can be
written as

N e =
Mmax∑
k=0

pv(k)(k + 2) + ps(k)(k + 2 + d) =
2 − p− pMmax+1

1 − p
+ dN e

clicks, (29)

with N e
clicks given by (28).

The gain G can be related with a transmission distance l for a given QKD scheme, i.e., a
distance which provides an expected click rate at Bob’s side given by G. This last condition
can be written as

G = 1 − exp (−μαηdetηt), (30)

where ηdet represents the detection efficiency of Bob’s detectors, and ηt denotes the trans-
mittivity of the quantum channel. In the case of a DPS QKD scheme, the value of ηt can be
derived from the loss coefficient γ of the optical fiber measured in dB/km, the transmission
distance l measured in km, and the loss in Bob’s interferometer L measured in dB as

ηt = 10−
γl+L
10 . (31)

From (30) and (31), we find that the transmission distance l that provides a gain G is given
by

l = − 1
γ

[
L+ 10log10

(− ln (1 −G)
μαηdet

)]
. (32)

3.4 Quantum bit error rate

The QBER, that we shall denote as Q, is defined as Q = Nerrors/Nclicks, where Nerrors

represents the average total number of errors obtained by Bob, and Nclicks is again the
average total number of clicks at Bob’s side. The parameter Nerrors can be expressed as
Nerrors = (Ns/N

e)N e
errors, with N e

errors denoting the average total number of errors obtained
by Bob when Eve sends him the different signal states considered in her strategy (see figure 2).
With this notation, and using again the fact that Nclicks = (Ns/N

e)N e
clicks, we obtain that

the QBER of a sequential attack can be expressed as

Q =
N e

errors

N e
clicks

. (33)

The parameter N e
clicks was calculated in the previous section and it is given by (28). In order

to obtain an expression for N e
errors, one can distinguish the same cases like in the previous

section, depending on the type of signal states that Eve sends to Bob. Whenever Eve sends
to Bob a signal state |ψk

e 〉 followed by 1 + d vacuum states (Case A in figure 2), the average
total number of errors in this scenario, that we shall denote as e(k), is given by

e(k) =
1
2

(
1 −

k∑
n=1

|A(k)
n+1A

(k)
n |
)
. (34)
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On the other hand, if Eve sends to Bob only vacuum states (Case B in figure 2) Bob never
obtains an error. This means, in particular, that N e

errors can be expressed as

N e
errors =

Mmax∑
k=Mmin

ps(k)e(k). (35)

3.5 Evaluation

The sequential attack introduced in section 3.2 can be parametrized by the minimum number
Mmin of consecutive unambiguous discrimination successful results that Eve needs to obtain
in order to consider the sequence of measurement outcomes successful, the maximum number
Mmax of consecutive successful results that Eve can obtain in order to send to Bob a train
of signal states, the value of the probability q, i.e., the probability that Eve actually decides
to send to Bob the signal state |ψMmin

e 〉 followed by 1 + d vacuum states instead of Mmin + 2
vacuum states, and the state coefficients A(k)

n ∈ C that characterize the signal states |ψk
e 〉,

with Mmin ≤ k ≤Mmax.
Figures 3, 4, 5 and 6 show a graphical representation of the gain versus the QBER in

this sequential attack for different values of the mean photon number μα of Alice’s signal
states, and the parameter d. It states that no key distillation protocol can provide a secret
key from the correlations established by the users above the curves, i.e., the secret key rate
in that region is zero. In these examples we consider the optimal distribution for the state
coefficients A(k)

n , i.e., the one which provides the lowest QBER for a given value of the
gain. This distribution was obtained in [13], where it was shown that the vector of optimal
state coefficients (A(k)

1 , ..., A
(k)
k+1) coincides with the normalized eigenvector associated with

the maximal eigenvalue of a (k + 1)× (k+ 1) matrix with ones only on the first off-diagonals
and zeros elsewhere. These figures assume that Mmax is fixed and given by Mmax = 25, and
we vary the parameters Mmin < Mmax and q ∈ [0, 1]. These examples also include the case of
a sequential attack where Eve realizes USD of each signal state sent by Alice [13], together
with experimental data from [14, 15, 16, 17]. For instance, in the experiment reported in
[17] the dead-time of Bob’s detectors is td = 50 ns and the clock frequency of the system is
fc = 10 GHz. We obtain, therefore, that d = �tdfc� = 500. (See figure 3.) Similarly, in the
experiments realized in [14, 15, 16] we have that td = 50 ns and fc = 1 GHz. This means, in
particular, that in all these cases d = 50. (See figures 4, 5 and 6.)

