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We present an extension to a d-ary alphabet of a recently proposed deterministic quan-
tum key distribution protocol. It relies on the use of mutually unbiased bases in prime

power dimension d, for which we provide an explicit expression. Then, by considering
a powerful individual attack, we show that the security of the protocol is maximal for
d = 3.
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1. Introduction

Quantum Key Distribution (QKD) is recognized to complement the One Time Pad to a

secure system for reliable transfer of confidential information [1]. A paradigm for QKD

(not exploiting entanglement) is the pioneering BB84 protocol [2]. It allows two remote

parties (Alice and Bob) to share a secret key by a unidirectional use of a quantum channel

(supplemented by a public authenticated classical channel).

Protocols like BB84 have a probabilistic character, in the sense that, on each use of the

quantum channel, the sender (Alice) is not sure that the encoded symbol will be correctly

decoded by the receiver (Bob). Tipically, this only happens with probability 1/2.

Recently a new generation of protocols has been introduced making the QKD process

deterministic [3, 4, 5, 6]. In this case Alice is sure about the fact that Bob will exactly decode

the symbol she has encoded. This paradigm shift has been realized by a bidirectional use

of the quantum channel. These new generation protocols are more versatile than the old

generation ones and are supposed to outperform them.

As much as like extensions of BB84 to larger alphabets have been developed [7, 8], there

is a persistent aim to also extend the protocol of [6] to larger alphabets, that is to higher

dimensions. A construction has been recently devised for a tri-dimensional alphabet [9, 10],

and then another for a continuous infinite-dimensional alphabet [11].
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Here we present a protocol that realizes an extension of the deterministic protocol of [6]

to a d-ary alphabet. Since our construction is based on Mutually Unbiased Bases (MUB)

[12, 13, 14, 15], it holds only for prime power dimensions d. We will provide an explicit

expression for MUB encompassing powers of both even and odd primes, by correcting the one

given in [16].

We then consider a powerful individual attack on the forward and backward path of the

quantum channel and we show that the security for d = 3, 4, 5 is higher than that at d = 2

and is maximal for d = 3.

2. Qudits and Mutually Unbiased Bases

Let us consider a qudit, i.e., a d-dimensional quantum system, and indicate with Hd the

associated Hilbert space. A set of orthonormal bases in Hd is called a set of Mutually Unbiased

Bases (MUB) if the absolute value of the inner product of any two vectors from different bases

is 1/
√

d [12, 13, 14, 15].

It is known that in Hd, when d is prime power, there exists a maximal set of d + 1 MUB

[12, 13, 14, 15]. Here, we focus on this case.

From now on we assume that d = pm, with p a prime number and m positive integer, and

we denote the d + 1 MUB of Hd by |vk
t 〉, with k = 0, 1, . . . , d and t = 0, 1, . . . , d − 1 labelling

the basis and the vector in it respectively.

Thus, for every k, k′ = 0, 1, . . . , d and every t, t′ = 0, 1, . . . , d − 1, the following equality

holds:
∣

∣〈vk
t |vk′

t′ 〉
∣

∣ =
1√
d

(1 − δk,k′) + δt,t′δk,k′ , (1)

where δ stands for the Kronecker delta.

We deal with the Galois field G = F(pm) of d elements. We denote by ⊕ and ⊙ respectively

the addition and the multiplication in the field G (by ⊖ and ⊘ the subtraction and the division

in G). Usually, an element of G is represented by a m-tuple (g0, g1, . . . , gm−1) of integers

modulo p. According to this representation, ⊕ corresponds to the componentwise addition

modulo p.

Following [16], we identify G with {0, 1, . . . , d − 1}, paying attention to distinguish the

operations in the field from the usual ones. Namely, we identify (g0, g1, . . . , gm−1) with the

integer g =
∑m−1

n=0 gnpn. This allows us to consider the vector label t in |vk
t 〉 as an element of

G.

