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We give a new separability criterion, a necessary condition for separability of N-
partite quantum states. The criterion is based on the Bloch representation of a N-
partite quantum state and makes use of multilinear algebra, in particular, the ma-
trization of tensors. Our criterion applies to arbitrary N-partite quantum states in
H = Hd1 ⊗ Hd2 ⊗ · · · ⊗ HdN . The criterion can test whether a N-partite state is en-
tangled and can be applied to different partitions of the N-partite system. We provide
examples that show the ability of this criterion to detect entanglement. We show that
this criterion can detect bound entangled states. We prove a sufficiency condition for
separability of a 3-partite state, straightforwardly generalizable to the case N > 3, under
certain condition. We also give a necessary and sufficient condition for separability of a
class of N-qubit states which includes N-qubit PPT states.
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1 Introduction

The question of quantifying entanglement of multipartite quantum states is fundamental to
the whole field of quantum information and in general to the physics of multicomponent
quantum systems. Whereas entanglement of pure bipartite states is well understood, the
classification of mixed states according to the degree and character of their entanglement is
still a matter of intense research [1,2]. A N -partite state acting on H = Hd1 ⊗Hd2 ⊗· · ·⊗HdN

is separable [3] ( or fully separable) if it can be written as a convex sum of tensor products of
subsystem states

ρ =
∑
w

pwρ
(1)
w ⊗ ρ(2)

w · · · ⊗ ρ(N)
w =

∑
w

pw

N⊗
j=1

ρ(j)
w , pw > 0;

∑
w

pw = 1. (1)

A state is called k separable if we can write

ρ =
∑
w

pwρ
(a1)
w ⊗ ρ(a2)

w · · · ⊗ ρ(ak)
w (2)

aElectronic address: alisaif@physics.unipune.ernet.in
bElectronic address: pramod@physics.unipune.ernet.in

773



774 Separability criterion for multipartite quantum states based on the Bloch representation of ...

where ai; i = 1, 2, . . . , k are the disjoint subsets of {1, 2, . . . , N} and ρ(ai) acts on the tensor
product space made up by the factors of H labeled by the members of ai. The understanding
of multipartite entanglement has progressed by dealing with some special classes of states
like the density operators supported on the symmetric subspace of H [4]. A lower bound
on concurrence on the multipartite mixed states is obtained [5]. K. Chen and L. Wu have
given a generalized partial transposition and realignment criterion to detect entanglement of
a multipartite quantum state [6].

There are two definitions commonly used for the entanglement of multipartite quantum
states, the one from Ref. [7] (ABLS) and the one introduced in [8] (DCT). In DCT, all
possible partitions of N parties are considered and it is tested for each partition if the state
is fully separable there or not. A state is called N partite entangled if it is not separable
for any partition. If a state is separable for a bipartite partition, it is called biseparable. In
ABLS, a state is called biseparable if it is a convex combination of biseparable states, possibly
concerning different partitions. A N -partite entangled state is one which is not biseparable.

In this paper we derive a necessary condition for the separability of multipartite quantum
states for arbitrary finite dimensions of the subsystem Hilbert spaces and without any further
restriction on them. The criterion is based on the Bloch representation of a multipartite
quantum state, which has been used in previous works to characterize the separability of
bipartite density matrix, in particular, our work is a generalization of de Vicente’s work on
bipartite systems [9]. We make use of the algebra of higher order tensors, in particular the
matrization of a tensor [10,11,12,13,14,15,16,17].

The paper is organized as follows. In section II we present the Bloch representation of
a N -partite quantum state. In section III we obtain the main results on separability of a
N -partite quantum state. In section IV we give a sufficient condition for the separability
of a 3-partite quantum state generalizable to the case N > 3. In section V we investigate
our separability criterion for mixed states, in particular, bound entangled states. Finally we
summarize in section VI.

2 Bloch Representation of a N-Partite Quantum State

Bloch representation [18,19,20,21,22] of a density operator acting on the Hilbert space of a
d-level quantum system C

d is given by [9]

ρ =
1
d
(Id +

∑
i

siλi) (3)

Eq.(3) is the expansion of ρ in the Hilbert-Schmidt basis {Id, λi; i = 1, 2, . . . , d2 − 1} where
λi are the traceless hermitian generators of SU(d) satisfying Tr(λiλj) = 2δij and are char-
acterized by the structure constants of the corresponding Lie algebra, fijk, gijk which are,
respectively, completely antisymmetric and completely symmetric.

λiλj =
2
d
δijId + ifijkλk + gijkλk (4)

s = (s1, s2, . . . , sd2−1) in Eq.(3) are the vectors in Rd2−1, constrained by the positive semidef-
initeness of ρ, called Bloch vectors [21]. The set of all Bloch vectors that constitute a density
operator is known as the Bloch vector space B(Rd2−1). The problem of determining B(Rd2−1)
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where d ≥ 3 is still open [19,20]. However, for pure states (ρ = ρ2) the following relations
hold.

||s||2 =

√
d(d− 1)

2
; sisjgijk = (d− 2)sk (5)

where ||.||2 is the Euclidean norm in Rd2−1.

It is known [23,24] that B(Rd2−1) is a subset of the ballDR(Rd2−1) of radius R =
√

d(d−1)
2 ,

which is the minimum ball containing it, and that the ball Dr(Rd2−1) of radius r =
√

d
2(d−1)

is included in B(Rd2−1). That is

Dr(Rd2−1) ⊆ B(Rd2−1) ⊆ DR(Rd2−1) (6)

In order to give the Bloch representation of a density operator acting on the Hilbert space
Cd1 ⊗ Cd2 ⊗ · · · ⊗ CdN of a N -partite quantum system, we introduce following notation.
We use k, ki (i = 1, 2, · · · ) to denote a subsystem chosen from N subsystems, so that k,
ki (i = 1, 2, · · · ) take values in the set N = {1, 2, · · · , N}. The variables αk or αki for a given
k or ki span the set of generators of SU(dk) or SU(dki) group (Eqs.(3) and (4)) for the kth
or kith subsystem, namely the set {λ1ki

, λ2ki
, · · · , λd2

ki
−1} for the kith subsystem. For two

subsystems k1 and k2 we define

λ(k1)
αk1

= (Id1 ⊗ Id2 ⊗ · · · ⊗ λαk1
⊗ Idk1+1 ⊗ · · · ⊗ IdN )

