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We give a new separability criterion, a necessary condition for separability of N-
partite quantum states. The criterion is based on the Bloch representation of a N-
partite quantum state and makes use of multilinear algebra, in particular, the ma-
trization of tensors. Our criterion applies to arbitrary N-partite quantum states in
H=H" @H?2 ® - ® HIN. The criterion can test whether a N-partite state is en-
tangled and can be applied to different partitions of the N-partite system. We provide
examples that show the ability of this criterion to detect entanglement. We show that
this criterion can detect bound entangled states. We prove a sufficiency condition for
separability of a 3-partite state, straightforwardly generalizable to the case N > 3, under
certain condition. We also give a necessary and sufficient condition for separability of a
class of N-qubit states which includes N-qubit PPT states.
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tensors, PPT entangled states
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1 Introduction

The question of quantifying entanglement of multipartite quantum states is fundamental to
the whole field of quantum information and in general to the physics of multicomponent
quantum systems. Whereas entanglement of pure bipartite states is well understood, the
classification of mixed states according to the degree and character of their entanglement is
still a matter of intense research [1,2]. A N-partite state acting on H = Hh @ H2 ®- .- @ HIN
is separable [3] ( or fully separable) if it can be written as a convex sum of tensor products of
subsystem states

N
p=> purly) @p @ pY =3 pu @, puw>0: Y pw =1 (1)
w w Jj=1 w

A state is called k separable if we can write

p= 3 punle) @ o) o) @)
w
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where a;; ¢ = 1,2,...,k are the disjoint subsets of {1,2,..., N} and pl%) acts on the tensor
product space made up by the factors of H labeled by the members of a;. The understanding
of multipartite entanglement has progressed by dealing with some special classes of states
like the density operators supported on the symmetric subspace of H [4]. A lower bound
on concurrence on the multipartite mixed states is obtained [5]. K. Chen and L. Wu have
given a generalized partial transposition and realignment criterion to detect entanglement of
a multipartite quantum state [6].

There are two definitions commonly used for the entanglement of multipartite quantum
states, the one from Ref. [7] (ABLS) and the one introduced in [8] (DCT). In DCT, all
possible partitions of N parties are considered and it is tested for each partition if the state
is fully separable there or not. A state is called N partite entangled if it is not separable
for any partition. If a state is separable for a bipartite partition, it is called biseparable. In
ABLS, a state is called biseparable if it is a convex combination of biseparable states, possibly
concerning different partitions. A N-partite entangled state is one which is not biseparable.

In this paper we derive a necessary condition for the separability of multipartite quantum
states for arbitrary finite dimensions of the subsystem Hilbert spaces and without any further
restriction on them. The criterion is based on the Bloch representation of a multipartite
quantum state, which has been used in previous works to characterize the separability of
bipartite density matrix, in particular, our work is a generalization of de Vicente’s work on
bipartite systems [9]. We make use of the algebra of higher order tensors, in particular the
matrization of a tensor [10,11,12,13,14,15,16,17].

The paper is organized as follows. In section II we present the Bloch representation of
a N-partite quantum state. In section III we obtain the main results on separability of a
N-partite quantum state. In section IV we give a sufficient condition for the separability
of a 3-partite quantum state generalizable to the case N > 3. In section V we investigate
our separability criterion for mixed states, in particular, bound entangled states. Finally we
summarize in section VI.

2 Bloch Representation of a N-Partite Quantum State

Bloch representation [18,19,20,21,22] of a density operator acting on the Hilbert space of a
d-level quantum system C? is given by [9]

p=2Ua+ Y 50 3)

Eq.(3) is the expansion of p in the Hilbert-Schmidt basis {I4, A\;;i = 1,2,...,d? — 1} where
Ai are the traceless hermitian generators of SU(d) satisfying Tr(\;A;) = 2J;; and are char-
acterized by the structure constants of the corresponding Lie algebra, fijk,gijx which are,
respectively, completely antisymmetric and completely symmetric.

2 .
Aidj = E(Sijld +ifiieAe + gijr e (4)
s = (s1,82,...,842_1) in Eq.(3) are the vectors in Rdz_l, constrained by the positive semidef-

initeness of p, called Bloch vectors [21]. The set of all Bloch vectors that constitute a density
operator is known as the Bloch vector space B(R? ~1). The problem of determining B(R% 1)
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where d > 3 is still open [19,20]. However, for pure states (p = p?) the following relations

hold.

dd—1)
2 I

I[sll2 = 5i8;gijk = (d — 2)sy (5)

where |.||2 is the Euclidean norm in R%"~1,

It is known [23,24] that B(R? ~1) is a subset of the ball D (R ~1) of radius R = d(d{”,

which is the minimum ball containing it, and that the ball D, (Rdz_l) of radius r = 5 d‘il)
is included in B(RdQ’l). That is
D, (R" ™) € BRY ™) € DR ) (6)