Let us denote the p-th root of unity by

ω = ei2π/p. (2)

It is proved in [16] that

ωj · ωl = ωj⊕l with j, l ∈ G (3)

and
d−1
∑

j=0

ωj⊙l = d δl,0 with l ∈ G. (4)
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We choose {|v0
t 〉}t=0,...,d−1 as the computational basis and use the explicit formula given

in [16] to express the vectors of any other basis in the following compact way:

|vk
t 〉 =

1√
d

d−1
∑

q=0

ω⊖q⊙t(ω(k−1)⊙q⊙q)
1

2 |v0
q 〉, (5)

where k = 1, . . . , d and t = 0, 1, . . . , d − 1. In particular for k = 1:

|v1
t 〉 =

1√
d

d−1
∑

q=0

ω⊖q⊙t|v0
q 〉. (6)

As it is pointed out in [16], for p odd the square root coincides with the division of the

exponent by 2 in G and it is uniquely determined. On the contrary, for p = 2 it is necessary

to unambiguosly determine the square root’s sign. This is given by (see Appendix)

(ω(j−1)⊙q⊙q)
1

2 =

m−1
∏

n=0
qn 6=0

i(j−1)⊙2n⊙2n

ω(j−1)⊙2n⊙(q mod 2n). (7)

With this in mind, the expression (5) satisfies the condition (1) of MUB, for d any prime

power, both even and odd (see Appendix for the proof). Hence, in the following we will make

use of (5) without distinguishing the two cases.

3. The protocol

Moving from the protocol of [6], we consider Bob sending to Alice a qudit state randomly

chosen from the set {|vk
t 〉}k=1,...,d

t=0,...,d−1 of MUB. Then, whatever is the state, Alice has to encode

a symbol belonging to a d-ary alphabet A = {0, . . . , d−1} in such a way that Bob will be able

to unambiguously decode it (deterministic character of the protocol). The alphabet A can be

identified with the Galois field G. Moreover, let us consider the unitary transformations V a
0

for a ∈ A, defined by

V a
0 |v0

t 〉 = ωt⊙a|v0
t 〉, (8)

which can be regarded as the generalized Pauli Z operators.

Then, Alice encoding operation will be the shift operation realized by the operator V a
0

with a ∈ A on all the MUB but the computational one, that is for k > 0:

V a
0 |vk

t 〉 =
1√
d

d−1
∑

q=0

ω⊖q⊙(t⊖a)(ω(k−1)⊙q⊙q)
1

2 |v0
q 〉 = |vk

t⊖a〉. (9)

In such a case, Bob receiving back the state |vk
t⊖a〉 can unambiguously determine a by

means of a projective measurement onto the k-th basis. In fact, he will get the value

b = t ⊖ a (10)

from which, knowing t, he can extract a.
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Then, the protocol runs as follows:

1. Bob randomly prepares one of the d2 qudit states |vk
t 〉, with k = 1, . . . , d and

t = 0, . . . , d − 1, and sends it to Alice.

2. Alice, upon receiving the qudit state has two options.

a) With probability c 6= 0, she performs a measurement by projecting over a randomly

chosen basis among the d bases with k = 1, . . . , d (Control Mode). She then sends

back to Bob the resulting state.

b) With probability 1 − c, she encodes a symbol a ∈ A by applying the unitary

operator V a
0 (Message Mode). She then sends back to Bob the resulting state.

3. Bob, upon receiving back the qudit state, performs a measurement by projecting over

the basis to which the qudit state initially belonged.

4. At the end of the transmission, Alice publicly declares on which runs she performed the

control mode and on which others the message mode. In the first case, Alice announces

the bases over which she measured. Then, by public discussion, a comparison of Alice’s

and Bob’s measurements results is performed over coincident bases. In the ideal case

(noiseless channels and no eavesdropping) their results must coincide.

In the message mode runs, Bob gets the encoded symbol a as discussed above.

Notice at the above point 2. the deterministic character of the protocol given by the possibility

for Alice, besides to decide when to encode, to determine the message (key) sequence, since

she knows that Bob will unambigously decode each character of the message (key).

4. Security of the protocol

Among individual attacks the most elementary one is the Intercept-Resend. Suppose Eve,

to learn Alice’s operation, performs projective measurements on both paths of the traveling

qudit, randomly choosing the measuring basis. She will steal the whole information for each

message mode run, indipedently from the chosen basis. However, in each control mode run

with coincident bases for Alice and Bob, she can guess the correct basis with probability 1/d,

and in this case she is not detected at all. If otherwise Eve chooses the wrong basis, she

still has a probability 1/d to evade detection on the forward path and probability 1/d on the

backward path, leading to an overall probability 1/d2 to remain undetected. This means that

the double test of Alice and Bob reveals Eve with probability (d2 − 1)(d − 1)/d4, including

the cases of non-coincident bases.

