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We study the complexity of the Local Hamiltonian Problem (denoted as LH-MIN) in the
special case when a Hamiltonian obeys the condition that all off-diagonal matrix elements
in the standard basis are real and non-positive. We will call such Hamiltonians, which are
common in the natural world, stoquastic. An equivalent characterization of stoquastic
Hamiltonians is that they have an entry-wise non-negative Gibbs density matrix for
any temperature. We prove that LH-MIN for stoquastic Hamiltonians belongs to the
complexity class AM — a probabilistic version of NP with two rounds of communication
between the prover and the verifier. We also show that 2-local stoquastic LH-MIN is hard
for the class MA. With the additional promise of having a polynomial spectral gap, we
show that stoquastic LH-MIN belongs to the class PostBPP=BPPpath— a generalization
of BPP in which a post-selective readout is allowed. This last result also shows that any
problem solved by adiabatic quantum computation using stoquastic Hamiltonians is in
PostBPP.
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1 Introduction

For the last few years significant progress has been made in understanding the computational
complexity of spin Hamiltonian problems. This area of research is of great importance for
physics, since most strongly interacting quantum many-body systems can not be fully analyzed
by analytical methods; thus, we can only hope to understand their properties from numerical
simulations. A system is efficiently simulatable if the computational resources one needs for
simulation grow only polynomially with the number of spins in the system. For example,
one-dimensional spin chains with a small amount of entanglement can be simulated by the
DMRG method and its recent generalizations to matrix product states [1, 2, 3]. It has been
proposed that systems of interacting bosons, like those described by the bosonic Hubbard
model, can be simulated using the Green’s function Monte-Carlo technique, see [4, 5]. It is
believed that a quantum computer will offer more possibilities to simulate quantum systems.
Understanding the computational complexity of spin Hamiltonian problems might help to
identify classes of Hamiltonians for which efficient classical or quantum simulation algorithms
could be developed.

We shall consider the Local Hamiltonian Problem defined in [6, 7]. A k-local n-qubit
Hamiltonian is a Hermitian operator H acting on (C2)⊗n that can be expressed as a sum of
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k-qubit interactions: H =
∑

S HS . Here S ⊆ {1, . . . , n} runs over all subsets of qubits of
cardinality k and HS may be an arbitrary Hermitian operator on S tensored with the identity
on all qubits from {1, . . . , n}\S. The locality of interactions in the definition above can be
regarded as an algebraic locality. It should not be confused with a geometric locality which
can be defined only if the set of qubits is endowed with a metric or a graph structure. A
natural unit of energy set by H is given by the maximum operator norm of the interactions,
J = maxS ||HS ||. Let λ(H) be the smallest eigenvalue of H , i.e. the ground-state energy.
Suppose we are promised that either λ(H) ≤ 0 or λ(H) ≥ δ, where δ is at least J

poly(n) . The
Local Hamiltonian Problem is formulated as a decision problem: given the data (n, {HS} , δ),
one has to decide whether λ(H) ≤ 0. A more formal definition is given in Section 2.1. We
will refer to the Local Hamiltonian problem as LH-MIN indicating that it is the problem of
estimating the minimum eigenvalue of H .

If one considers a generic spin Hamiltonian H that lacks any additional structure except for
the locality of interactions, it is extremely unlikely that LH-MIN can be solved in polynomial
time (even on a quantum computer). Indeed, it was shown by Kitaev [6] that LH-MIN is a
complete problem in the complexity class QMA — the quantum analogue of NP. This QMA-
completeness result applies even to Hamiltonians with 2-qubit nearest-neighbor interactions
on 2D square lattice [7, 8]. Therefore, instead of looking for efficient algorithms for evaluating
the ground-state energy, we have to focus on efficient proving protocols by which the prover
(a party with unlimited computational power) can prove an upper bound on the ground-state
energy to the verifier (a party that has polynomial resources).

By definition, the inclusion LH-MIN ∈ QMA means that the upper bound λ(H) ≤ 0 has
an efficient quantum proving protocol with one round of communication between the prover
and the verifier, see [9]. One of the goals of the present paper is to argue that there exists
a large subclass of quantum local Hamiltonians for which LH-MIN has an efficient classical
proving protocol with a constant number of communication rounds. This subclass involves all
local spin Hamiltonians whose matrix elements in the standard basis of n qubits satisfy the
condition that all off-diagonal matrix elements are real and non-positive. A nice property of
such Hamiltonians is that the corresponding Gibbs density matrix ρ = e−β H/ Tr

(
e−β H

)
has

non-negative matrix elements in the standard basis for any β ≥ 0. From this non-negativity
property of the Gibbs matrix it follows by simple linear algebra arguments that the ground-
state |Ψ0〉 of H has non-negative real coefficients, i.e. |Ψ0〉 =

∑
i αi|i〉 where αi ≥ 0. Thus

one can associate a probability distribution with the ground-state, P(i) = αi∑
i αi

. If one is able
to sample efficiently from this distribution one can determine λ(H) (for details see Section
6). Because of the relation to stochastic processes we have adopted the term stoquastic to
refer to these Hamiltonians. In the ‘standard’ basis, these Hamiltonians have non-positive
off-diagonal matrix elements. This standard basis for local Hamiltonians is typically the local
spin-z basis, but one can of course allow for local unitary basis changes without changing the
complexity of the problem.