In order to give the Bloch representation of a density operator acting on the Hilbert space
Ch ® C2 ®--- @ C¥ of a N-partite quantum system, we introduce following notation.
We use k, k; (i =1,2,--) to denote a subsystem chosen from N subsystems, so that k,
k; (i =1,2,---) take values in the set N'={1,2,--- | N}. The variables ay, or ay, for a given
k or k; span the set of generators of SU(dy) or SU(dy,) group (Egs.(3) and (4)) for the kth
or k;th subsystem, namely the set {)\1,% A2y ,)\di',l} for the k;th subsystem. For two
subsystems k; and ke we define '

AED = (I, @ 1, @+ @ Aoy @ Ly, @ @ Lay)

AED = (I, @ o, @+ @ Aoy @ Ly, @ @ Lay)

AN = (Ig, © Ig, @ -+ @ Aoy, @ Ly, @ @ Ay, ® Lay,,, ® ay) (7)

where )\(ykl and /\O%2 occur at the kith and koth places (corresponding to kith and koth
subsystems respectively) in the tensor product and are the ag,th and ag,th generators of
SU(dg,), SU(dk,), o, =1,2,... ,dil —land ag, = 1,2,... ,diz — 1 respectively. Then we
can write

1
p= gy (O o+ 20D s i) + 0 D o, MM 4

kEN aj {k1,ka} kq Ky
S Y a0 s
{k1,k2, -k} Qg Qhg Ok
> tarasan AGAD ALY (8)
Q1o N
2
where s(®) is a Bloch vector corresponding to kth subsystem, s(*) = [sak]i’;;ll which is a
tensor of order one defined by
dy, dy,
Say, = ?Tr[p)\((i)] = ETT[pk/\ak]; (9@)
where py is the reduced density matrix for the kth subsystem. Here {ki,ko, -+ ,kn}, 2 <

M < N, is a subset of AV and can be chosen in (]]\\/[[) ways, contributing (]]\\/[[) terms in the
sum E{kl,kz,---,kM} in Eq.(8), each containing a tensor of order M. The total number of
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terms in the Bloch representation of p is 2. We denote the tensors occurring in the sum
k1,k2, -k o .

D lkka, ok (2 S M < N) by Tkukz, okt — [tax, ar, -ax,, ] Which are defined by

_ dpyd, - dgy,

akl(ykz...(){kM - 2M

k k k
t TrpAEDAG) - 2]

di,dy, ...d
= WTT[/)MM--%M (/\Otkl ® /\Oucz R )‘O(kM )] (9())
where pg, k,.. &y, 1S the reduced density matrix for the subsystem {ki1ks...knr}. We call The
tensor in last term in Eq. (8) 7).

3  Separability Conditions

Before we obtain the main results we need following definition. Throughout the paper, we
use the bold letter for vector and normal letter for components of a vector, matrix and tensor
elements.

A rank-1 tensor is a tensor that consists of the outer product of a number of vectors.
For Mth order tensor 7M) and M vectors u™,u® ... u®) this means that t; i, i, =
ugll)ug) . “S\\j) for all values of the indices. This is concisely written as 7 = u ou® o
~ou™M17.11].

Also, given two tensors 7(M) and S™V) of order M and N respectively, with dimensions
I x Iy x -+ - x Iy and Jy X Jo X - - - x Jy respectively, their outer product is defined as [16,10]

(T 0 Sty ingrgaein = tivia.oineSjrja.in (10)

Proposition 1 : A pure N-partite quantum state with Bloch representation (8) is fully
separable (product state) if and only if

glkike,kary — (ki) o glk2) oL o glkm) (11)

for 2 < M < N. In particular 7") = s(1) 6§30 ... 0s(N) holds. Here {k1,ka,....,km} C
{1,2,...,N}, and s(®) is the Bloch vector of kth subsystem reduced density matrix.
Proof : Notice that Eq.(8) can be rewritten as

1
p= p(l) ® p(2) R p(N) 4 m{ Z Z [taklakz — Say, Sakz]/\&i}l)/\gﬂé) 4+t

{k1,k2} Oky Aky

+eeet Z [toqaz---azv — SaiSas '~'5aN]>‘¢(111)>‘((122) ASJJYV)} (12)

12 QXN
For full separability, the sum of all the terms apart from the first term must vanish.
Note that for every subsystem k = 1,2,..., N the set {Ig,\;;i = 1,2,...,d} — 1} forms an

orthonormal Hilbert-Schmidt basis for the kth subsystem. Hence )\Sykk); A%’ASX@ cee

A%’ASX@ e )\gﬁ]‘]@ ); el )\81))\&22) e A&’,VJ are the vectors belonging to the orthonormal product
basis of the Hilbert-Schmidt space of the whole N-partite system. By orthonormality of the
tensor product of A’s occurring in different terms, the required sum will vanish if and only if
coefficients of each term vanish separately, that is if and only if

by iy aky, = Sy Sagy -+ Sap,, s 2 < M <N,
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that is
TRz okt — gk o g(k2) oo g(kM) -9 < Mf < N,

O
In fact, the condition (11) for all N parts is enough to decide the separability of pure
N-partite quantum states, as the following proposition shows.
Proposition 1a : A pure N-partite quantum state with Bloch representation (8) is fully
separable (product state) if and only if