We are going to prove the security of the protocol against a more powerful individual

attack. Quite generally, in individual attacks Eve lets the carrier of information interact with

an ancilla system she has prepared and then try to gain information by measuring the ancilla.

In this protocol she has to do that two times, in the forward path (to gain information about

the state Bob sends to Alice) and in the backward path (to gain information about the state

Alice sends back to Bob, hence about Alice’s transformation). Moreover, by using the same

ancilla in the forward and backward path, Eve could benefit from quantum interference effects

(see Fig. 1).
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In particular, we consider the unitary transformation describing the attack as controlled

shifts {V l
0}l∈A, where the controller is the traveling qudit, while the target is in the Eve’s

hands. That is, C{V l
0}l∈A : Hd ⊗Hd → Hd ⊗Hd defined as follows:

|v1
t1 〉|v

1
t2 〉

C{V l
0
}l∈A−−−−−−−→ |v1

t1 〉V
l=t1
0 |v1

t2 〉 = |v1
t1 〉|v

1
t2⊖t1 〉. (11)

We remark that, in this definition, the controller as well as the target states are considered in

the dual basis for the sake of simplicity. Other choices (except the computational basis) will

give the same final results.

Then, we consider Eve intervening in the forward path with (C{V l
0}l∈A)−1, defined by

|v1
t1 〉|v

1
t2 〉

(C{V l
0
}l∈A)−1

−−−−−−−→ |v1
t1 〉V

⊖t1
0 |v1

t2 〉 = |v1
t1 〉|v

1
t2⊖(⊖t1)

〉 = |v1
t1 〉|v

1
t2⊕t1 〉, (12)

and with C{V l
0}l∈A in the backward path.

B

E
1−c c

a

| vk

t 〉

| v1

0
〉

V
a

0

A

B

A

A

E

B

C{V l

0
}l

(C{V l
A0

}l∈ )−1

A∈

Fig. 1. The scheme summarizing our protocol. Labels B and E stand for Bob’s and Eve’s qudit
systems respectively. Label A denotes Alice’s operation on Bob’s qudit. (C{V l

0
}l∈A)−1 and

C{V l
0
}l∈A represent the eavesdropping operations on the forward and backward path respectively.

4.1. Message Mode

Now, let us analyze in detail the transformations of the quantum states on an entire message

mode run.

Attack on the forward path.

The initial Bob state is one of the d2 states |vk
t 〉, with k = 1, . . . , d and t = 0, . . . , d − 1.

Then, Eve initially prepares the ancilla state |v1
0 〉E in the dual basis and performs the con-

trolled operation. Hence, we get

|vk
t 〉B|v1

0 〉E
(C{V l

0
}l∈A)−1

−−−−−−−→
d−1
∑

h=0

〈v1
h |vk

t 〉|v1
h〉B|v1

0 〉E =
d−1
∑

h=0

〈v1
h |vk

t 〉|v1
h〉B|v1

h〉E . (13)
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Encoding.

The Bob’s qudit state undergoes the shift V a
0 with a ∈ A, then from (13) we get

V a
0−→

d−1
∑

h=0

〈v1
h |vk

t 〉|v1
h⊖a〉B|v1

h〉E . (14)

Attack on the backward path.

The state (14) undergoes a C{V l
0}l∈A operation, hence we have

C{V l
0
}l∈A−−−−−−−→

d−1
∑

h=0

〈v1
h |vk

t 〉|v1
h⊖a〉B|v1

h⊖(h⊖a)〉E =

d−1
∑

h=0

〈v1
h |vk

t 〉|v1
h⊖a〉B|v1

a〉E = |vk
t⊖a〉B|v1

a〉E . (15)

Then, Eve measures her ancilla system by projecting in the dual basis, according to the

chosen initial ancilla state.

We notice that the controlled operations performed by Eve, as well as her final measure-

ment, left unchanged Bob’s qudit state. Hence, Bob’s measurement by projection in the k-th

basis to which the initial state belonged, always allows him to obtain the symbol a Alice has

encoded [see (10)].