λ(k2)
αk2

= (Id1 ⊗ Id2 ⊗ · · · ⊗ λαk2
⊗ Idk2+1 ⊗ · · · ⊗ IdN )

λ(k1)
αk1

λ(k2)
αk2

= (Id1 ⊗ Id2 ⊗ · · · ⊗ λαk1
⊗ Idk1+1 ⊗ · · · ⊗ λαk2

⊗ Idk2+1 ⊗ IdN ) (7)

where λαk1
and λαk2

occur at the k1th and k2th places (corresponding to k1th and k2th
subsystems respectively) in the tensor product and are the αk1th and αk2th generators of
SU(dk1), SU(dk2), αk1 = 1, 2, . . . , d2

k1
− 1 and αk2 = 1, 2, . . . , d2

k2
− 1 respectively. Then we

can write

ρ =
1

ΠN
k dk

{⊗N
k Idk

+
∑
k∈N

∑
αk

sαk
λ(k)

αk
+

∑
{k1,k2}

∑
αk1αk2

tαk1αk2
λ(k1)

αk1
λ(k2)

αk2
+ · · ·+

∑
{k1,k2,··· ,kM}

∑
αk1αk2 ···αkM

tαk1αk2 ···αkM
λ(k1)

αk1
λ(k2)

αk2
· · ·λ(kM )

αkM
+ · · ·+

∑
α1α2···αN

tα1α2···αNλ
(1)
α1
λ(2)

α2
· · ·λ(N)

αN
}. (8)

where s(k) is a Bloch vector corresponding to kth subsystem, s(k) = [sαk
]d

2
k−1

αk=1 which is a
tensor of order one defined by

sαk
=
dk

2
Tr[ρλ(k)

αk
] =

dk

2
Tr[ρkλαk

], (9a)

where ρk is the reduced density matrix for the kth subsystem. Here {k1, k2, · · · , kM}, 2 ≤
M ≤ N, is a subset of N and can be chosen in

(
N
M

)
ways, contributing

(
N
M

)
terms in the

sum
∑

{k1,k2,··· ,kM} in Eq.(8), each containing a tensor of order M . The total number of
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terms in the Bloch representation of ρ is 2N . We denote the tensors occurring in the sum∑
{k1,k2,··· ,kM}, (2 ≤M ≤ N) by T {k1,k2,··· ,kM} = [tαk1αk2 ···αkM

] which are defined by

tαk1αk2 ...αkM
=
dk1dk2 . . . dkM

2M
Tr[ρλ(k1)

αk1
λ(k2)

αk2
· · ·λ(kM )

αkM
]

=
dk1dk2 . . . dkM

2M
Tr[ρk1k2...kM (λαk1

⊗ λαk2
⊗ · · · ⊗ λαkM

)] (9b)

where ρk1k2...kM is the reduced density matrix for the subsystem {k1k2 . . . kM}. We call The
tensor in last term in Eq. (8) T (N).

3 Separability Conditions

Before we obtain the main results we need following definition. Throughout the paper, we
use the bold letter for vector and normal letter for components of a vector, matrix and tensor
elements.

A rank-1 tensor is a tensor that consists of the outer product of a number of vectors.
For Mth order tensor T (M) and M vectors u(1),u(2), . . . ,u(M) this means that ti1i2...iM =
u

(1)
i1
u

(2)
i2
. . . u

(M)
iM

for all values of the indices. This is concisely written as T (M) = u(1) ◦ u(2) ◦
· · · ◦ u(M)[17,11].

Also, given two tensors T (M) and S(N) of order M and N respectively, with dimensions
I1 × I2 × · · ·× IM and J1 ×J2× · · ·×JN respectively, their outer product is defined as [16,10]

(T (M) ◦ S(N))i1i2...iM j1j2...jN = ti1i2...iM sj1j2...jN (10)

Proposition 1 : A pure N -partite quantum state with Bloch representation (8) is fully
separable (product state) if and only if

T {k1,k2,··· ,kM} = s(k1) ◦ s(k2) ◦ · · · ◦ s(kM) (11)

for 2 ≤ M ≤ N. In particular T (N) = s(1) ◦ s(2) ◦ · · · ◦ s(N) holds. Here {k1, k2, . . . , kM} ⊂
{1, 2, . . . , N}, and s(k) is the Bloch vector of kth subsystem reduced density matrix.

Proof : Notice that Eq.(8) can be rewritten as

ρ = ρ(1) ⊗ ρ(2) ⊗ · · · ⊗ ρ(N) +
1

d1d2 · · ·dN
{

∑
{k1,k2}

∑
αk1αk2

[tαk1αk2
− sαk1

sαk2
]λ(k1)

αk1
λ(k2)

αk2
+ · · ·+

+ · · · +
∑

α1α2···αN

[tα1α2···αN − sα1sα2 . . . sαN ]λ(1)
α1
λ(2)

α2
· · ·λ(N)

αN
}. (12)

For full separability, the sum of all the terms apart from the first term must vanish.
Note that for every subsystem k = 1, 2, . . . , N the set {Id, λi; i = 1, 2, . . . , d2

k − 1} forms an
orthonormal Hilbert-Schmidt basis for the kth subsystem. Hence λ(k)

αk ;λ(k1)
αk1

λ
(k2)
αk2

. . . ;
λ

(k1)
αk1

λ
(k2)
αk2

· · ·λ(kM )
αkM

; . . . ;λ(1)
α1 λ

(2)
α2 · · ·λ(N)

αN are the vectors belonging to the orthonormal product
basis of the Hilbert-Schmidt space of the whole N -partite system. By orthonormality of the
tensor product of λ’s occurring in different terms, the required sum will vanish if and only if
coefficients of each term vanish separately, that is if and only if

tαk1αk2 ···αkM
= sαk1

sαk2
. . . sαkM

; 2 ≤M ≤ N,
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that is
T {k1,k2,··· ,kM} = s(k1) ◦ s(k2) ◦ · · · ◦ s(kM ) ; 2 ≤M ≤ N.

�
In fact, the condition (11) for all N parts is enough to decide the separability of pure

N -partite quantum states, as the following proposition shows.
Proposition 1a : A pure N -partite quantum state with Bloch representation (8) is fully

separable (product state) if and only if

T (N) = s(1) ◦ s(2) ◦ · · · ◦ s(N),

where s(k) is the Bloch vector of kth subsystem reduced density matrix.
Proof : Suppose ρ is a product state ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN . Then,

tα1α2...αN =
d1d2 . . . dN

2N
Tr[(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN)(λα1 ⊗ λα2 ⊗ · · · ⊗ λαN )]

=
d1d2 . . . dN

2N
Tr[(ρ1λα1 ) ⊗ (ρ2λα2) ⊗ · · · ⊗ (ρNλαN )]

=
d1d2 . . . dN

2N
[Tr(ρ1λα1)Tr(ρ2λα2) · · ·Tr(ρNλαN )]

= [sα1sα2 · · · sαN ].