TO) — g0 6@ ... oM.

where s(®) is the Bloch vector of kth subsystem reduced density matrix.
Proof : Suppose p is a product state p = p1 ® p2 @ - -+ @ py. Then,

dids...d
tarag..ay = %Tr[(m ®p2® - @PN)(Aar @ Aay @+ @ Aay)]
dids...d
= = Tr(p1hay) © (P22az) @ -+ @ (pN Aay )]
_ didy...dn

N [Tr(plAOtl )T?“(p2>\a2) o 'Tr(pNAOtN)]

= [Smsag T SO’N]'

Suppose the condition holds, that is, [s(!) 0 5() 0 - 05M], 0o oy = taras...an- Then,

dids ... d
[3(1) 0s@o...0 S(N)]mazmw - %[Tr(mkm)ﬂ“(pzkaz) - Tr(pnAay )]

dids...d
= = Trl(p1ha) ® (P2)as) @+ ® (pyAay )]

didsy...d
= = Trl(p1 ® p2® - © py) ey @ Aay @7+ © Aay)]

didy...dyN
= talaz.“al\z - TTT[[)()\OQ & >\a2 (SR AaN)]~

The equality
Tr[(pl QP2 ® pN)(/\al ® /\ag K /\aw)] = Tr[p()\ﬂ’l ® /\Ot2 ®-® /\OtN)]

is satisfied for all elements in the orthonormal basis {@Y_ Ao, }, 0 < ap < d2 — 1, (o =
0 for I;,) where {\,,} are the di — 1 generators of SU(dg). This means that the joint
probabilities obtained from the ensemble of measurements of (Ay, -+ Aa, ) for states p and
p=p1Qp2®---® pn are equal. This implies

P=p1RP2XR-- X pnN.

O

Note that this criterion is easily amenable with experiments. In order to check it for an

element of 7)) we have to measure the corresponding generators on each subsystem and
then check whether the product of the averages equals the average of the products.
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Thus in order to check whether a given pure state is a product state we have to check
whether 7(V) = s 652 o...0s(N) where the Bloch vectors sV, s(?), ... s™) can be con-
structed from the reduced density matrices p1, p2,--- , py for subsystems 1,2,--- | N (sq, =
%’“Tr(pk)\ak), ke{l,2,---,N}, see Eq.(9a)).

In the case of mixed states we can characterize separability from the Bloch representation
point of view as follows.

A N-partite quantum state with Bloch representation (8) is fully separable if and only if
there exist vectors uq(f) € Ré&-1 satisfying Eq.(5), and weights p,, satisfying 0 < p,, <1 and
> wPw =1 such that

R
TO) =3 O, o = ¥t (130
and
R
T{kl,kQW',kM} — pr O’f\il ugﬁ) (13b)
w

for 2 < M < N ; for all subsets {ki,ka,...,kn} C {1,2,..., N}, where s®) is the Bloch
vector of the mixed state density matrix for kth subsystem and ull ) represent the Bloch vector
of the pure state of the kth subsystem contributing to the wth term in Eq. (1).

This follows from proposition 1 and Eq. (1). However, in view of proposition (1a), the
necessary and sufficient condition is given by Eq.(13a), so that Eq.(13b) can be dropped.
The above result can not be used directly, as it amounts to rewriting Werner’s definition
of separability in a different way. However, it allows us to derive a necessary condition for
separability for N-partite quantum states.

We need some concepts in multilinear algebra. Consider a tensor 70V e Rl xf2xxIn
where Iy = d? — 1. The nth matrix unfolding of TW) (n =1,2,---,N) [10] is a matrix
T((N) € RinxUnsilnyz. InDilz..In—1) T((g) contains the element ¢; ;,. .y at the position with

n)
row index iy (ip, =1,2,--+,1I,) and column index

(int1 — Olnsolnys . . INLIy .o Iy + (inye — Dingslpia . INL .. Ty
+o+ Gy —DhIs.. . Iy g+ (in — Vlaly... Ly 1+ (ig— D)I3ly.. . In 1+ +ip_1.

For n = 1, we take the last term ¢,,_1 = i9p = inx. This ordering is called backward cyclic
[16]. To facilitate understanding, put N points on a circle and label them successively by
i1,192,--- ,in. The consecutive terms in the expression for the column index in T((é\)[) corre-
sponding to t;, j,,....ix Decome quite apparent using this circle.

For TG ¢ RI*12xI3 the matrix unfolding T((f)) contains the elements t; ;,:, (ix =
1,2,---,Iy; k= 1,2,3) at the position with row number ¢; and column number equal to
(ia — 1) I3 + i3, T((23)) contains ?;,4,:, at the position with row number i3 and column number

equal to (ig—1)I; +14; and T((g)) contains %;,4,i, at the position with row number i3 and column
number equal to (i1 — 1)1 + is.