Clearly, any classical spin Hamiltonian, i.e. a Hamiltonian which is diagonal in the stan-
dard basis, falls into the stoquastic class. Here are some 1-local and 2-local stoquastic operator
on qubits:

−X, −X ⊗ |z〉〈z| for z ∈ {0, 1}, −p X ⊗ X − q Y ⊗ Y for any 0 ≤ q ≤ p.
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It can be shown that all 2-local stoquastic Hamiltonians on qubits can be generated by taking
convex linear combinations of these stoquastic 2-local interactions and all classical 2-local
interactions (composed solely from tensor products of Z) a.

Stoquastic Hamiltonians are very common in physics. Among spin-1/2 models, the well-
studied ferromagnetic Heisenberg models and the quantum transverse Ising model (considered
for example by Farhi [10] in the context of adiabatic quantum computation) are stoquastic.
Another example is a Heisenberg anti-ferromagnet on a cubic lattice (or more generally, on a
bipartite graph):

H =
∑
(j,k)

Xj ⊗ Xk + Yj ⊗ Yk + Zj ⊗ Zk.

Here the qubits live at vertices of the lattice and the interactions couple nearest-neighbors on
the lattice. Although H is not directly stoquastic, it can be simply made so by a local change
of basis. Indeed, if a lattice admits a bi-coloring, one can apply Z to every white vertex to
flip the sign of X ⊗ X and Y ⊗ Y b. This produces a stoquastic Hamiltonian.

Although in this paper we focus only on spin-1/2 Hamiltonians, the stoquastic class
naturally extends to systems of qudits, or even infinite-dimensional particles (e.g. har-
monic oscillators). For example, a system of spin-less interacting bosons is described (in
the first quantization formalism) by a Hamiltonian H = K + U , where K = − 1

2m

∑
a Δa

is a kinetic energy (when the vector potential is zero) and U is a potential energy. Off-
diagonal matrix elements of H come only from K. The discretized version of the Laplacian,
Δa = d2

dx2
a

=
∑

j |j + 1〉〈j| + |j〉〈j + 1| − 2|j〉〈j| shows that all off-diagonal matrix elements
of K are non-positive. Outstanding examples in this category are bosonic Bose-Einstein con-
densates and Helium-4 [11]; there is a general belief in the computational physics community
that the ground-state properties of such systems are “easy” to simulate, although no rigorous
basis for this opinion seems to exist presently.

All Josephson-junction qubit systems of the ‘flux’-type are stoquastic. The quantum-
mechanics of any such system is that of a collection of distinguishable (rather than bosonic or
fermionic) particles with a Hamiltonian K + U as just discussed [12]. It was this observation
that initiated the present investigation, and indicated that flux qubits would not be the most
general choice for implementing adiabatic quantum computation.

Other stoquastic Hamiltonians are identified by noting that bosonic creation/annihilation
operators â |j〉 =

√
j |j − 1〉 and â† |j〉 =

√
j + 1 |j + 1〉 have non-negative matrix elements in

the occupation number basis. Therefore a hopping operator −â†
j âk − â†

k âj , and the entire
class of bosonic Hubbard models, belongs to the stoquastic class. Among systems involving
both spin-1/2 and bosonic degrees of freedom, the Jaynes-Cummings model [13], and the spin-
boson model [14], are also stoquastic when suitable phases are associated with the vectors in
the standard basis.

Naturally, not all Hamiltonians in physics are stoquastic. Many fermionic systems are
non-stoquastic; the antisymmetry of the (first-quantized) wavefunction causes it to have sign
changes in the position basis. In the occupation-number (second-quantized) basis, terms of
both signs typically occur as off-diagonal matrix elements on account of the anticommutation

aIt can be shown that there are 3-local Hamiltonians on qubits which are stoquastic, but not termwise
stoquastic, i.e. they cannot be written as a sum over stoquastic terms that acts on 3 qubits at the time.
bThe new basis coincides with the original one up to phases of the basis vectors.
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relations of the creation and annihilation operators. Special fermionic systems, like the spin
systems mentioned above, can avoid this ‘sign problem’ but generic fermionic systems do not.
Hamiltonians of charged (bosonic or fermionic) particles in the presence of a magnetic field
will also not be stoquastic (the Hamiltonian, and the ground-state are typically complex).

Stoquastic Hamiltonians have also featured in recent work in quantum information theory.
In Ref. [15] they are used to define an adiabatic path algorithm that is derived from a classical
reversible Markov chain and in Refs. [16, 17] they are similarly defined on the basis of a
Monte-Carlo process that generates the equilibrium distribution of some classical Hamiltonian.
In these constructions, there is a direct connection between the rapid convergence of the
Markov chain and the gap of the resulting stoquastic Hamiltonian. In some sense these
constructions, and our results, are rigorous expressions and examples of the physics folklore
theorem which says that one can map ground-state problems of d-dimensional Hamiltonians
onto classical statistical problems in d+1-dimensions [18]. In this paper we show in fact that
if some rigorously defined version of this folklore statement were true than it would have the
complexity-theoretic consequence that QMA ⊆ AM, which we consider unlikely. Thus as it
stands, it is only the class of stoquastic Hamiltonians that allow for this quantum-to-classical
mapping.