On the other hand, Eve gets |v1
a〉 with probability 1 as the result of her measurement.

Therefore, she is able to exactly determine the encoded symbol a as well and she steals the

whole information, quantified in bits,

IE = log2 d (16)

on each message mode run.

4.2. Control Mode

We would like to evaluate the probability PE Alice and Bob have to reveal Eve on each control

mode run. Alice and Bob only compare the results of their measurements when, by public

discussion, they agree on the used basis.

Let us focus on the case Alice and Bob use the same basis k, keeping in mind that it

happens with probability 1/d. The situation is different for k = 1 and k 6= 1, due to the Eve’s

choice of using the dual basis for her ancilla.

1) For k = 1, on the forward path we have

|v1
t 〉B|v1

0 〉E
(C{V l

0
}l∈A)−1

−−−−−−−→ |v1
t 〉B|v1

t 〉E . (17)

Alice, measuring in the dual basis, gets t̄ with probability 1 and projects into | t̄〉B. On

the backward path we have

|v1
t 〉B|v1

t 〉E
C{V l

0
}l∈A−−−−−−−→ |v1

t 〉B|v1
t⊖t〉E = |v1

t 〉B|v1
0 〉E . (18)

Bob, in turn, by measuring in the dual basis gets t with probability 1. Thus, Alice and

Bob have perfect correlation and PE = 0.
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2) For k = 2, . . . , d, we get on the forward path

|vk
t 〉B|v1

0 〉E =

d−1
∑

h=0

〈v1
h |vk

t 〉|v1
h〉B|v1

0 〉E
(C{V l

0
}l∈A)−1

−−−−−−−→
d−1
∑

h=0

〈v1
h |vk

t 〉|v1
h〉B|v1

h〉E . (19)

By expressing the vectors of the dual basis in terms of the basis k used by Bob, we

rewrite the right hand side of (19) as

d−1
∑

h=0

〈v1
h |vk

t 〉
d−1
∑

s=0

〈vk
s |v1

h〉|vk
s 〉B|v1

h〉E . (20)

At this point Alice measures in the basis k. The result of her measurement is to project

into |vk
t′ 〉, whatever t′ ∈ A is, with probability

d−1
∑

h=0

|〈v1
h |vk

t 〉〈vk
t′ |v1

h〉|2 =

d−1
∑

h=0

|〈v1
h |vk

t 〉|2|〈vk
t′ |v1

h〉|2 =

d−1
∑

h=0

1

d2
=

1

d
(21)

according to definition of MUB.

Among the d possibilities we distinguish two cases.

a) t′ = t, occurring with probability 1/d, for which the resulting state from (20) is

√
d

d−1
∑

h=0

〈v1
h |vk

t 〉〈vk
t |v1

h〉|vk
t 〉B|v1

h〉E =
1√
d

d−1
∑

h=0

|vk
t 〉B|v1

h〉E . (22)

We have now to apply the C{V l
0}l∈A operation of the backward path. Thus, (22)

transforms as follows

|vk
t 〉B

1√
d

d−1
∑

h=0

|v1
h〉E =

d−1
∑

h′=0

〈v1
h′ |vk

t 〉|v1
h′ 〉B

1√
d

d−1
∑

h=0

|v1
h〉E (23)

C{V l
0
}l∈A−−−−−−−→

d−1
∑

h′=0

〈v1
h′ |vk

t 〉|v1
h′ 〉B

1√
d

d−1
∑

h=0

|v1
h⊖h′ 〉E = |vk

t 〉B
1√
d

d−1
∑

r=0

|v1
r 〉E , (24)

where r = h ⊖ h′.

It results that Eve’s attack does not alter the eigenvector |vk
t 〉B. Hence, Bob upon

his measurement will get t with probability 1. Then, neither Alice nor Bob outwit

Eve’s attacks.

b) t′ 6= t, occurring with probability (d−1)/d, for which Alice, getting a state different

from the one initially sent by Bob, outwits Eve in the forward path. Hence, in this

case, we do not need to explicitly evaluate the state change in the backward path.

In summary, from the analyzed cases, we have:

• 1/d the probability with which Bob and Alice measure in the same basis k;

• (d − 1)/d the probability of Bob choosing the initial state |vk
t 〉 from any basis but the

dual one, that is k 6= 1;
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• (d − 1)/d the probability that the state |vk
t 〉 sent by Bob gives a measurement result

|vk
t′ 〉 with t′ 6= t to Alice.