As an example [25], define a tensor TG € R3%2X3 by 117 = ti11a = to11 = —to1a = 1,
1213 = t311 = t313 = t121 = t122 = 1221 = —l292 = 2, f993 = t301 = 323 = 4, t113 = 312 =

t123 = t322 = 0. The matrix unfolding T((lg)) is given by
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1 1 0l2 2 0
@ =1 -1 2|2 -2 4
2 0 2[4 0 4

Note that there are N possible matrix unfoldings of 7). The matrix unfolding is called
the matrization of the tensor [10,17]. We can now define the Ky Fan norm of the tensor 7 (V)
(of order N) over N matrix unfoldings of a tensor, as

N1T™N|kp = mafﬂ{HT((n))HKF}, n=1,...,N; (14)

where ||T((T]l\)[)|| kF is the Ky Fan norm of matrix T((TJZ\)[) defined as the sum of singular values

of T((:)/) [26]. Tt is straightforward to check that ||7N)||xr defined in (14) satisfies all the
conditions of a norm and is also unitarily invariant [9,26].

The tensors in Eq.(13a) are called Kruskal tensors with the restriction 0 < p,, <1, Y pw =
1 [14,16]. We are interested in finding the matrix unfoldings and Ky Fan norms of 7®) oc-
curring in Eq.(13a). The kth matrix unfolding for Kruskal tensor is [17]

T((]i\)[) URSOUM euN-Do...oUut) ouk-e...ouMT, (15)

Here UF) = [ugk)uék) .. ug)] € RI**E: k=12 ... N and R is the rank of Kruskal tensor
[14,12,17], i.e. the number of terms in Eq.(13a). ugk) is a vector in R’* and is the ith column
vector in the matrix U®). ¥ is the R x R diagonal matrix, ¥ =diag[p: ...pgr]. The symbol
© denotes the Khatri-Rao product of matrices [17] U € R/*® and V € R7*® defined as
UOV=[u®viu®vsy ... ug @ vg] € RIV*E where u; and v;, i = 1,2,... R are column
vectors of matrices U and V respectively. Eq.(15) can be rewritten as

T = UPsPv T = psy®” (16)
where vl@);i =1,2,..., R are the column vectors of the matrix

V(E)T E RININ—llN—Q---Ik+IIk—1~~~Il XR and VEE) — ugN) ® ugNil) ® u§N72) ® - ® u£k+1) ®

ugkil) ®-® ugl). Using Eq.(16) we can write T((g) as

T = ZP uPv®" g =19 N. (17)

Theorem 1 : If a N-partite quantum state of dids...dy dimension with Bloch repre-
sentation (8) is fully separable, then

1
1Tk < \/2_NHkNldk(dk —1). (18)

Proof : If the state p is separable then 7(V) has to admit a decomposition of the form

.(13) with ||u(k)|| =4/ W, k =1,2,...,N. From definition of KF norm of tensors,

Eq
Eq.(14),

17N p = maa{||T() llkr}; k=1,...,N.
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From Eq.(17),

T sep = maad| 3 ponv® licp} s k=1, N

- 1 _ T
< maz{ Y pullulP v |lxr} = max{sz o T di(dx = DG e}
w w

where ﬁﬁﬁ“),vg“) are unit vectors in R% 1 and RIV-"1@RIV-1"1 @ ... R+~ g R¥%-1"1 g
S @RI-1 respectively, so that ||u(k) 28 l|lkp=1forallk=1,2,...,N. Using >, pw =1
we get ||[TM)||xr < \/Q—Nngzldk(dk —1). O

For a subsystem we get,

Corollary 1 : If the reduced density matrix of a subsystem consisting of M out of N
parts is separable then |7 tFtkzkard|| o < \/Q%H,g/ledk(dk -1).

The negation of the above condition, that is, ||[7M)||xp > \/QLNH’kvzldk(dk — 1), is a suf-
ficient condition of entanglement of N-partite quantum state. This leads to a hierarchy of
inseparability conditions which test entanglement in all the subsystems. For N = 2 the condi-
tion ||7WM)||gp < \/Q%dl (dy — 1)da(d2 — 1) has been shown in Ref. [9], to be a sufficient con-
dition for entanglement associated with any bipartite density matrix. Note that for N-qubits,
di =2, i=1,2,...,N, the above criterion becomes, for a separable state, |7 ||xr < 1.

Consider a N qudit system Hy = ®2V=1Hﬁ in a state p, supported in the symmetric
subspace of H,. It is straightforward to see that all the tensors in the Bloch representation of
p are supersymmetric, that is (see Eqs.(8) and (9)), ta,, ax,--ax,, = tP(ak,)Plaky)Plax,,)r 2 <
M < N, where P is any permutation over indices {ay,, ag,, -+, g, }. We have, neglecting
the constant multipliers,

N

t =

Ay Vg " U pp

T[Okiksknr Aok, @ Ay, @ @ Ay, |

P[oksks ks PP  Aag, © Aoy, @ -+ @ Ay, PPT]
[
[

|
~

= Tr (PTpklkz MP)(P Aakl ®>‘ak ®"'®>‘akMP)]
= Trpkiks-kn (/\P(O‘kl) ® )\P (aky) ®---® )\P(akl\/l))]