2 Summary of Main Results

Let us review our main results. Obviously, restricting ourselves to a subclass of local Hamil-
tonians can only reduce the complexity of LH-MIN which means that stoquastic LH-MIN
belongs to the class QMA. On the other hand, stoquastic LH-MIN is NP-hard, since it in-
cludes all classical local Hamiltonians. Indeed, it was proved by Barahona [19] that finding the
ground-state energy of the Ising model on the 3D cubic lattice with couplings J ∈ {−1, 0, +1}
is a NP-complete problem.

Firstly, we prove that stoquastic LH-MIN belongs to the complexity class AM. AM is a
probabilistic analogue of NP with two rounds of communication between the prover and the
verifier, see Section 3. The proof proceeds by mapping stoquastic LH-MIN to the Approximate
Set Size problem. We consider a “partition function” Z = Tr (GL), where G = I − β H is a
non-negative matrix whose largest eigenvalue is μ = 1 − β λ(H). If L is a sufficiently large,
Z ≈ μL and thus Z provides enough information about λ(H). Then we convert G into a sum
of 0, 1-matrices thus expressing Z as a sum of a Boolean function over all input arguments.
Evaluating this sum is equivalent to the Approximate Set Size problem. The latter problem
admits a two-round interactive proof based on Carter-Wegman universal hashing, see [20, 21].
It should be noted that AM also contains a generalization of stoquastic LH-MIN in which G

may be an arbitrary non-negative matrix specified by a black box. In a sequel to this paper
[22] we will strengthen this result and prove that stoquastic LH-MIN is in a class called SBP.

Secondly, we show that the 6-local stoquastic Hamiltonian problem is hard for the class
MA — the probabilistic analogue of NP(see Section 4 for details). The main idea of the proof is
that any classical probabilistic machine can be simulated by a classical circuit C with reversible
gates whose input include ancillary random bits. Such a circuit can be transformed into a
coherent form UC by replacing each gate with a unitary operator (which just permutes basis
vectors) and replacing each random bit with a coherent superposition (|0〉+ |1〉)/√2. Making
use of the standard clock Hamiltonian construction [6] we can define a local Hamiltonian H
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whose ground-state energy is related to the maximum acceptance probability of the quantum
circuit UC . The condition that UC is composed only of classical gates guarantees that H is an
stoquastic Hamiltonian. We then prove that allowing Merlin to feed quantum states into the
verifying circuit does not give him any additional cheating power as compared to the classical
case.

Thirdly, we prove that for any constant k k-local stoquastic LH-MIN can be reduced
in polynomial time to 2-local stoquastic LH-MIN. The proof is based on perturbation theory
gadgets introduced in [7]. We construct a new three-qubit gadget that involves only stoquastic
interactions, see Section 5 for details. A corollary of this result is that 2-local stoquastic
LH-MIN is hard for MA. The fact that the complexity of k-local stoquastic LH-MIN does
not depend upon k indicates that this problem might be complete for some well-defined
computational class, even though the nature of this class remains elusive to us.

Finally, we consider a special case of stoquastic LH-MIN in which the Hamiltonian has a
polynomial spectral gap (the difference between the smallest and the second smallest eigen-
value is 1/poly(n) for some polynomial in n), see Section 6 for details. In this case we prove
that stoquastic LH-MIN belongs to the class PostBPP — the class of languages recognizable
by poly-time probabilistic Turing machines which produce the correct answer (with constant
error probability) conditioned on the value of a ‘success flag’ bit (the success probability may
be exponentially small though). The proof relies on the ideas borrowed from the Green’s
Function Quantum Monte Carlo method, see [5] and we show that post-selected classical
computation gives us the power to sample from the ground-state distribution. This last re-
sult also implies that any decision problem solved by an adiabatic quantum algorithm that
uses only stoquastic Hamiltonians is contained in PostBPP.

2.1 Definition of the Local Hamiltonian Problem

We shall denote the smallest eigenvalue of a Hamiltonian H by λ(H).
Definition 1 For any integer k, polynomials p1(n) and p2(n) define a set Ω(k, p1, p2) involv-
ing all k-local n-qubit Hamiltonians H =

∑
S HS such that for any fixed k ≤ n < ∞ one

has

• ||HS || ≤ p1(n) for all subsets S ⊆ {1, . . . , n}, |S| = k

• Either λ(H) ≤ 0 or λ(H) ≥ 1/p2(n)

Suppose we are given a Hamiltonian H ∈ Ω(k, p1, p2) and our goal is to decide whether
λ(H) ≤ 0. Clearly, the correct decision can be made even if the interactions HS are specified
only up to some precision δ polynomial in 1/n. Indeed, if Hamiltonians H and H ′ are ε-
close in the operator norm, ||H − H ′|| < ε, then their ground-state energies are also ε-close,
|λ(H)− λ(H ′)| < ε (see for example [23]). Thus, although Ω(k, p1, p2) is a continuum set, we
can safely assume that any H ∈ Ω(k, p1, p2) is described by poly(n) bits. In that sense we
can regard Ω(k, p1, p2) as a set of finite binary strings.