According to these results, we find that the sequential attack proposed in section 3.2 can
provide tighter upper bounds for the security of a DPS QKD scheme than those derived
from a sequential attack where Eve performs USD of each signal state emitted by the source.
Basically, this result arises due to the different a priori probabilities of Eve sending to Bob a
train of signal states |ψk

e 〉, together with 1 + d vacuum states, in each of these two possible
attacks. In particular, while in the attack introduced in section 3.2 these probabilities are
given by ps(k), in a sequential USD attack these probabilities have the form ps(k)p, with p

given by (24). Note that in this last case Eve has to discriminate the state of k+1 consecutive
signals sent by Alice unambiguously.

4 Conclusion

In this paper we have analyzed limitations imposed by sequential attacks on the performance
of a differential-phase-shift (DPS) quantum key distribution (QKD) protocol based on weak
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Fig. 3. Gain (G) versus QBER in the sequential attack introduced in section 3.2 for the optimal

distribution of the state coefficients A
(k)
n (solid line). The dashed line represents a sequential USD

attack [13]. The mean photon number of Alice’s signal states is µα = 0.2, and the parameter
d = 500. The triangles represent experimental data from [17].
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Fig. 4. Gain (G) versus QBER in the sequential attack introduced in section 3.2 for the optimal

distribution of the state coefficients A
(k)
n (solid line). The dashed line represents a sequential USD

attack [13]. The mean photon number of Alice’s signal states is µα = 0.17, and the parameter
d = 50. The triangles represent experimental data from [14]. (See also [16].)
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Fig. 5. Gain (G) versus QBER in the sequential attack introduced in section 3.2 for the optimal

distribution of the state coefficients A
(k)
n (solid line). The dashed line represents a sequential USD

attack [13]. The mean photon number of Alice’s signal states is µα = 0.16, and the parameter
d = 50. The triangle represents experimental data from [14]. (See also [16].)
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Fig. 6. Gain (G) versus QBER in the sequential attack introduced in section 3.2 for the optimal

distribution of the state coefficients A
(k)
n (solid line). The dashed line represents a sequential USD

attack [13]. The mean photon number of Alice’s signal states is µα = 0.2, and the parameter
d = 50. The triangles represent experimental data from [15]. (See also [16].)
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coherent pulses. A sequential attack consists of Eve measuring out every coherent state
emitted by Alice and, afterwards, she prepares new signal states, depending on the results
obtained, that are given to Bob. Whenever Eve obtains a predetermined number of consec-
utive successful measurement outcomes, then she prepares a new train of non-vacuum signal
states that is forwarded to Bob. Otherwise, Eve can send vacuum signals to Bob to avoid
errors. Sequential attacks transform the original quantum channel between Alice and Bob
into an entanglement breaking channel and, therefore, they do not allow the distribution of
quantum correlations needed to establish a secret key.

Specifically, we have investigated a sequential attack where Eve realizes optimal unambigu-
ous discrimination of the relative phases between Alice’s signal states. When Eve identifies
unambiguously the relative phase between two consecutive signal states sent by Alice, then
she considers this result as successful. Otherwise, she considers it a failure. As a result, we
obtained ultimate upper bounds on the maximal distance achievable by a DPS QKD scheme
as a function of the error rate in the sifted key, and the mean photon number of Alice’s sig-
nals. It states that there exists no improved classical communication protocol or improved
security analysis which can turn the correlations established by the users into a secret key.
Moreover, our analysis indicates that this attack can provide tighter upper bounds for the se-
curity of a DPS QKD scheme than those derived from sequential attacks where Eve performs
unambiguous state discrimination of each signal state emitted by the source.
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H. Gómez-Sousa and M. Curty 79

26. Y. C. Eldar (2003), A semidefinite programming approach to optimal unambiguous discrimination
of quantum states, IEEE Trans. Inform. Theory 49, pp. 446.

Appendix A: Optimality of Eve’s measurement

In this appendix we show that the unambiguous discrimination measurement presented in
section 3.1 is optimal, i.e., it minimizes the probability of having an inconclusive result when
distinguishing all the relative phases between Alice’s signal states. For that, we calculate
the maximal probability of unambiguously determining all the relative phases contained in
the signal states ρ(�xM ) given by (7), and we show that this probability coincides with that
provided by the measurement introduced in section 3.1.

As already mentioned before, due to the special block structure of the signal states ρ(�xM ),
we can always assume, without loss of generality, that Eve first projects ρ(�xM ) onto the or-
thogonal subspaces AM and BM and, afterwards, she measures the relative phase information
contained in |ψy(�xM )〉, with y ∈ {A,B}.

The set of states |ψy(�xM )〉 ∈ YM constitutes a so-called geometrically uniform (GU) set
[25, 26]. That is, these states are defined over a group of unitary matrices and they can
be generated by a single generating vector. In particular, let G be the finite group of 2M−1

unitary matrices U(�xM ) defined as

U(�xM ) =
1∑

n1,...,nM=0

(−1)
∑M−1

i=1 xini |n1, ..., nM 〉〈n1, ..., nM |, (A.1)

with �xM given by (5). If we denote as �0M = (01, ..., 0M ) the vector that has all its M elements
equal to zero, then the states |ψy(�xM )〉 can always be written as |ψy(�xM )〉 = U(�xM )|ψy(�0M )〉,
with |ψy(�0M )〉 being the generating vector of the set.