= IP(ar ) P(ary)Plary,)

where P is the appropriate permutation matrix permuting the A matrices within the tensor
product [26], PT being the transpose of P satisfying PT = P~'. In particular 70) is
supersymmetric. All matrix unfoldings of a supersymmetric tensor have the same set of
singular values [10] and hence the same KF norm. Thus, for a N-qudit system in a state
supported in the symmetric subspace, it is enough to calculate the KF norm for any one of
the N matrix unfoldings to get max{||T ||KF}

4 A Sufficient Condition for Separability of a 3-Partite Quantum State

Consider the Bloch representation of a tripartite state p acting on H% @ H% ® H%, d; <
ds < ds.
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1
P= T —— (@i a, + DT, AL +Zsa2 A2 +angx<3 + 3t AAC

(o5} [e N’
+ Z talag,)\& + Z tasas a22)>\(3 Z tarasas all))\(z))\(?») (19a)
Q1Q3 203 a1oaas
where r, s and q are the Bloch vectors of three subsystems respectively , T1#7} = (ta, ]

the correlation matrix between the subsystems s, v; {u, v} € {1,2,3} and T4 = [to,a0as)
the correlation tensor among three subsystems. Before stating proposition 2, we need the
following definition and result.

Kruskal decomposition of a tensor 7 (V)

R
T =3 gl s ou
j=1

is called completely orthogonal if <u,(€),ul ) =0k, ¢ =1,2,---,N; k1l =1,2,--- ,R [13],
where (,) denotes the scalar product of two vectors. If 7(V) has completely orthogonal
Kruskal decomposition, then it is straightforward to show that

R
1Tk =3¢, (20)
j=1

where R is the rank of 7W) and &, 7 =1,2,---, R are the coeflicients occurring in the
completely orthogonal Kruskal decomposition of 7). In the proof of proposition 2, we
assume that completely orthogonal Kruskal decomposition of 7(), k > 2 is available. A
completely orthogonal Kruskal decomposition may not be available for an arbitrary tensor
[13]. The general conditions under which the completely orthogonal Kruskal decomposition is
possible is an open problem. We conjecture that completely orthogonal kruskal decomposition
is available for all tensors in the Bloch representation of a quantum state, but we do not have
a proof. As it stands, this issue has to be settled case by case.

Proposition 2 : If a tripartite state p acting on H% ® H% @ H%, d; < dy < d3, with
Bloch representation (19a), where 7®) has the completely orthogonal Kruskal decomposition,
satisfies

—1)(dy, — 1 ,
2 gy AR D g g J2E 2D, 57 (A= DU 2Dty
{uv} Gl

didads

then p is separable.

Proof : The idea of the proof is as follows.

(i) We first decompose all the tensors in the Bloch representation of p as the completely
orthogonal Kruskal decomposition in terms of the outer products of the vectors in the Bloch
spaces of the subsystems (coherence vectors).
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(ii)We prove that we can decompose p using the Kruskal decompositions described in (i)
above, as the linear combination of separable density matrices, which is a convex combination
if the coefficient of identity is positive. This condition is the same as the condition stated in
the proposition.

Let T{#v}: {0} € {1,2,3} in Eq.(19a) have singular value decomposition T1#¥} =
S oa™ @ with [|al]]y = ||al|]s = 1, for {u, v} C {1,2,3} and let T in Eq. (19a)
have the completely orthogonal Kruskal decomposition 7 = Zj &jujov;ow; [17,14,27] with

d, N
[jllz = [[v;ll2 = [[w;lls = 1. We define &) = | /5ty al® pe{1,2,3)

so that we can rewrite

Timry — \/ 4(dy _dlll(d” i) Z oal @y’ (22a)
A i

Similarly, we define

i =./—4 g : v.=./=—%2 v W=/ w. i
U=\ W Vi=\ 2@ Vi b Wi T\ 2D W, so that we can write

8(dy — 1)(dz — 1)(d3 — 1) S
7= ] ' j 22b
\/ didads zj:ffuf OV oW (22b)
If we substitute Egs.(22a) and (22b) in p Eq.(19a), we get
1
P= Ty Pk=rla S e A £ 3 5022 £ 3 o A
ay . o

N Z Z d —1 d -1) ZU (u) (u)) V}\Sy/i))\(lfu)

{/"’7”} auav
8(dy — 1)(dy — ]. ds — ]_ _
+\/ : )Ezldgdg > D & o (W) ag A AG AL (19b)

ajozas g

The coherence vectors éz(“) occur in Dr(Rdi_l), égy) occur in DT(Rdi’l), @, occur in
DT(Rdf’l), V; occur in DT(Rdg’l) and W; occur in DT(Rdéfl) (see Eq.(6)), so that they
correspond to Bloch vectors.