Definition 2 (Local Hamiltonian Problem (LH-MIN)) Given a description of a Hamil-
tonian H ∈ Ω(k, p1, p2), decide whether λ(H) ≤ 0.
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3 Stoquastic LH-MIN in AM

The complexity class AM was introduced originally by Babai [24] as a class of decision prob-
lems that possess a randomized interactive proof with two-way communication between the
prover (Merlin) having unlimited computational resources and the verifier (Arthur) capable
of doing only polynomial-time computation. It is a remarkable property of the class AM that
any proving protocol with constant number of communication roundsccan be simulated by a
protocol with just two rounds [24], such that the first message is sent from Arthur to Merlin,
and the second one backwards.

We shall mostly consider promise problems. Let Σ = {0, 1} and let Σn be a set of n-bit
strings and Σ∗ be a set of all finite binary strings. A promise problem can be regarded as a
pair of non-overlapping subsets of binary strings Lyes, Lno ⊆ Σ∗ corresponding to positive and
negative instances. An Arthur-Merlin proving protocol for a membership x ∈ Lyes involves
Arthur’s question q ∈ Σp(|x|) and Merlin’s response r ∈ Σp(|x|), where p is a fixed polynomial
and |x| is the number of bits in x. Arthur’s question is just a random bit string drawn from
the uniform distribution. The response r may be an arbitrary function of x and q. Once the
communication is completed, Arthur has at his disposal all the data x, q, r. Then he runs a
BPP test V (x, q, r) that outputs either 1 (accept the proof) or 0 (reject the proof).

A proving protocol must obey soundness and completeness properties. Completeness
means that for positive instances, x ∈ Lyes, Merlin has a strategy (i.e. a response functions
r(x, q)) for which Arthur’s acceptance probability is close to 1. Soundness means that for
negative instances, x ∈ Lno, Arthur’s acceptance probability is close to 0 for all possible
Merlin’s strategies. Here is a formal definitiond:
Definition 3 A promise problem L = Lyes∪Lno ⊆ Σ∗ belongs to the class AM iff there exists
a polynomial p and a BPP predicate V (x, q, r) defined for any q, r ∈ Σp(|x|), such that

x ∈ Lyes =⇒ ∃ r(x, q) P[V (x, q, r(x, q)) = 1] ≥ 2/3

x ∈ Lno =⇒ ∀ r(x, q) P[V (x, q, r(x, q)) = 1] ≤ 1/3 (1)

where q ∈ Σp(|x|) is a uniformly distributed random bit string.
The main goal of this section is to show that LH-MIN for stoquastic Hamiltonians belongs

to the class AM. Moreover, we will prove that evaluation of the largest eigenvalue of any n-
qubit non-negative matrix whose matrix elements are efficiently computable is a problem that
naturally sits in AM. This result applies even to matrices that lack any additional structure
like locality or sparseness. To emphasize this point, we will formulate all results in terms of
black box matrices. A black box matrix G of size 2n × 2n is an oracle that takes as input two
binary strings x, y ∈ Σn and returns a matrix element Gx,y = 〈x|G|y〉 written in the binary
form. We shall always assume that any matrix element Gx,y has at most poly(n) binary digits
(see the remark after Definition 1). In the case when G is specified by a local Hamiltonian,
there is no need to query the oracle, since G has a concise representation and we can compute
Gx,y in a time poly(n).

Let G be a black box non-negative matrix and let μ(G) be the largest eigenvalue of G.
To cast the evaluation of μ(G) into a decision problem we shall introduce two thresholds: an
cA communication round involves a single message sent from one party to the other.
dIt is known that completeness with a constant error probability is equivalent to perfect completeness, see
[25].
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upper threshold μ+ and a lower threshold μ−, such that 0 < μ− < μ+ and the separation
between μ− and μ+ is large enough.

Definition 4 For any polynomial p(n) define a set Λ(p) consisting of all 4-tuples (n, G, μ+, μ−)
such that n is an integer 1 ≤ n < ∞, μ± are positive numbers such that log(μ+)− log(μ−) ≥
1/p(n), and G is a 2n × 2n real symmetric matrix such that

• 0 ≤ Gx,y ≤ 1 for all x, y ∈ Σn.

• Either μ(G) ≥ μ+ or μ(G) ≤ μ−.

Suppose we are given a 4-tuple (n, G, μ+, μ−) ∈ Λ(p) and our goal is to decide whether
μ(G) ≥ μ+. According to the Weyl perturbation theorem (see the remark after Definition 1),
the correct decision can be made even if the matrix elements Gx,y and the numbers μ± are
specified only up to some precision δ polynomial in 2−n. Indeed, if G and G′ are two 2n × 2n

matrices such that matrix elements of G and G′ are ε-close, then |μ(G)−μ(G′)| ≤ ||G−G′|| ≤
2nε. Thus, although Λ(p) is a continuum set, we can safely assume that the numbers μ± and
any matrix element Gx,y are described by poly(n) bits.

Definition 5 (Stoquastic Largest Eigenvalue Problem) Given is a 4-tuple (n, G, μ+, μ−) ∈
Λ(p) where G is specified by a black box. Decide whether μ(G) ≥ μ+.