Let Φy,M denote the matrix whose columns are the state vectors |ψy(�xM )〉, and let Φ∗
y,M

represent its conjugate transpose. It was proven in [26] that the maximal probability of
correctly distinguishing between GU pure states with equal a priori probabilities is given by
the smallest eigenvalue of Φy,MΦ∗

y,M . The matrices Φy,M , with y ∈ {A,B} and M ≥ 3, can
be written, respectively, as

ΦA,M =
1√
pA,M

(
a
√
pA,M−1ΦA,M−1 a

√
pA,M−1ΦA,M−1

b
√
pB,M−1ΦB,M−1 −b√pB,M−1ΦB,M−1

)
, (A.2)

and

ΦB,M =
1√
pB,M

(
a
√
pB,M−1ΦB,M−1 −a√pB,M−1ΦB,M−1

b
√
pA,M−1ΦA,M−1 b

√
pA,M−1ΦA,M−1

)
, (A.3)

where Φy,M−1 denotes the matrix whose columns are the state vectors |φy(�xM−1)〉 given by
(12). This means, in particular, that Φy,MΦ∗

y,M can be expressed as a block-diagonal matrix
as

Φy,MΦ∗
y,M =

2
py,M

(
a2py,M−1Φy,M−1Φ∗

y,M−1 0̄
0̄ b2pȳ,M−1Φȳ,M−1Φ∗

ȳ,M−1

)
, (A.4)
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with 0̄ denoting a zero matrix, i.e., a matrix which contains only zeros. The smallest eigenvalue
of Φy,MΦ∗

y,M , that we shall denote as λmin
y,M , is given by

λmin
y,M =

2
py,M

min

{
a2py,M−1λ

min
y,M−1, b

2pȳ,M−1λ
min
ȳ,M−1

}
, (A.5)

with λmin
y,M−1 denoting the smallest eigenvalue of Φy,M−1Φ∗

y,M−1. We solve (A.5) by induction.
In particular, we start by analyzing the case M = 2, and then we show that

a2py,M−1λ
min
y,M−1 ≥ b2pȳ,M−1λ

min
ȳ,M−1, (A.6)

for all M ≥ 3.
When M = 2, we have that ΦA,2Φ∗

A,2 = 2(pA,2)−1[a4, 0; 0, b4], and also ΦB,2Φ∗
B,2 =

2a2b2(pB,2)−1[1, 0; 0, 1]. Then, since a > b, it is guaranteed that a4 = a2pA,1 > b4 = b2pB,1,
and a2b2 = a2pB,1 = b2pA,1, respectively. That is, if we define λmin

y,1 = 1 for all y ∈ {A,B},
then (A.6) is satisfied. When M = 3, it turns out that a2pA,2λ

min
A,2 = b2pB,2λ

min
B,2 = 2a2b4,

and a2pB,2λ
min
B,2 = 2a4b2 > b2pA,2λ

min
A,2 = 2b6. That is, (A.6) is also satisfied. Let us now

assume that a2py,M−2λ
min
y,M−2 ≥ b2pȳ,M−2λ

min
ȳ,M−2 is true. Then, from (A.5) we have that

a2py,M−1λ
min
y,M−1 = 2a2min {a2py,M−2λ

min
y,M−2, b

2pȳ,M−2λ
min
ȳ,M−2} = 2a2b2pȳ,M−2λ

min
ȳ,M−2 ≥

2b4py,M−2λ
min
y,M−2 = b2pȳ,M−1λ

min
ȳ,M−1.

This means, therefore, that λmin
y,M is given by

λmin
y,M =

2
py,M

(
b2pȳ,M−1λ

min
ȳ,M−1

)
= psucc,y,Mλmin

ȳ,M−1, (A.7)

where in the last equality we have used (14). When M is even, this expression can be written
as

λmin
y,M =

M/2∏
i=1

psucc,y,2i

M/2−1∏
j=1

psucc,ȳ,2j+1, (A.8)

while, whenever M is odd then (A.7) has the form

λmin
y,M =

(M−1)/2∏
i=1

psucc,y,2i+1psucc,ȳ,2i. (A.9)

The maximal probability of unambiguously determining all the relative phases contained
in the signal states ρ(�xM ) is given by ∑

y∈{A,B}
py,Mλ

min
y,M . (A.10)

After some straightforward calculations, we obtain that this quantity can be written as [1 −
exp (−2μα)]M−1, which coincides with that obtained in section 3.1.