Suppose the condition holds, that is, [s(1) ◦ s(2) ◦ · · · ◦ s(N)]α1α2...αN = tα1α2...αN . Then,

[s(1) ◦ s(2) ◦ · · · ◦ s(N)]α1α2...αN =
d1d2 . . . dN

2N
[Tr(ρ1λα1)Tr(ρ2λα2) · · ·Tr(ρNλαN )]

=
d1d2 . . . dN

2N
Tr[(ρ1λα1 ) ⊗ (ρ2λα2) ⊗ · · · ⊗ (ρNλαN )]

=
d1d2 . . . dN

2N
Tr[(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN)(λα1 ⊗ λα2 ⊗ · · · ⊗ λαN )]

= tα1α2...αN =
d1d2 . . . dN

2N
Tr[ρ(λα1 ⊗ λα2 ⊗ · · · ⊗ λαN )].

The equality

Tr[(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN )(λα1 ⊗ λα2 ⊗ · · · ⊗ λαN )] = Tr[ρ(λα1 ⊗ λα2 ⊗ · · · ⊗ λαN )]

is satisfied for all elements in the orthonormal basis {⊗N
k=1λαk

}, 0 ≤ αk ≤ d2
k − 1, (αk =

0 for Idk
) where {λαk

} are the d2
k − 1 generators of SU(dk). This means that the joint

probabilities obtained from the ensemble of measurements of (λα1 · · ·λαN ) for states ρ and
ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN are equal. This implies

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN .

�
Note that this criterion is easily amenable with experiments. In order to check it for an

element of T (N) we have to measure the corresponding generators on each subsystem and
then check whether the product of the averages equals the average of the products.
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Thus in order to check whether a given pure state is a product state we have to check
whether T (N) = s(1) ◦ s(2) ◦ · · · ◦ s(N), where the Bloch vectors s(1), s(2), . . . , s(N) can be con-
structed from the reduced density matrices ρ1, ρ2, · · · , ρN for subsystems 1, 2, · · · , N (sαk

=
dk

2 Tr(ρkλαk
), k ∈ {1, 2, · · · , N}, see Eq.(9a)).

In the case of mixed states we can characterize separability from the Bloch representation
point of view as follows.

A N -partite quantum state with Bloch representation (8) is fully separable if and only if
there exist vectors u(k)

w ∈ R
d2

k−1 satisfying Eq.(5), and weights pw satisfying 0 ≤ pw ≤ 1 and∑
w pw = 1 such that

T (N) =
R∑
w

pw ©N
k=1 u

(k)
w , s(k) =

∑
w

pwu
(k)
w (13a)

and

T {k1,k2,··· ,kM} =
R∑
w

pw ©M
i=1 u

(ki)
w (13b)

for 2 ≤ M ≤ N ; for all subsets {k1, k2, . . . , kM} ⊂ {1, 2, . . . , N}, where s(k) is the Bloch
vector of the mixed state density matrix for kth subsystem and u(k)

w represent the Bloch vector
of the pure state of the kth subsystem contributing to the wth term in Eq. (1).

This follows from proposition 1 and Eq. (1). However, in view of proposition (1a), the
necessary and sufficient condition is given by Eq.(13a), so that Eq.(13b) can be dropped.
The above result can not be used directly, as it amounts to rewriting Werner’s definition
of separability in a different way. However, it allows us to derive a necessary condition for
separability for N -partite quantum states.

We need some concepts in multilinear algebra. Consider a tensor T (N) ∈ R
I1×I2×···×IN ,

where Ik = d2
k − 1. The nth matrix unfolding of T (N) (n = 1, 2, · · · , N) [10] is a matrix

T
(N)
(n) ∈ RIn×(In+1In+2...IN I1I2...In−1). T (N)

(n) contains the element ti1i2...iN at the position with
row index in (in = 1, 2, · · · , In) and column index

(in+1 − 1)In+2In+3 . . . INI1I2 . . . In−1 + (in+2 − 1)In+3In+4 . . . INI1I2 . . . In−1

+ · · · + (iN − 1)I1I2 . . . In−1 + (i1 − 1)I2I3 . . . In−1 + (i2 − 1)I3I4 . . . In−1 + · · · + in−1.

For n = 1, we take the last term in−1 = i0 = iN . This ordering is called backward cyclic
[16]. To facilitate understanding, put N points on a circle and label them successively by
i1, i2, · · · , iN . The consecutive terms in the expression for the column index in T

(N)
(n) corre-

sponding to ti1,i2,··· ,iN become quite apparent using this circle.
For T (3) ∈ RI1×I2×I3 the matrix unfolding T

(3)
(1) contains the elements ti1i2i3 (ik =

1, 2, · · · , Ik; k = 1, 2, 3) at the position with row number i1 and column number equal to
(i2 − 1)I3 + i3, T

(3)
(2) contains ti1i2i3 at the position with row number i2 and column number

equal to (i3−1)I1+i1 and T (3)
(3) contains ti1i2i3 at the position with row number i3 and column

number equal to (i1 − 1)I2 + i2.

As an example [25], define a tensor T (3) ∈ R3×2×3, by t111 = t112 = t211 = −t212 = 1,
t213 = t311 = t313 = t121 = t122 = t221 = −t222 = 2, t223 = t321 = t323 = 4, t113 = t312 =
t123 = t322 = 0. The matrix unfolding T (3)

(1) is given by
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T
(3)
(1) =

⎛
⎝ 1 1 0 2 2 0

1 −1 2 2 −2 4
2 0 2 4 0 4

⎞
⎠ .