We can decompose p Eq.(19b) as the following convex combination of the density matrices

/B / . /. 1 .
Pj P] ) pg » Py Qi sz Tiy Tis Ty T3 Prs Ps > Pg and d1d2d3‘[d1d2d3’

(dr = 1)(d2 = 1)(ds = 1) & My~ (e~ Vi,
pP= Z\/ dydyds 4(pJ+P]+P3+P] +Z 0y 2(914_91.)

d1—1 d3—1) d2—1 d3—1)0’£’ /
+Z\/ aids (i +7) +Z\/ ods 5 (i + )

2(dy — 1 2(dy — 1 2(ds — 1 2(dy — 1
T o) TR o Lol YNV o . ol P TN R e G ) TR
dl dg d3 dl
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Md, — 1)(dy — 1 )
N e = TS D = 1)t
{pr} e

_\/S(dl —1)(d2 —1)(ds — 1) leall® )Id1d2d3

. 23
d1d2d3 F d1d2d3 ( )
where p; in Bloch representation is
—1 - fond ~
o1 = 7 (©h Lo+ @) A + 30N + 30 (5)0 A
didods - — .
+ Z uJ al 0‘2 0411)>‘ 2) Z W a3 a11)>\ ) + Z VJ W agA&QZ)A@)
[e3Xe D) alag asas
+ > (@)ar (F5)as (% )agxg,wugg)
Q103
1
= dydyds (a, + Z W) A © (T, + Z V) AD) ® (1, + Z W) A)). (24)

Note that ||7||xr in Eq.(23) is defined via Eq.(20), which is based on completely orthogonal
Kruskal decomposition of 7.

The Bloch vectors, correlation matrices and correlation tensors of the density matrices
pj7p_]apjap9”;gi7 Q;aTi7Ti/77Ti7Tr;;pr7p37pqare:

For pj,

- - - 1,2 U 1,3 -~ 2,3 -~
rj=1u;,s;=V;, q; =W;, Tj{ ’ }:ujva, Tj{ ’ }:ujij, Tj{ }:vjij
,Tj = flj o {/j o V-\'/j.

/
For pf,
/ ~ Y e 12y _ 55T {13} _ = =T
rj=u;,s;=-v;,q;=-w;, T} —u;v; , T} = —W;w;
/{23} T )~ ~ -

viw; , T'j=1uj0v;jow;.

/!
Forpj,
" ~ "o "o & 1{1,2} ~ =T 1{1,3} =T
rj=-u;,s8;=V;,q ;= i ,Tj W
11{2,3} s T "o _ =
T} —v;jw; , T";=1u;0vV;oWw,

/1
For p7’,
mo_ = m.o_ = "oz m{1,2} _ ~ =T m{1,3} _  ~ =T
rj——uj,s]——v],qj—wj,Tj —u]vj,Tj = —u;w;
m{2,3} s T m.o_ = =
T; Wi, T =100, 0W;
For o;,

e —al | g2 —a® g o, el _ g7 pelisr
T 0, T2 =0.

For ¢f,

¢ — a5 = 3 qf =0, T/ =g
TQ {1,3} 0 T‘Q,{2:3} 0 Tl.) =0

For 7,

—zM ¢y Q= 53 Tﬂ1,2} 0, TT{1 3} _ 5(1)51(3)T

(3
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For 7]

. _551) s =0, g = —51(-3) , Ti‘r'{l,Q} —0, Ti‘r'{l,?)} _ 5§1)é§3)T
733 — 0, 7 =0,

For ,

rf =0, s = ~z(‘2) , df = 5§3) ) Tf’{l’Q} =0, Tiﬂ{173} =0

7728 G007 e

For 7/,

=0, s7 =-a®  qf =-a® T _g 3y
T.ﬂ—/{273} _ z~iz(_2)é§3)T 7 ,Tiﬂ_/ —o.

3

For p,,
ro= o s =0, 4 =0, T =05 v{u,v} € {1,2,3}, T, =0

Ts :0’ Ss = \/ 2(d22—1)||ss|2 y As 207 TS{M’V} 207 V{MaV} C {17253}7 7; =0.

rg=0,8,=0, a=/5cirmd=, T =05 ¥{u v} {1,2,3}, T, =0.

If we write all matrices p , pf , p" 5 0i, 0f, 7, T, T, W pr, ps, pg (as we have
done for p; in Eq.(24)) in the Bloch representation and substitute them in Eq.(23) we get p
as in Eq.(19Db).

To understand this let us see how the first term in Eq.(23) adds up to give the last term
in Eq.(19b). The definition of p;, p}, pf, p}’ (denoting the Bloch vectors by s1, s2, 83, 84, ....)

J
can be summarized in the tabular form

Table 1 Correspondence between the first term in Eq.(23) and the last term in Eq. (19Db).

s1 | sa | sz || sisa | sis3 | sasz | sisass
pi | Uy | Uy | Wy || U0 | Uy | Wy | U0Wy
Rl el B O e R L B
IR R R O K
AR O O T

The contribution of each column to p; + p; + p;-’ + p;-” is zero except the last column
which reproduces the last term in Eq.(19b). We can get the contributions of each term in
11

Pj p;-, p;-’, pj" to their sum by just keeping track of their signs. Thus we only need the
following table (dropping j)

Table 2 Contributions of various terms in p, o/, p”, p"”’ to their sum.