We then conclude that the probability for Alice and Bob to outwit Eve on each control

mode run is

PE =
1

d
· d − 1

d
· d − 1

d
=

(d − 1)2

d3
. (25)

In Fig. 2 we show the behavior of PE versus the order d of the alphabet. Interestingly

enough, the values of PE at d = 3, 4, 5 are higher than that at d = 2. In particular, PE

has a maximum at d = 3 showing that this dimension represents the optimal compromise

between two different trends. On the one hand, the probability (d − 1)2/d2 of revealing

Eve in each successful control mode run (that is when the bases of Alice and Bob coincide)

increases towards 1 when increasing the dimension d. On the other hand, the efficiency of the

whole control process decreases according to the probability 1/d for each control mode run

to succeed.
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Fig. 2. The probability PE versus the dimension d (bars correspond to prime power numbers).

5. Concluding remarks

We have proposed a deterministic cryptographic protocol working with a d-ary alphabet and

exploiting a bidirectional quantum channel. When considering an attack performed by means

of controlled operations on both directions of the quantum channel, we have found that Eve

can steal the total amount of information IE (see (16)), while the probability PE to outwit

her presents a maximum for d = 3 (see (25)).

Contrarily to probabilistic protocols, the deterministic nature of this protocol also allows

the realization of Quantum Direct Communication (QDC) between legitimate users [3, 4, 5, 6].

In this case Alice and Bob (after authentication) can communicate directly the meaningful

message without encryption. However, for this kind of communication only an asymptotic
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security can be proven. In fact, if we assume that Eve wants to perform her attack on each

message mode run, without having been detected in the previous control mode runs, then the

probability is given by following geometric series:

(1 − c) + c(1 − PE)(1 − c) + c2(1 − PE)2(1 − c) + . . . =
1 − c

1 − c(1 − PE)
. (26)

Thus, being IE the quantity of information that Eve eavesdrops in a single attack, the

probability that she successfully eavesdrops an amount of information I is

(

1 − c

1 − c
(

1 − PE

)

)I/IE

, (27)

with IE and PE given in (16) and (25) respectively.

We observe that such a probability exponentially decreases towards 0 as a function of I

for each given dimension d. So, (27) expresses the asymptotic security of the direct commu-

nication use of the protocol.

However, in this case the probability for Alice and Bob to detect Eve before she can

eavesdrop a fixed amount of information, that is the complement of probability in (27), is

maximal for d = 2.

It is interesting to notice that the optimal dimension depends on the specific task of the

protocol (QKD or QDC). Therefore, we believe that this work might open up new horizons

for deterministic cryptographic protocols involving finite dimensional systems.
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Appendix A

In [16] it has been provided expression (5) for MUB’s vectors as potentially utilizable also

in even prime power dimensions (besides odd prime powers). However, the recipe to do that

contains some imprecisions, though the underlying idea based on the group properties of the

Generalized Pauli Operators is essentially valid.

Then, we are going to give hereafter a correct proof of MUBness for even prime powers in

order to have expression (5) really useful.

By referring to [16], let us denote by V j
l the operators given by the composition of the

shifts in the computational and the dual basis, that is

V j
l = V j

0 · V 0
l =

d−1
∑

t=0

ω(t⊕l)⊙j |t ⊕ l〉〈t|. (A.1)

This set of operators coincides with the Generalized Pauli Group (see [14]). The V j
l ’s are

d2 unitary transformations which satify the following composition law

V j
l · V j′

l′ = ω(l⊙j′)V j⊕j′

l⊕l′ , (A.2)

and, up to phases, they form d + 1 commuting subgroups of d elements that have only

the identity in common. The k-th subgroup, with k = 0, . . . , d, admits {|vk
t 〉}t=0,...,d−1 as

diagonalizing basis. Its elements are denoted by Uk
l with l = 0, . . . , d−1, and they are required

to satisfy:

Uk
l⊕l′ = Uk

l · Uk
l′ , (A.3)

Uk
l =

d−1
∑

t=0

ωt⊙l|vk
t 〉〈vk

t | , (A.4)

Uk
l = V

(k−1)⊙l
l up to a phase which is 1 for l = 0. (A.5)

It is important to point out that (A.2), (A.3), (A.4) and (A.5) must be guaranteed at the

same time. In [16], the following relation is obtained from them:

Uk
l = (ω⊖(k−1)⊙l⊙l)

1

2 V
(k−1)⊙l
l (A.6)

In the odd prime power case such expression is completely determined and the phase is a

p-th root of unity. In fact the square root can be interpreted as the division of the exponent

by 2 in the Galois field G.