Note that there are N possible matrix unfoldings of T (N). The matrix unfolding is called
the matrization of the tensor [10,17]. We can now define the Ky Fan norm of the tensor T (N)

(of order N) over N matrix unfoldings of a tensor, as

||T (N)||KF = max{||T (N)
(n) ||KF }, n = 1, . . . , N ; (14)

where ||T (N)
(n) ||KF is the Ky Fan norm of matrix T

(N)
(n) defined as the sum of singular values

of T (N)
(n) [26]. It is straightforward to check that ||T (N)||KF defined in (14) satisfies all the

conditions of a norm and is also unitarily invariant [9,26].
The tensors in Eq.(13a) are called Kruskal tensors with the restriction 0 ≤ pw ≤ 1,

∑
w pw =

1 [14,16]. We are interested in finding the matrix unfoldings and Ky Fan norms of T (N) oc-
curring in Eq.(13a). The kth matrix unfolding for Kruskal tensor is [17]

T
(N)
(k) = U (k)Σ(U (N) 
 U (N−1) 
 · · · 
 U (k+1) 
 U (k−1) 
 · · · 
 U (1))T . (15)

Here U (k) = [u(k)
1 u(k)

2 . . .u(k)
R ] ∈ RIk×R; k = 1, 2, . . .N and R is the rank of Kruskal tensor

[14,12,17], i.e. the number of terms in Eq.(13a). u(k)
i is a vector in RIk and is the ith column

vector in the matrix U (k). Σ is the R × R diagonal matrix, Σ =diag[p1 . . . pR]. The symbol

 denotes the Khatri-Rao product of matrices [17] U ∈ RI×R and V ∈ RJ×R defined as
U 
 V = [u1 ⊗ v1 u2 ⊗ v2 . . . uR ⊗ vR] ∈ RIJ×R where ui and vi, i = 1, 2, . . .R are column
vectors of matrices U and V respectively. Eq.(15) can be rewritten as

T
(N)
(k) = U (k)Σ[v(k̄)

1 v(k̄)
2 . . .v(k̄)

R ]T = U (k)ΣV (k̄)T

(16)

where v(k̄)
i ; i = 1, 2, . . . , R are the column vectors of the matrix

V (k̄)T ∈ RIN IN−1IN−2...Ik+1Ik−1...I1×R and v
¯(k)

i = u(N)
i ⊗ u(N−1)

i ⊗ u(N−2)
i ⊗ · · · ⊗ u(k+1)

i ⊗
u(k−1)

i ⊗ · · · ⊗ u(1)
i . Using Eq.(16) we can write T (N)

(k) as

T
(N)
(k) =

R∑
w=1

pwu(k)
w v(k̄)T

w ; k = 1, 2, . . . , N. (17)

Theorem 1 : If a N -partite quantum state of d1d2 . . . dN dimension with Bloch repre-
sentation (8) is fully separable, then

||T (N)||KF ≤
√

1
2N

ΠN
k=1dk(dk − 1). (18)

Proof : If the state ρ is separable then T (N) has to admit a decomposition of the form

Eq.(13) with ||u(k)
w ||2 =

√
dk(dk−1)

2 , k = 1, 2, . . . , N. From definition of KF norm of tensors,
Eq.(14),

||T (N)||KF = max{||T (N)
(k) ||KF } ; k = 1, . . . , N.
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From Eq.(17),

||T (N)||KF = max{||
∑
w

pwu(k)
w v(k̄)T

w ||KF } ; k = 1, . . . , N

≤ max{
∑
w

pw||u(k)
w v(k̄)T

w ||KF } = max{
∑
w

pw

√
1

2N
ΠN

k dk(dk − 1)||ũ(k)
w ṽ(k̄)T

w ||KF }

where ũ(k)
w , ṽ(k̄)

w are unit vectors in Rd2
k−1 and Rd2

N−1 ⊗R
d2

N−1−1 ⊗ · · · ⊗R
d2

k+1−1 ⊗R
d2

k−1−1 ⊗
· · ·⊗Rd2

1−1 respectively, so that ||ũ(k)
w ṽ(k̄)T

w ||KF = 1 for all k = 1, 2, . . . , N . Using
∑

w pw = 1

we get ||T (N)||KF ≤
√

1
2N ΠN

k=1dk(dk − 1). �
For a subsystem we get,
Corollary 1 : If the reduced density matrix of a subsystem consisting of M out of N

parts is separable then ||T {k1,k2,··· ,kM}||KF ≤
√

1
2M ΠM

k=1dk(dk − 1).

The negation of the above condition, that is, ||T (N)||KF >
√

1
2N ΠN

k=1dk(dk − 1), is a suf-
ficient condition of entanglement of N -partite quantum state. This leads to a hierarchy of
inseparability conditions which test entanglement in all the subsystems. For N = 2 the condi-

tion ||T (N)||KF ≤
√

1
22 d1(d1 − 1)d2(d2 − 1) has been shown in Ref. [9], to be a sufficient con-

dition for entanglement associated with any bipartite density matrix. Note that for N -qubits,
di = 2, i = 1, 2, . . . , N , the above criterion becomes, for a separable state, ||T (N)||KF ≤ 1.

Consider a N qudit system Hs = ⊗N
k=1Hd

k in a state ρ, supported in the symmetric
subspace of Hs. It is straightforward to see that all the tensors in the Bloch representation of
ρ are supersymmetric, that is (see Eqs.(8) and (9)), tαk1αk2 ···αkM

= tP (αk1 )P (αk2 )···P (αkM
), 2 ≤

M ≤ N, where P is any permutation over indices {αk1 , αk2 , · · · , αkM }. We have, neglecting
the constant multipliers,

tαk1αk2 ···αkM
= Tr[ρk1k2···kMλαk1

⊗ λαk2
⊗ · · · ⊗ λαkM

]

= Tr[ρk1k2···kMPP
Tλαk1

⊗ λαk2
⊗ · · · ⊗ λαkM

PPT ]

= Tr[(PT ρk1k2···kMP )(PTλαk1
⊗ λαk2

⊗ · · · ⊗ λαkM
P )]

= Tr[ρk1k2···kM (λP (αk1 ) ⊗ λP (αk2 ) ⊗ · · · ⊗ λP (αkM
))]

= tP (αk1 )P (αk2 )···P (αkM
)

where P is the appropriate permutation matrix permuting the λ matrices within the tensor
product [26], PT being the transpose of P satisfying PT = P−1. In particular T (N) is
supersymmetric. All matrix unfoldings of a supersymmetric tensor have the same set of
singular values [10] and hence the same KF norm. Thus, for a N -qudit system in a state
supported in the symmetric subspace, it is enough to calculate the KF norm for any one of
the N matrix unfoldings to get max{||T (N)

(k) ||KF }.