S2 | 53 5182 | S183 | S253 | S§15283

S1
p |+ |+ [+ + | + | + +
A e - + +
Pl - - + - +
A e I | - - +

In the same way, the contributions of the terms involving g, 7, 7 are obtained by using
the table corresponding to table 2 for the bipartite case [9]. o, 7, @ which contain tensors of
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order two correspond to three 2-partite subsystems 12,13 and 23 . The corresponding tables
are

Table 3 Contributions to ¢ + ¢’

S1 S92 S3 5152 S1S83 $283 $182S83
o+ +]0 + 0 0 0
Jl—-]-=10 + 0 0 0

Table 4 Contributions to 7+ 7/

S1 | S2 | S3 5182 | S183 | S253 | S§15283
T + 0 + 0 + 0 0
71101 - 0 + 0 0

Table 5 Contributions to m + 7’

S1 S9 S3 5182 5183 5983 515283
™| 0|+ |+ 0 0 + 0
0| —1-— 0 0 + 0

Tables 2, 3, 4, 5 encode the procedure to construct the possible separable state given in
Eq.(23).
We now note the following points

(i) If the condition (21) holds, then the coefficient of the matrix I4, 4,4, in Eq.(23) is
positive which ensures that the decomposition (23) of p is positive semidefinite.
(ii) By virtue of Eq.(6), all the coherence vectors occurring in p} , p7 , pJ’ ;
0i, O, T, T, Wi, W ;pr, ps, pg belong to the corresponding Bloch

spaces.

By (i) and (ii) we conclude that p , p7 , o}’ 5 0i, 0;, Ti, T/, Ti, T ; pr, Ps s pq cONSti-

tute density matrices. Further, all these matrices satisfy condition (11) so that, via proposition
1, all these matrices correspond to pure separable states, equal to the tensor products of their
reductions. Therefore, they constitute density matrices and they are separable and so must
be p. g

We can generalize proposition 2 to the N-partite case by constructing the tables succes-
sively for N =4,5,6,---. First note that the number of p s in the first term of Eq.(23) lifted
to the N-partite case is 2V 1. For N = 4 we have eight. The corresponding table is
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Table 6 Generalization of Table 1 to N = 4.

S1 59 53 Sq 518592 5183 5154 5983 59854 8354 515283 515254
PO T+l ++[+ + [+ [+ + ]+ ]+ + +
PP+ +-]1-[+1-1-1-1-1H+ — —
PO+ -1+ -1 -1+ -1-1+1- — +
DI+ -1-1+-1T-1+1+1-1- + —
PO —T+]+]-1T-1T-1T+1+1-1- - +
PO -1+ -1+l -1+ -1-1+1- + —
PO -1-1+]+[+ ] -1-1-1-1H+ + +
POl -1-1-1-1+1+1+[+ ] +1+ — —

(Table 6. Continued)

515354 | 525354 | S1525354
+ + +
+ + +
— + +
— + +
+ — +
+ — +
— — +
— — +

We see that the contribution of each column to the sum ), p is zero except the last one
corresponding to the Kruskal decomposition of 7V) occurring in the Bloch representation
of the given state p. For general case of N-partite state we construct the table for p(9, i =

1,2,---,2N~1 a5 follows. First column consists of 2V =2 plus signs followed by 2¥~2 minus
signs. Second column comprises alternating 2V —2 plus and minus signs. Continuing in this
way upto 2V = 1 we get alternating plus and minus signs in the (N — 1)th column. We

set the Nth column to ensure that there are zero or even number of minus signs in each
row. Rest of the columns can be constructed by appropriate multiplications. This procedure
can be checked on table 6. We denote the sequence of such tables for N = 2,3,4,--- as
T, i=2,3,4,---

The tables corresponding to (N —1), (N —2), ..., 2 partite subsystems giving rise to the re-
maining terms in the equation (23), lifted to N-partite case, are obtained from Tn_1,Tn_2, ..., T3, T5,
exactly as described in the proof of proposition 2. In this way we can lift eq.(23) to the N-
partite case, with the total numbers of terms Zii?)l (7)21\”1% + 1. Once this is done, the
rest of the proof for N-partite case follows as in proposition 2. Thus we have

Proposition (2a): If a N-partite state p acting on H = HY @ H2 @ --- @ H, dy <
dy < --- < dy with Bloch representation (8), where all T®) |k > 2 have the completely
orthogonal Kruskal decomposition, satisfy

—1)(d, — 1 .
Z\/ Dllsll + 3 N = 1)) e
{pr} dudly
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8(d, —1)(dy —1)(ds — 1
s )( )( )

d,d,d [T e+ -+
g

{wv,x}

9MIT, (dy,, — 1)
4 Lkl — 1) T{kl,/@,"',’ﬂ\x[}
Hk‘idki || ||KF i

>

{k1,k2, kn }

then p is separable.
For a N-qubit system Theorem 1 and proposition 2a together imply
Corollary 2 : Let a N-qubit state have a Bloch representation

1 k
p=an @iy + D7 taran DAL AR,

o oen
and let the tensor in the second term have the completely orthogonal Kruskal decomposition.
Then p is separable if and only if ||7)||gr < 1. O