This is no longer true in the even prime power case. In this case the phase is not a 2-nd

root of unity but a 4-th root of unity, that is it can also assume the values ±i, other than

±1. Moreover, the sign of it is still undetermined. The determination of such sign provided

in [16] is uncorrect.

Below we correctly develop the last step of (32) in [16] getting the right sign, and conse-

quently the square root’s sign in (5), as indicated in (7).

First of all, we observe that for p = 2 we have ω = −1.
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In [16] it has been implicitly chosen the determination of the square root of ω(k−1)⊙2n⊙2n

as to be i(k−1)⊙2n⊙2n

. Then, we have:

Uk
l =

m−1
∏

n=0

Uk
ln⊙2n =

m−1
∏

n=0

(Uk
2n)

ln
=





m−1
∏

n=0
ln 6=0

i(k−1)⊙2n⊙2n









m−1
∏

n=0
ln 6=0

V
(k−1)⊙2n

2n



 . (A.7)

Let n0, n1, . . . nh be the indices nj such that lnj
= 1. By taking into account (A.2), the

second product can be rewritten as follows.

m−1
∏

n=0
ln 6=0

(V
(k−1)⊙2n

2n ) =





h
∏

j=1

ω(k−1)⊙(2n0⊕2n1⊕...⊕2nj−1 )⊙2nj



V
(k−1)⊙(2n0⊕...⊕2nh )
(2n0⊕...⊕2nh )

=





m−1
∏

n=0
ln 6=0

ω(k−1)⊙2n⊙(l mod 2n)



V
(k−1)⊙l
l . (A.8)

Then, we have:

Uk
l =





m−1
∏

n=0
ln 6=0

i(k−1)⊙2n⊙2n

ω(k−1)⊙2n⊙(l mod 2n)



V
(k−1)⊙l
l . (A.9)

This gives the correct determination of square root’s sign in the phase as in (7), which can

be rewritten as

m−1
∏

n=0
ln 6=0

i(k−1)⊙2n⊙2n

ω(k−1)⊙2n⊙(l mod 2n) =
m−1
∏

n=0

(−1)
∑n−1

h=0
lnlh(k−1)⊙2n⊙2h

iln(k−1)⊙2n⊙2n

.

(A.10)

Now, by referring to (3), we remark that an analogous property does not hold for powers

of i with exponents in G. The reader can easily check that

ij · il = (−1)jlij⊕l = (−1)j0l0ij⊕l. (A.11)

From (A.10) and (A.11) it follows that

(ω(k−1)⊙l⊙l)1/2(ω(k′−1)⊙l⊙l)1/2 = φ(k, k′, l) (ω((k−1)⊕(k′−1))⊙l⊙l)
1

2 , (A.12)

where we have defined

φ(k, k′, l) = (−1)
∑m−1

n=0
ln((k−1)⊙2n⊙2n)((k′−1)⊙2n⊙2n). (A.13)

By assuming k′ = k in (A.12), we get the conjugate of (ω(k−1)⊙q⊙q)
1

2 as

φ(k, k, q) (ω(k−1)⊙q⊙q)
1

2 . (A.14)

Consequently, the correct expression for the inner products 〈vk′

t′ |vk
t 〉 with k, k′ ≥ 1 is the

following (which does not coincide with (28) in [16]):

〈vk′

t′ |vk
t 〉 =

1

d

d−1
∑

q=0

φ(k, k′, q)φ(k′, k′, q)ωq⊙(t⊕t′)(ω((k−1)⊕(k′−1))⊙q⊙q)
1

2 . (A.15)
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In order to explicitly prove the MUB condition, we state the following elementary prop-

erties of the function φ:

φ(k, k′, 0) = 1 (A.16)

φ(k′, k, q) = φ(k, k′, q) (A.17)

φ(k, k′, q)φ(k, k′, q′) = φ(k, k′, q ⊕ q′) (A.18)

φ(k, k, q) = ω(k−1)⊙q⊙q (A.19)

The first and the second one come from the very definition of φ, the third one comes from

the fact that qn + q′n mod 2 = (q ⊕ q′)n and the fourth one from (A.12) for k′ = k.