4 A Sufficient Condition for Separability of a 3-Partite Quantum State

Consider the Bloch representation of a tripartite state ρ acting on Hd1 ⊗ Hd2 ⊗ Hd3 , d1 ≤
d2 ≤ d3.
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ρ =
1

d1d2d3
(⊗3

k=1Idk
+

∑
α1

rα1λ
(1)
α1

+
∑
α2

sα2λ
(2)
α2

+
∑
α3

qα3λ
(3)
α3

+
∑
α1α2

tα1α2λ
(1)
α1
λ(2)

α2

+
∑
α1α3

tα1α3λ
(1)
α1
λ(3)

α3
+

∑
α2α3

tα2α3λ
(2)
α2
λ(3)

α3
+

∑
α1α2α3

tα1α2α3λ
(1)
α1
λ(2)

α2
λ(3)

α3
, (19a)

where r, s and q are the Bloch vectors of three subsystems respectively , T {μ,ν} = [tαμαν ]
the correlation matrix between the subsystems μ, ν; {μ, ν} ⊂ {1, 2, 3} and T (3) = [tα1α2α3 ]
the correlation tensor among three subsystems. Before stating proposition 2, we need the
following definition and result.

Kruskal decomposition of a tensor T (N)

T (N) =
R∑

j=1

ξju
(1)
j ◦ u(2)

j ◦ · · · ◦ u(N)
j

is called completely orthogonal if 〈u(i)
k , u

(i)
l 〉 = δkl, i = 1, 2, · · · , N ; k, l = 1, 2, · · · , R [13],

where 〈, 〉 denotes the scalar product of two vectors. If T (N) has completely orthogonal
Kruskal decomposition, then it is straightforward to show that

||T (N)||KF =
R∑

j=1

ξj , (20)

where R is the rank of T (N) and ξj , j = 1, 2, · · · , R are the coefficients occurring in the
completely orthogonal Kruskal decomposition of T (N). In the proof of proposition 2, we
assume that completely orthogonal Kruskal decomposition of T (k), k > 2 is available. A
completely orthogonal Kruskal decomposition may not be available for an arbitrary tensor
[13]. The general conditions under which the completely orthogonal Kruskal decomposition is
possible is an open problem. We conjecture that completely orthogonal kruskal decomposition
is available for all tensors in the Bloch representation of a quantum state, but we do not have
a proof. As it stands, this issue has to be settled case by case.

Proposition 2 : If a tripartite state ρ acting on Hd1 ⊗Hd2 ⊗Hd3 , d1 ≤ d2 ≤ d3, with
Bloch representation (19a), where T (3) has the completely orthogonal Kruskal decomposition,
satisfies√

2(d1 − 1)
d1

||r||2+

√
2(d2 − 1)

d2
||s||2+

√
2(d3 − 1)

d3
||q||2+

∑
{μ,ν}

√
4(dμ − 1)(dν − 1)

dμdν
||T {μ,ν}||KF

+

√
8(d1 − 1)(d2 − 1)(d3 − 1)

d1d2d3
||T ||KF ≤ 1, (21)

then ρ is separable.
Proof : The idea of the proof is as follows.

(i) We first decompose all the tensors in the Bloch representation of ρ as the completely
orthogonal Kruskal decomposition in terms of the outer products of the vectors in the Bloch
spaces of the subsystems (coherence vectors).
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(ii)We prove that we can decompose ρ using the Kruskal decompositions described in (i)
above, as the linear combination of separable density matrices, which is a convex combination
if the coefficient of identity is positive. This condition is the same as the condition stated in
the proposition.

Let T {μ,ν}; {μ, ν} ⊂ {1, 2, 3} in Eq.(19a) have singular value decomposition T {μ,ν} =∑
i σia

(μ)
i (a(ν)

i )T ; with ||a(μ)
i ||2 = ||a(ν)

i ||2 = 1 , for {μ, ν} ⊂ {1, 2, 3} and let T in Eq. (19a)
have the completely orthogonal Kruskal decomposition T =

∑
j ξjuj ◦vj ◦wj [17,14,27] with

||uj ||2 = ||vj ||2 = ||wj ||2 = 1. We define ã(μ)
i =

√
dμ

2(dμ−1) a(μ)
i , μ ∈ {1, 2, 3}

so that we can rewrite

T {μ,ν} =

√
4(dμ − 1)(dν − 1)

dμdν

∑
i

σiã
μ
i (ãν

i )T (22a)

.
Similarly, we define
ũj =

√
d1

2(d1−1) uj ; ṽj =
√

d2
2(d2−1) vj ; w̃j =

√
d3

2(d3−1) wj , so that we can write

T =

√
8(d1 − 1)(d2 − 1)(d3 − 1)

d1d2d3

∑
j

ξjũj ◦ ṽj ◦ w̃j (22b)

If we substitute Eqs.(22a) and (22b) in ρ Eq.(19a), we get

ρ =
1

d1d2d3
(⊗3

k=1Idk
+

∑
α1

rα1λ
(1)
α1

+
∑
α2

sα2λ
(2)
α2

+
∑
α3

qα3λ
(3)
α3

+
∑
{μ,ν}

∑
αμαν

√
4(dμ − 1)(dν − 1)

dμdν

∑
i

σi(ã
(μ)
i )αμ(ã(ν)

i )ανλ
(μ)
αμ
λ(ν)

αν

+

√
8(d1 − 1)(d2 − 1)(d3 − 1)

d1d2d3

∑
α1α2α3

∑
j

ξj(ũj)α1(ṽj)α2(w̃j)α3λ
(1)
α1
λ(2)

α2
λ(3)

α3
(19b)

The coherence vectors ã(μ)
i occur in Dr(Rd2

μ−1), ã(ν)
i occur in Dr(Rd2

ν−1), ũj occur in
Dr(Rd2

1−1), ṽj occur in Dr(Rd2
2−1) and w̃j occur in Dr(Rd2

3−1) (see Eq.(6)), so that they
correspond to Bloch vectors.