Remark: One can easily see that stoquastic LH-MIN is a special case of the problem above.
Indeed, if H ∈ Ω(k, p1, p2) is a k-local stoquastic Hamiltonian on n-qubits, see Definitions 1,2,
one can define a non-negative matrix G = (1/2)(I−H/C), where C is an efficiently computable
polynomial upper bound on the norm ‖H‖, for example, C =

∑
S ‖HS‖. Off-diagonal matrix

elements of G are non-negative because H is stoquastic. Diagonal matrix elements are non-
negative because I−H/C is a positive semi-definite operator. Since ‖G‖ ≤ 1, we conclude that
0 ≤ Gx,y ≤ 1. One can also define the thresholds μ+ = 1/2 and μ− = (1/2)(1 − 1/Cp2(n)).
Clearly, the resulting 4-tuple (n, G, μ+, μ−) ∈ Λ(p) for a proper choice of the polynomial p.

Theorem 6 Stoquastic Largest Eigenvalue Problem belongs to the class AM.

Proof: Consider any 4-tuple (n, G, μ+, μ−) ∈ Λ(p1) where p1 is a fixed polynomial. In-
stead of proving the lower bound μ(G) ≥ μ+ Merlin will actually try to prove a lower bound
Tr(GL) ≥ (μ+)L where L is a large even integer. Note that

μ(G) ≥ μ+ =⇒ Tr(GL) ≥ μL
+

μ(G) ≤ μ− =⇒ Tr(GL) ≤ 2n μL
−.

The separation between the value of the trace for positive and negative instances is thus given
by

Tr(GL)yes
Tr(GL)no

≥ 2
L

p1(n) −n
.

If one chooses L = 2np1(n), the separation is 2n.
The next step is to represent the evaluation of the trace Tr(GL) as a counting problem.

As was mentioned after Definition 4, we can assume that the matrix elements Gx,y have at
most p2(n) digits, where p2(n) is a polynomial. In order to define the counting problem, we
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shall represent G as an average over an ensemble of 0, 1-matrices G(t), where t is a random
uniformly distributed binary string t ∈ Σp2(n), that is

G =
1

2m

∑
t∈Σm

G(t), m ≡ p2(n). (2)

Any member of the ensemble G(t) is a binary matrix, that is, matrix elements of G(t) take
only values 0 and 1. This representation is efficient in the sense that for any fixed strings
x, y, t one can find a matrix element 〈x|G(t)|y〉 by making one query to the black box for G

and performing a polynomial-time computation. Details of the representation Eq. (2) are not
essential for the analysis of the proving protocol, so we postpone its proof until Lemma 1.
Now we have

Tr(GL) =
1

2m L

∑
t1,...,tL

Tr (G(t1) · · ·G(tL)) ≡ 1
2m L

∑
s

F (s),

where s = (t1, . . . , tL, x1, . . . , xL) is a binary string of length (m + n)L and F (s) is a Boolean
function

F (s) = 〈x1|G(t1)|x2〉 〈x2|G(t2)|x3〉 · · · 〈xL|G(tL)|x1〉 ∈ {0, 1}.
Evaluation of F (s) requires L black box queries and polynomial-time computation. Summa-
rizing, the value of Tr(GL) is proportional to a cardinality of a set Ω ⊆ Σ(m+n)L supporting
the function F ,

Tr (GL) =
1

2mL
|Ω|, Ω = {s ∈ Σ(m+n)L : F (s) = 1},

and membership s ∈ Ω can be efficiently verified. Note that there is large enough separation
between the cardinality of Ω for positive and negative instances:

μ(G) ≥ μ+ =⇒ |Ω| ≥ LARGE

μ(G) ≤ μ− =⇒ |Ω| < SMALL,

where
LARGE = 2L(p2(n)+log μ+) and SMALL = 2L(p2(n)+log μ−+ n

L ), (3)

such that
LARGE = 2n · SMALL if L = 2np1(n). (4)

Thus it suffices for Merlin to prove a lower bound |Ω| ≥ LARGE.
We can now invoke the Goldwasser and Sipser approximate counting protocol [20] based

on Carter-Wegman universal hashing functions [21]. Recall that Ω is a set of k-bit strings,
where k = L(n + p2(n)). The main idea of [20] is that Arthur can compress k-bit strings to
shorter b-bit strings using randomly chosen linear hash functions. One can choose parameters
of the hashing such that the image h(Ω) ⊆ Σb is sufficiently dense (for positive instances).
Arthur estimates the volume of h(Ω) using the standard Monte-Carlo method: he generates a
large list of random b-bit strings and estimates the fraction of strings that belong to h(Ω). At
this stage he needs Merlin’s help, since a membership in the set h(Ω) is no longer efficiently
verifiable because each string in Σb may have exponentially large number of pre-images. On
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the other hand, Merlin can prove a membership in the set h(Ω) by sending Arthur any of
pre-images. In Appendix 1 we give some details of the parameters of the hash functions.

Now we prove the Lemma underlying Eq. (2)

Lemma 1 Let Im = {2−m p}p=0,...,2m−1 be the set of all real numbers between 0 and 1 having
at most m binary digits. Let g : Σn → Im be a function specified by a black box. Then there
exists a Boolean function f : Σn × Σm → Σ such that

g(x) =
1

2m

∑
t∈Σm

f(x, t) for all x ∈ Σn.