We also need to verify that the following equality, corresponding to (37) in [16],

(ω(k−1)⊙q⊙q)
1

2 (ω(k−1)⊙q′⊙q′

)
1

2 = ω(k−1)⊙q⊙q′

(ω(k−1)⊙(q⊕q′)⊙(q⊕q′))
1

2 (A.20)

holds with the correct determination of square root’s sign given by (A.10) (this does not

happen with wrong determination of the sign given in [16]).

Let us consider the left hand side. It turns out to be

(ω(k−1)⊙q⊙q)
1

2 (ω(k−1)⊙q′⊙q′

)
1

2

= (−1)(
∑m−1

n=0
qnq′

n(k−1)⊙2n⊙2n)+(
∑m−1

n=0

∑n−1

h=0
(qnqh+q′

nq′
h)(k−1)⊙2n⊙2h)

×
m−1
∏

n=0

i(q⊕q′)n(k−1)⊙2n⊙2n

. (A.21)

For the right hand side, we have:

ω(k−1)⊙q⊙q′

(ω(k−1)⊙(q⊕q′)⊙(q⊕q′))
1

2

= (−1)(
∑m−1

n=0

∑m−1

h=0
qnq′

h(k−1)⊙2n⊙2h)+(
∑m−1

n=0

∑n−1

h=0
(q⊕q′)n(q⊕q′)h(k−1)⊙2n⊙2h)

×
m−1
∏

n=0

i(q⊕q′)n(k−1)⊙2n⊙2n

. (A.22)

At this point, (A.20) derives from the following equality mod 2:

(

m−1
∑

n=0

m−1
∑

h=0

qnq′h2n ⊙ 2h

)

+

(

m−1
∑

n=0

n−1
∑

h=0

(q ⊕ q′)n(q ⊕ q′)h2n ⊙ 2h

)

=

(

m−1
∑

n=0

qnq′n2n ⊙ 2n

)

+

(

m−1
∑

n=0

n−1
∑

h=0

(qnqh + q′nq′h)2n ⊙ 2h

)

. (A.23)
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Finally, we can prove the MUB condition for even prime power.

From (A.15), by using in the order (A.17), (A.18), (A.20) and (A.19), and then relabelling

the sum indices, we have

〈vk′

t′ |vk
t 〉〈vk

t |vk′

t′ 〉 =
1

d2

d−1
∑

q,h=0

φ(k, k′, h)φ(k, k, h)ω(k−1)⊙q⊙qω(k′−1)⊙q⊙q

× ωh⊙(t⊕t′)ω((k−1)⊕(k′−1))⊙q⊙(q⊕h)(ω((k−1)⊕(k′−1))⊙h⊙h)
1

2 .

Now, by collecting the terms without q and then using (4), the previous expression can be

rewritten as

1

d2

d−1
∑

h=0

φ(k, k′, h)φ(k, k, h)ωh⊙(t⊕t′)(ω((k−1)⊕(k′−1))⊙h⊙h)
1

2

d−1
∑

q=0

ω((k−1)⊕(k′−1))⊙q⊙h

=
1

d

d−1
∑

h=0

φ(k, k′, h)φ(k, k, h)ωh⊙(t⊕t′)(ω((k−1)⊕(k′−1))⊙h⊙h)
1

2 δ((k−1)⊕(k′−1))⊙h,0.

At this point we can arrive, by separating the cases k 6= k′ and k = k′ and then using (A.16),

(A.18) and (4), at the following:

1

d
(1 − δk,k′)φ(k, k′, 0)φ(k, k, 0) +

1

d
δk,k′

d−1
∑

h=0

φ(k, k, h)φ(k, k, h)ωh⊙(t⊕t′)

=
1

d
(1 − δk,k′) +

1

d
δk,k′

d−1
∑

h=0

ωh⊙(t⊕t′) =
1

d
(1 − δk,k′) + δk,k′δt,t′ . (A.24)

This gives (1), q.e.d.