We can decompose ρ Eq.(19b) as the following convex combination of the density matrices
ρj , ρ

′
j , ρ

′′
j , ρ

′′′
j ; 	i , 	

′
i , τi , τ

′
i , πi , π

′
i ; ρr , ρs , ρq and 1

d1d2d3
Id1d2d3 ;

ρ =
∑

j

√
8(d1 − 1)(d2 − 1)(d3 − 1)

d1d2d3

ξj
4

(ρj +ρ′j +ρ′′j +ρ′′′j )+
∑

i

√
4(d1 − 1)(d2 − 1)

d1d2

σi

2
(	i +	′i)

+
∑

i

√
4(d1 − 1)(d3 − 1)

d1d3

σ′
i

2
(τi + τ ′i) +

∑
i

√
4(d2 − 1)(d3 − 1)

d2d3

σ′′
i

2
(πi + π′

i)

+

√
2(d1 − 1)

d1
||r||2ρr +

√
2(d2 − 1)

d2
||s||2ρs +

√
2(d3 − 1)

d3
||q||2ρq + (1 −

√
2(d1 − 1)

d1
||r||2
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−

√
2(d2 − 1)

d2
||s||2 −

√
2(d3 − 1)

d3
||q||2 −

∑
{μ,ν}

√
4(dμ − 1)(dν − 1)

dμdν
||T {μ,ν}||KF

−

√
8(d1 − 1)(d2 − 1)(d3 − 1)

d1d2d3
||T ||KF )

Id1d2d3

d1d2d3
. (23)

where ρj in Bloch representation is

ρj =
1

d1d2d3

(
⊗3

k=1 Idk
+

∑
α1

(ũj)α1λ
(1)
α1

+
∑
α2

(ṽj)α2λ
(2)
α2

+
∑
α3

(w̃j)α3λ
(3)
α3

+
∑
α1α2

(ũj)α1(ṽj)α2λ
(1)
α1
λ(2)

α2
+

∑
α1α3

(ũj)α1(w̃j)α3λ
(1)
α1
λ(3)

α3
+

∑
α2α3

(ṽj)α2(w̃j)α3λ
(2)
α2
λ(3)

α3

+
∑

α1α2α3

(ũj)α1(ṽj)α2(w̃j)α3λ
(1)
α1
λ(2)

α2
λ(3)

α3

)

=
1

d1d2d3
(Id1 +

∑
α1

(ũj)α1λ
(1)
α1

) ⊗ (Id2 +
∑
α2

(ṽj)α2λ
(2)
α2

) ⊗ (Id3 +
∑
α3

(w̃j)α3λ
(3)
α3

). (24)

Note that ||T ||KF in Eq.(23) is defined via Eq.(20), which is based on completely orthogonal
Kruskal decomposition of T .

The Bloch vectors, correlation matrices and correlation tensors of the density matrices
ρj , ρ

′
j , ρ

′′
j , ρ

′′′
j ; 	i , 	

′
i , τi , τ

′
i , πi , π

′
i ; ρr , ρs , ρq are:

For ρj ,
rj = ũj , sj = ṽj , qj = w̃j , T

{1,2}
j = ũjṽT

j , T
{1,3}
j = ũjw̃T

j , T
{2,3}
j = ṽjw̃T

j

Tj = ũj ◦ ṽj ◦ w̃j .
For ρ′j ,

r′j = ũj , s′j = −ṽj , q′
j = −w̃j , T

′{1,2}
j = −ũjṽT

j , T
′{1,3}
j = −ũjw̃T

j

T
′{2,3}
j = ṽjw̃T

j , T ′
j = ũj ◦ ṽj ◦ w̃j .

For ρ′′j ,

r′′j = −ũj , s′′j = ṽj , q′′
j = −w̃j , T

′′{1,2}
j = −ũjṽT

j , T
′′{1,3}
j = ũjw̃T

j

T
′′{2,3}
j = −ṽjw̃T

j , T ′′
j = ũj ◦ ṽj ◦ w̃j .

For ρ′′′j ,

r′′′j = −ũj , s′′′j = −ṽj , q′′′
j = w̃j , T

′′′{1,2}
j = ũjṽT

j , T
′′′{1,3}
j = −ũjw̃T

j

T
′′′{2,3}
j = −ṽjw̃T

j , T ′′′
j = ũj ◦ ṽj ◦ w̃j .

For 	i,
r�

i = ã(1)
i , s�

i = ã(2)
i , q�

i = 0 , T �{1,2}
i = ã(1)

i ã(2)T
i , T

�{1,3}
i = 0

T
�{2,3}
i = 0 , T �

i = 0.
For 	′i,
r�′

i = −ã(1)
i , s�′

i = −ã(2)
i , q�′

i = 0 , T �′{1,2}
i = ã(1)

i ã(2)T
i

T
�′{1,3}
i = 0 , T �′{2,3}

i = 0 , T �′
i = 0.

For τi,
rτ

i = ã(1)
i , sτ

i = 0 , qτ
i = ã(3)

i , T
τ{1,2}
i = 0 , T τ{1,3}

i = ã(1)
i ã(3)T

i

T
τ{2,3}
i = 0 , T τ

i = 0.
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For τ ′i
rτ ′

i = −ã(1)
i , sτ ′

i = 0 , qτ ′
i = −ã(3)

i , T
τ ′{1,2}
i = 0 , T τ ′{1,3}

i = ã(1)
i ã(3)T

i

T
τ ′{2,3}
i = 0 , T τ ′

i = 0.
For π,
rπ

i = 0 , sπ
i = ã(2)

i , qπ
i = ã(3)

i , T π′
i {1, 2} = 0 , T π{1,3}

i = 0
T

π{2,3}
i = ã(2)

i ã(3)T
i , T π

i = 0.
For π′,
rπ′

i = 0 , sπ′
i = −ã(2)

i , qπ′
i = −ã(3)

i , T
π′{1,2}
i = 0 , T π′{1,3}

i = 0

T
π′{2,3}
i = ã(2)

i ã(3)T
i , T π′

i = 0.
For ρr,

rr =
√

d1
2(d1−1)

r
||r||2 , sr = 0 , qr = 0 , T {μ,ν}

r = 0 ; ∀{μ, ν} ⊂ {1, 2, 3} , Tr = 0.
For ρs,

rs = 0 , ss =
√

d2
2(d2−1)

s
||s||2 , qs = 0 , T {μ,ν}

s = 0 ; ∀{μ, ν} ⊂ {1, 2, 3} , Ts = 0.
For ρq,

rq = 0 , sq = 0 , qq =
√

d3
2(d3−1)

q
||q||2 , T

{μ,ν}
q = 0 ; ∀{μ, ν} ⊂ {1, 2, 3} , Tq = 0.

If we write all matrices ρ′j , ρ
′′
j , ρ

′′′
j ; 	i , 	

′
i , τi , τ

′
i , πi , π

′
i ; ρr , ρs , ρq (as we have

done for ρj in Eq.(24)) in the Bloch representation and substitute them in Eq.(23) we get ρ
as in Eq.(19b).