5 Examples

We now investigate our separability criterion (18) for mixed states. We consider N-qubit
state

N 1-p
pgzoi)sy = Q—Nl+p|¢><¢|7 0<p<1 (25)

where [¢)) is a N-qubit W state or GHZ state. We test for N = 3,4,5 and 6 qubits. We
get,

Table 7 The values of p above which the states are entangled.
|GHZ) W) N

D> D>
0.35355 | 0.3068
0.2 0.3018

0.17675 | 0.30225
0.1112 | 0.3045

H | o o | w

Entanglement in various partitions of W noisy state

q.(25) is obtained by using (N —n)
qubit reduced W noisy state

N 1 N —
p;ozs;)(W)_zN nIN n + p|ON n><0N n|+

Lol W) (Wa—al  (26)

For N =6 and n = 2 we found that the state is entangled for 0.491 < p < 1.
For N qutrits (d = 3) we test for

N I—p
Proty = =g 1 + Pl (27)
where |¢) = % 22:1 |kkk ...) is the maximally entangled state for NV qutrits.

For N =3 and N = 4 (qutrits) the state p(N> in Eq. (27) is entangled for

noisy

02285 <p<1, N=3
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0.2162<p<1, N=4 (28)
The state

1
proisy = —570 1 + U)W (29)

where [¢) = £(|112) +]123) +(214) 4 |234)) in the space C* ® C*® C* is found to be entangled
for 0.24152 < p < 1.

All of the above examples involve NPT states. Now we apply our criterion to PPT
entangled states for which PPT criterion is not available.

We apply our criterion to the three qutrit bound entangled state considered by L. Clarisse
and P. Wocjan [27], given by p. ® [1)(1)| where p. is the chess-board state given in [27]
and |¢) is an uncorrelated ancilla. Our criterion detects the entanglement of this state as
||[7(?)|| = 3.75 > 3. Further, the four qutrit state p = (1 — 8)pe ® pe + B1/81 considered by
the same authors yields entanglement for 0 < § < 0.2, after tracing out either subsystems 1
and 2 or subsystems 3 and 4.

Now we consider the important example of the Smolin state [28,29], which is a four qubit
bound entangled state given by

1t , . ,
PABED = 7 D [Whp)(Wanl @ Wep)(Wep] (30)
i=1

where [¢% 5) and Y% ) are the Bell states. p%%o¢% has the Bloch representation p4osk =

= (1% + Zle o?*) so that Corollary 2 applies (note that the requirement of completely
orthogonal Kruskal decomposition is trivially satisfied). We find for this state ||7™||xr =
3 > 1 confirming its entanglement.

Our last example is the four qubit bound entangled state due to W. Diir [30,31]

4

oPE = (W) + 5 S (P + )

i=1

where |¢) is a 4-party (GHZ) state , P; is the projector onto the state |¢;), which is a product
state equal to |1) for party i and |0) for the rest , and P; is obtained from P; by replacing
all zeros by ones and vice versa. We get ||7¥||gr = 1.4 > 1 confirming the entanglement of
this state.

6 Summary

In conclusion we have presented a new criterion for separability of N partite quantum states
based on the Bloch representation of states. This criterion is quite general, as it applies to
all N-partite quantum states living in H = H% ® H% @ --- ® H, where, in general, the
Hilbert space dimensions of various parts are not equal. Most of the previous such criteria had
restricted domain of applicability like the states supported on symmetric subspace [4] or, are,
in general, restricted to bipartite case. In proposition 2 we have given a sufficient condition
for the separability of a tripartite state under the condition that the tensors occurring in the
Bloch representation of the state have completely orthogonal Kruskal decomposition. This
result can be generalized to the N-partite case. Via corollary 2 we give a necessary an sufficient
condition to test the separability of a class of N-qubit states which includes N-qubit PPT
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states. Smolin state (30) is an important example in this class. The key idea in our work is
the matrization of multidimensional tensors, in particular, Kruskal decomposition. We have
defined a new tensor norm as the maximum of the KF norms of all the matrix unfoldings of
a tensor, which is easily computed. We have also shown that this norm can be calculated
even more efficiently for a N-qudit state supported in the symmetric subspace. It will be
interesting to seek a relation of this tensor norm with other entanglement measures. Again,
the entanglement measures like concurrence known so far are successfully applied to pure
states, bipartite or multipartite, while our tensor norm can be easily computed for arbitrary
N-partite quantum state. Finally, our result on full separability (proposition 1) of N-partite
pure states can be easily moulded for the k-separability of an N-partite pure state. In fact it
is straightforward to construct an algorithm giving the complete factorization of the N-partite
pure state (see the paragraph following the proof of proposition 1). It is also easy to see that
theorem 1 can be applied to any partition of a N-partite system via the Bloch representation
in terms of the generators of the appropriate SU groups. Most important is the observation
that all the tensors in the Bloch representation can be computed using the measured values of
the basis operators {\, } so that our detectiblity criterion is experimentally implementable.
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