Besides, f(x, t) can be represented by a circuit of length poly(n + m) making one query to the
black box.
Proof. Let dj(x) be the j-th binary digit of g(x), that is

g(x) =
m∑

j=1

1
2j

dj(x).

Define m auxiliary Boolean functions

f1(x, t) = d1(x) ∧ t1,

f2(x, t) = d2(x) ∧ (¬ t1) ∧ t2,

f3(x, t) = d3(x) ∧ (¬ t1) ∧ (¬ t2) ∧ t3,

· · ·
fm(x, t) = dm(x) ∧ (¬ t1) ∧ . . . ∧ (¬ tm−1) ∧ tm.

Here tj is the j-th bit of t. Clearly,

1
2m

∑
t∈Σm

fj(x, t) =
1
2j

dj(x), j = 1, . . . , m.

By definition, the functions fj and fk are mutually exclusive for j �= k. Therefore

m∑
j=1

fj = f1 ∨ f2 ∨ . . . ∨ fm.

Thus we can define the desired function f(x, t) as f = f1 ∨ f2 ∨ . . . ∨ fm. �.
Comment: The representation Eq. (2) corresponds to choosing g(x) = 〈y|G|z〉, where x is

a concatenation of the strings y and z.

4 Stoquastic LH-MIN is MA-hard

In order to show that stoquastic LH-MIN is MA-hard we will view Arthur’s BPP circuit as a
quantum circuit. This quantum circuit will take as input: a quantum state |ξ〉 from Merlin, a
set of |+〉 states (to simulate randomness) and some ancillas set to |0〉. The quantum circuit
consists only of classical reversible gates and at the end Arthur measures a single qubit qout

in the z-basis. He obtains 1 with high probability if the answer to his decision problem is
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yes; otherwise he obtains 0 with high probability. If Merlin can only provide a classical state
it is clear that the class of decision problems that can be solved this way is equal to MA.
Before we argue that this new class of decision problems is equal to MA, let us give the proper
definition.

Definition 7 (MAq) A promise problem Lyes, Lno ⊆ Σ∗ belongs to the class MAq iff there
exists a polynomial p and a classical reversible circuit Vx that takes an input in (C2)⊗p(|x|)

and is followed by a single qubit measurement, such that

x ∈ Lyes =⇒ ∃ |ξ〉 P
[
Vx(|00 . . . 0〉, |+〉⊗r, |ξ〉) = 1

] ≥ 2/3

x ∈ Lno =⇒ ∀ |ξ〉 P
[
Vx(|00 . . . 0〉, |+〉⊗r, |ξ〉) = 1

] ≤ 1/3. (5)

Lemma 2 MA = MAq.

Proof. MAq ⊆ MA: Let (Lyes, Lno) be a promise problem in MAq. If x ∈ Lyes we
have P(Vx(|+〉⊗r, |00 . . . 0〉, |ξ〉) = 1) ≥ 2/3. Let Π1 = |1〉〈1|qout . We can write the success
probability as

P(1) = 〈ξ|M |ξ〉 ≥ 2/3, (6)

where M = 〈00 . . . 0, +⊗r|V T
x Π1Vx|00 . . . 0, +⊗r〉. We note that the observable M is diagonal

in the standard basis, i.e. M = 1
2r

∑
z az|z〉〈z| where az is a non-negative integer. This implies

that λmax(M) = maxξ〈ξ|M |ξ〉 is achieved for some bit string |ξ〉 = zmax. Thus there exists
a bit-string for which P(1) ≥ 2/3 and this bit-string will be the input for the MA-verifier. If
x ∈ Lno, we have that ∀ξ P(1) = 〈ξ|M |ξ〉 ≤ 1/3, thus this also holds for the subset of all
classical inputs from Merlin.
MA ⊆ MAq: let a decision problem be in MA. If x ∈ Lyes, the classical witness can be
used as input to the MAq-verifier and gives P(1) ≥ 2/3. If x ∈ Lno, we need to argue that
Merlin cannot cheat by giving Arthur a quantum state. Since the problem is in MA, we
have that ∀z P(1) = 〈z|M |z〉 ≤ 1/3. Since M is diagonal in the z-basis, this implies that
λmax(M) ≤ 1/3 and thus there is no quantum state with expectation value higher than 1/3
with respect to M . �.

Since Arthur’s verifying circuit in MAq is a quantum circuit, one can apply Kitaev’s
circuit-to-Hamiltonian construction to MAq and prove that the ground-state energy problem
for a 6-local stoquastic Hamiltonian is MAq=MA-hard.

Lemma 3 6-local stoquastic LH-MIN is MA-hard.