To understand this let us see how the first term in Eq.(23) adds up to give the last term
in Eq.(19b). The definition of ρj , ρ

′
j , ρ

′′
j , ρ

′′′
j (denoting the Bloch vectors by s1, s2, s3, s4, ....)

can be summarized in the tabular form

Table 1 Correspondence between the first term in Eq.(23) and the last term in Eq. (19b).

s1 s2 s3 s1s2 s1s3 s2s3 s1s2s3
ρj ũj ṽj w̃j ũj ṽj ũjw̃j ṽjw̃j ũj ṽjw̃j

ρ′j ũj −ṽj −w̃j −ũj ṽj −ũjw̃j ṽjw̃j ũj ṽjw̃j

ρ′′j −ũj ṽj −w̃j −ũj ṽj ũjw̃j −ṽjw̃j ũj ṽjw̃j

ρ′′′j −ũj −ṽj w̃j ũj ṽj −ũjw̃j −ṽjw̃j ũj ṽjw̃j

The contribution of each column to ρj + ρ′j + ρ′′j + ρ′′′j is zero except the last column
which reproduces the last term in Eq.(19b). We can get the contributions of each term in
ρj , ρ

′
j , ρ

′′
j , ρ

′′′
j to their sum by just keeping track of their signs. Thus we only need the

following table (dropping j)

Table 2 Contributions of various terms in ρ, ρ′, ρ′′, ρ′′′ to their sum.

s1 s2 s3 s1s2 s1s3 s2s3 s1s2s3
ρ + + + + + + +
ρ′ + − − − − + +
ρ′′ − + − − + − +
ρ′′′ − − + + − − +

In the same way, the contributions of the terms involving 	, τ, π are obtained by using
the table corresponding to table 2 for the bipartite case [9]. 	, τ, π which contain tensors of
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order two correspond to three 2-partite subsystems 12,13 and 23 . The corresponding tables
are

Table 3 Contributions to 	+ 	′

s1 s2 s3 s1s2 s1s3 s2s3 s1s2s3
	 + + 0 + 0 0 0
	′ − − 0 + 0 0 0

Table 4 Contributions to τ + τ ′

s1 s2 s3 s1s2 s1s3 s2s3 s1s2s3
τ + 0 + 0 + 0 0
τ ′ − 0 − 0 + 0 0

Table 5 Contributions to π + π′

s1 s2 s3 s1s2 s1s3 s2s3 s1s2s3
π 0 + + 0 0 + 0
π′ 0 − − 0 0 + 0

Tables 2, 3, 4, 5 encode the procedure to construct the possible separable state given in
Eq.(23).

We now note the following points

(i) If the condition (21) holds, then the coefficient of the matrix Id1d2d3 in Eq.(23) is
positive which ensures that the decomposition (23) of ρ is positive semidefinite.

(ii) By virtue of Eq.(6), all the coherence vectors occurring in ρ′j , ρ′′j , ρ′′′j ;
	i , 	

′
i , τi , τ

′
i , πi , π

′
i ; ρr , ρs , ρq belong to the corresponding Bloch

spaces.

By (i) and (ii) we conclude that ρ′j , ρ
′′
j , ρ

′′′
j ; 	i , 	

′
i , τi , τ

′
i , πi , π

′
i ; ρr , ρs , ρq consti-

tute density matrices. Further, all these matrices satisfy condition (11) so that, via proposition
1, all these matrices correspond to pure separable states, equal to the tensor products of their
reductions. Therefore, they constitute density matrices and they are separable and so must
be ρ. �

We can generalize proposition 2 to the N -partite case by constructing the tables succes-
sively for N = 4, 5, 6, · · · . First note that the number of ρ s in the first term of Eq.(23) lifted
to the N -partite case is 2N−1. For N = 4 we have eight. The corresponding table is
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Table 6 Generalization of Table 1 to N = 4.

s1 s2 s3 s4 s1s2 s1s3 s1s4 s2s3 s2s4 s3s4 s1s2s3 s1s2s4
ρ(1) + + + + + + + + + + + +
ρ(2) + + − − + − − − − + − −
ρ(3) + − + − − + − − + − − +
ρ(4) + − − + − − + + − − + −
ρ(5) − + + − − − + + − − − +
ρ(6) − + − + − + − − + − + −
ρ(7) − − + + + − − − − + + +
ρ(8) − − − − + + + + + + − −

(Table 6. Continued)

s1s3s4 s2s3s4 s1s2s3s4
+ + +
+ + +
− + +
− + +
+ − +
+ − +
− − +
− − +

We see that the contribution of each column to the sum
∑

i ρ
(i) is zero except the last one

corresponding to the Kruskal decomposition of T (N) occurring in the Bloch representation
of the given state ρ. For general case of N -partite state we construct the table for ρ(i), i =
1, 2, · · · , 2N−1 as follows. First column consists of 2N−2 plus signs followed by 2N−2 minus
signs. Second column comprises alternating 2N−3 plus and minus signs. Continuing in this
way upto 2N−N = 1 we get alternating plus and minus signs in the (N − 1)th column. We
set the Nth column to ensure that there are zero or even number of minus signs in each
row. Rest of the columns can be constructed by appropriate multiplications. This procedure
can be checked on table 6. We denote the sequence of such tables for N = 2, 3, 4, · · · as
Ti, i = 2, 3, 4, · · · .

The tables corresponding to (N −1), (N−2), ..., 2 partite subsystems giving rise to the re-
maining terms in the equation (23), lifted toN -partite case, are obtained from TN−1, TN−2, ..., T3, T2,

exactly as described in the proof of proposition 2. In this way we can lift eq.(23) to the N -
partite case, with the total numbers of terms

∑N−1
i=0

(
N
i

)
2N−1−i + 1. Once this is done, the

rest of the proof for N -partite case follows as in proposition 2. Thus we have

Proposition (2a): If a N -partite state ρ acting on H = Hd1 ⊗ Hd2 ⊗ · · · ⊗ HdN , d1 ≤
d2 ≤ · · · ≤ dN with Bloch representation (8), where all T (k), k > 2 have the completely
orthogonal Kruskal decomposition, satisfy

∑
k

√
2(dk − 1)

dk
||sk||2 +

∑
{μ,ν}

√
4(dμ − 1)(dν − 1)

dμdν
||T {μ,ν}||KF
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+
∑

{μ,ν,κ}

√
8(dμ − 1)(dν − 1)(dκ − 1)

dμdνdκ
||T {μ,ν,κ}||KF + · · ·+

∑
{k1,k2,··· ,kM}

√
2MΠki(dki − 1)

Πkidki

||T {k1,k2,··· ,kM}||KF + · · · +

√
2NΠN

i (di − 1)
ΠN

i di
||T (N)||KF ≤ 1,

(21)
then ρ is separable. �
For a N -qubit system Theorem 1 and proposition 2a together imply
Corollary 2 : Let a N -qubit state have a Bloch representation

ρ =
1

2N
(⊗N

k=1I
(k)
2 +

∑
α1···αN

tα1···αNλ
(1)
α1
λ(2)

α2
· · ·λ(N)

αN
),

and let the tensor in the second term have the completely orthogonal Kruskal decomposition.
Then ρ is separable if and only if ||T (N)||KF ≤ 1. �

5 Examples

We now investigate our separability criterion (18) for mixed states. We consider N -qubit
state

ρ
(N)
noisy =

1 − p

2N
I + p|ψ〉〈ψ|, 0 ≤ p ≤ 1 (25)

where |ψ〉 is a N -qubit W state or GHZ state. We test for N = 3, 4, 5 and 6 qubits. We
get,

Table 7 The values of p above which the states are entangled.

|GHZ〉 |W 〉 N
p > p >

0.35355 0.3068 3
0.2 0.3018 4

0.17675 0.30225 5
0.1112 0.3045 6

Entanglement in various partitions of W noisy state Eq.(25) is obtained by using (N −n)
qubit reduced W noisy state

ρ
(N−n)
noisy (W ) =

1 − p

2N−n
IN−n +

n

N
p|0N−n〉〈0N−n| +

N − n

N
p|WN−n〉〈WN−n| (26)

For N = 6 and n = 2 we found that the state is entangled for 0.491 < p ≤ 1.
For N qutrits (d = 3) we test for

ρ
(N)
noisy =

1 − p

3N
I + p|ψ〉〈ψ| (27)

where |ψ〉 = 1√
d

∑d
k=1 |kkk . . .〉 is the maximally entangled state for N qutrits.

For N = 3 and N = 4 (qutrits) the state ρ(N)
noisy in Eq. (27) is entangled for

0.2285 < p ≤ 1, N = 3
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0.2162 < p ≤ 1, N = 4 (28)

The state
ρnoisy =

1 − p

24
I + p|ψ〉〈ψ| (29)

where |ψ〉 = 1
2 (|112〉+ |123〉+ |214〉+ |234〉) in the space C

2⊗C
3⊗C

4 is found to be entangled
for 0.24152 < p ≤ 1.

All of the above examples involve NPT states. Now we apply our criterion to PPT
entangled states for which PPT criterion is not available.

We apply our criterion to the three qutrit bound entangled state considered by L. Clarisse
and P. Wocjan [27], given by ρc ⊗ |ψ〉〈ψ| where ρc is the chess-board state given in [27]
and |ψ〉 is an uncorrelated ancilla. Our criterion detects the entanglement of this state as
||T (12)|| = 3.75 > 3. Further, the four qutrit state ρ = (1 − β)ρc ⊗ ρc + βI/81 considered by
the same authors yields entanglement for 0 ≤ β ≤ 0.2, after tracing out either subsystems 1
and 2 or subsystems 3 and 4.

Now we consider the important example of the Smolin state [28,29], which is a four qubit
bound entangled state given by

ρunlock
ABCD =

1
4

4∑
i=1

|ψi
AB〉〈ψi

AB | ⊗ |ψi
CD〉〈ψi

CD| (30)

where |ψi
AB〉 and |ψi

CD〉 are the Bell states. ρunlock
ABCD has the Bloch representation ρunlock

ABCD =
1
16 (I⊗4 +

∑3
i=1 σ

⊗4
i ) so that Corollary 2 applies (note that the requirement of completely

orthogonal Kruskal decomposition is trivially satisfied). We find for this state ||T (4)||KF =
3 > 1 confirming its entanglement.

Our last example is the four qubit bound entangled state due to W. Dür [30,31]

ρBE
4 =

1
5
(|ψ〉〈ψ| + 1

2

4∑
i=1

(Pi + P i))

where |ψ〉 is a 4-party (GHZ) state , Pi is the projector onto the state |φi〉, which is a product
state equal to |1〉 for party i and |0〉 for the rest , and P i is obtained from Pi by replacing
all zeros by ones and vice versa. We get ||T (4)||KF = 1.4 > 1 confirming the entanglement of
this state.

6 Summary

In conclusion we have presented a new criterion for separability of N partite quantum states
based on the Bloch representation of states. This criterion is quite general, as it applies to
all N -partite quantum states living in H = Hd1 ⊗ Hd2 ⊗ · · · ⊗ HdN , where, in general, the
Hilbert space dimensions of various parts are not equal. Most of the previous such criteria had
restricted domain of applicability like the states supported on symmetric subspace [4] or, are,
in general, restricted to bipartite case. In proposition 2 we have given a sufficient condition
for the separability of a tripartite state under the condition that the tensors occurring in the
Bloch representation of the state have completely orthogonal Kruskal decomposition. This
result can be generalized to the N -partite case. Via corollary 2 we give a necessary an sufficient
condition to test the separability of a class of N -qubit states which includes N -qubit PPT
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states. Smolin state (30) is an important example in this class. The key idea in our work is
the matrization of multidimensional tensors, in particular, Kruskal decomposition. We have
defined a new tensor norm as the maximum of the KF norms of all the matrix unfoldings of
a tensor, which is easily computed. We have also shown that this norm can be calculated
even more efficiently for a N -qudit state supported in the symmetric subspace. It will be
interesting to seek a relation of this tensor norm with other entanglement measures. Again,
the entanglement measures like concurrence known so far are successfully applied to pure
states, bipartite or multipartite, while our tensor norm can be easily computed for arbitrary
N -partite quantum state. Finally, our result on full separability (proposition 1) of N -partite
pure states can be easily moulded for the k-separability of an N -partite pure state. In fact it
is straightforward to construct an algorithm giving the complete factorization of the N -partite
pure state (see the paragraph following the proof of proposition 1). It is also easy to see that
theorem 1 can be applied to any partition of a N -partite system via the Bloch representation
in terms of the generators of the appropriate SU groups. Most important is the observation
that all the tensors in the Bloch representation can be computed using the measured values of
the basis operators {λαk

} so that our detectiblity criterion is experimentally implementable.
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