Proof. Let Vx be Arthur’s verifying circuit that has an input of r qubits in the state |+〉
(labeled as coin-qubits), k ancilla qubits in the state |00 . . . 0〉 (labeled as anc-qubits) and a
quantum state |ξ〉 with s qubits. Let Vx have a total of T reversible classical gates, denoted
as RT . . . R2R1. W.l.o.g. we can assume that each gate is a Toffoli gate, since these gates
are universal for classical reversible computation. We follow the Hamiltonian construction in
[6] (see also [26]). Let H(5) = Hin + Hout + Hprop + Hclock be a Hamiltonian acting on T
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clock-qubits labeled by t = 1 . . . T and n = r + k + s computational qubits. We have

Hin =
r∑

i=1

|−〉〈−|coin,i ⊗ |0〉〈0|t=1 +
k∑

j=1

|1〉〈1|anc,j ⊗ |0〉〈0|t=1,

Hout = |0〉〈0|qout ⊗ |1〉〈1|t=T ,

Hclock =
T∑

t=1

|01〉〈01|t−1,t. (7)

Furthermore, Hprop =
∑T

t=1 Hprop(t) with

Hevolv(1) = |00〉〈00|1,2 + |10〉〈10|1,2 − R1 ⊗ (|10〉〈00|1,2 + |00〉〈10|1,2),

Hevolv(t) = |100〉〈100|t−1,t,t+1 + |110〉〈110|t−1,t,t+1

−Rt ⊗ (|110〉〈100|t−1,t,t+1 + |100〉〈110|t−1,t,t+1), 1 < t < T

Hevolv(T ) = |10〉〈10|T−1,T + |11〉〈11|T−1,T − RT ⊗ (|11〉〈10|T−1,T + |10〉〈11|T−1,T ). (8)

It was proved in [6] that if there exists a |ξ〉 such that Vx outputs 1 with probability larger
than or equal to 1 − ε then λ(H(5)) ≤ ε. If on the other hand for all |ξ〉 Vx outputs 1
with probability smaller or equal to ε, then λ(H(5)) ≥ c(1−ε)

T 3 for some constant c. Thus the
ground-state energy problem of this Hamiltonian is MAq-hard. We need only to verify that
this Hamiltonian H(5) is of the stoquastic-type. The only terms that are off-diagonal in the
computational basis can be found in Hprop and Hin. Inspection of these terms confirms that
the Hamiltonian is stoquastic. �.

Remarks: One may wonder whether one can extend the class MAq to a class in which
Arthur’s verification circuit is more quantum, while the corresponding Hamiltonian is still
stoquastic. One possibility is to allow for a measurement in the x-basis (instead of the z-
basis) at the end, see [22].

5 Perturbation Theory Gadgets for Stoquastic Hamiltonians

The goal of this section is to understand whether the complexity of stoquastic k-local LH-MIN
depends upon k — the number of qubits involved in the interactions. We will answer this
question for Hamiltonians that are termwise-stoquastic, i.e., those having a decomposition
H =

∑
S HS , where S runs over subsets of k qubits and HS is a stoquastic Hamiltonian

acting on the subset S. Direct inspection shows that all examples of stoquastic Hamiltonians
encountered in the paper are also termwise-stoquastic and for 2-local Hamiltonians these
notions coincide.

Theorem 8 Let k be any constant. Any instance of k-local termwise stoquastic LH-MIN
can be reduced in polynomial time to 2-local stoquastic LH-MIN.

Throughout this section we will use the word stoquastic to refer to Hamiltonians that are
termwise-stoquastic. Our main technical tool is the perturbation theory gadgets developed
in [7] and extended in [8]. The proof can be organized in three parts. Firstly we reduce
k-local interactions to 3-local interactions using a variant of the subdivision gadget from [8].
This gadget only requires perturbation theory to second-order. The second step is to bring a
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stoquastic 3-local Hamiltonian into a special form

H = Helse −
∑

(j,k,l)

hjkl Xj Xk Xl, (9)

where Helse is a 2-local stoquastic Hamiltonian, (j, k, l) labels triples of qubits, and hjkl are
non-negative constants. We shall refer to Hamiltonians having a decomposition as in Eq. (9)
as triple-X 3-local Hamiltonians. In order to implement the second step a new three-qubit
gadget will be constructed. The final step is to reduce 3-qubit interactions −hjkl Xj Xk Xl to
2-local interactions. This can be done using the three-qubit gadget of [7]. Throughout this
section we follow the notation of [7] and [8].

5.1 Reduction to 3-local interactions: the subdivision gadget

Using the standard operator algebra basis of n qubits, any stoquastic k-local Hamiltonian
Htarget can be written as

Htarget = Ω I −
∑

(j1,...,jk)

∑
a1,...,ak

hα1,...,αk

j1,...,jk
Eα1

j1
Eα2

j2
· · ·Eαk

jk
+ h.c.

Here (j1, . . . , jk) labels subsets of k qubits, α labels one-qubit matrices E0 = |0〉〈0|, E1 =
|0〉〈1|, E2 = |1〉〈0|, E3 = |1〉〈1|, and hα1,...,αk

j1,...,jk
are non-negative constants. The energy shift

Ω I is introduced in order to make all diagonal matrix elements of Htarget non-positive. Let us
partition each subset (j1, . . . , jk) into two non-overlapping subsets of nearly equal size. Then
we can rewrite Htarget as

Htarget = Ω I −
M∑

a=1

(Ca ⊗ Da + C†
a ⊗ D†

a), M = 4k

(
n

k

)

where Ca and Da are operators having the following properties:
(1) All Ca and Da have non-negative matrix elements,
(2) Ca and Da act on non-overlapping subsets of at most �k/2� qubits,
(3) C†

aCa and DaD†
a are diagonal.

Since we regard k as a constant, the number of terms in the sum is polynomial, M = poly(n).
Let us introduce M mediator qubits and consider a Hamiltonian H̃ acting on n data qubits

and M mediator qubits:

H̃ = H+V, H = Δ
M∑

a=1

Idata⊗|1〉〈1|a, V = −
√

Δ
M∑

a=1

(Ca+D†
a)⊗σ+

a +(C†
a+Da)⊗σ−

a +Q⊗IM ,

where Q =
∑M

a=1(C
†
aCa + DaD†

a), σ+ = |1〉〈0|, σ− = |0〉〈1|. As for Δ, it must be chosen
such that ||V || � Δ. Note that all terms in H and V are stoquastic. Denote the Hilbert
space of n data qubits as Hdata. Then H has zero-energy levels defining the eigen-subspace
L− = Hdata ⊗ |0⊗M 〉 separated from the rest of the spectrum by a gap Δ. Considering V as
a perturbation, we compute the self-energy operator

Σ− = V−− + V−+G+V+− + V−+G+V++G+V+− + V−+G+V++G+V++G+V+− + · · · (10)
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3-local term choice of Ca choice of Da

(a) −|000〉〈000|jkl |00〉〈00|jk |0〉〈0|l
(b) −|000〉〈100|jkl |00〉〈10|jk |0〉〈0|l
(c) −|000〉〈110|jkl |00〉〈11|jk |0〉〈0|l
(d) −|000〉〈111|

Table 1. Successive application of the subdivision gadget with the choice of Ca and Da as above
reduces any 3-local term to a term of type (d).

up to second-order of the perturbation theory one getse

Σ−(z) = −
M∑

a=1

(Ca ⊗ Da + C†
a ⊗ D†

a) + O(Δ−1/2) for any z = O(1).

Accordingly, the ground-state energy of H̃ approximates the ground-state energy of Htarget −
ΩI with precision δ = O(Δ−1/2). This reduces k-local stoquastic LH-MIN to �k/2�+ 1-local
stoquastic LH-MIN. By repeating this reduction O(log (k)) timesfwe end up with a 3-local
stoquastic Hamiltonian.

For obvious reasons the subdivision gadget cannot transform 3-local terms into 2-local
terms. However, we can use it to reduce the variety of 3-local terms which have to be dealt
with using different (and more complicated) methods.

If one considers all possible 3-local terms proportional to −Eα1
1 Eα2

2 Eα2
2 , there are essen-

tially four different types of terms (up to permutations of qubits and bit flips 0 ↔ 1) shown
in the first column of Table 1. By choosing the operators Ca and Da from the second and the
third column, one can reduce interactions of type (a) to type (b), type (b) to type (c), and
finally type (c) to type (d). This requires at most three repetitions of the subdivision gadget.
Now we can assume that a Hamiltonian has the form

Htarget = Helse −
∑

(j,k,l)

∑
α,β,γ=±

hα,β,γ
j,k,l σα

j ⊗ σβ
k ⊗ σγ

l , (11)

where Helse is a stoquastic 2-local Hamiltonian, (j, k, l) labels triples of qubits, and hα,β,γ
j,k,l ≥ 0.

5.2 Reduction from 3-local to special 3-local stoquastic Hamiltonians

Our next goal is to construct a gadget reducing the stoquastic Hamiltonian of Eq. (11) to
a special 3-local Hamiltonian, see Eq. (9). To simplify the discussion, let us first consider a
Hamiltonian Eq. (11) with a single 3-local term:

Htarget = Helse − 3(B1 ⊗ B2 ⊗ B3 + B†
1 ⊗ B†

2 ⊗ B†
3), Bj = σ+ or Bj = σ−.

where Helse is a 2-local stoquastic Hamiltonian, and the factor 3 is introduced for convenience.
We shall need three mediator qubits which will be labeled by 1, 2, 3. Consider a Hamiltonian
eTo avoid a proliferation of poly(n) bounds, we treat all terms proportional to ||Ca||, ||Da||, or M as O(1).
In general all these terms can be bounded by poly(n)). Since we are free to choose Δ polynomially large, the
bounds O(Δ−1/2) and O(poly(n)Δ−1/2) are equally good.
fAfter each iteration we have to introduce an energy shift Ω I, since the terms C†

aCa + DaD†
a may produce

positive matrix elements on the diagonal.
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Fig. 1. Allowed transitions induced by perturbation V acting on the eigenstates of H are indicated
by dashed lines. Direct transitions between Ψ+ and Ψ− levels are impossible.

H̃ acting on n data qubits and three mediator qubits:

H̃ = H + V, H = Idata ⊗ HM

HM = −1
2
Δx (X1 ⊗ X2 ⊗ X3 − I) − 1

4
Δz (Z1 ⊗ Z2 + Z2 ⊗ Z3 + Z1 ⊗ Z3 − 3 I),

V = −ω

3∑
j=1

Bj ⊗ σ+
j + B†

j ⊗ σ−
j + Helse ⊗ IM . (12)

The parameters ω, Δx, Δz must be chosen as

ω = δ−4, Δx = δ−5, Δz = δ−6, 0 < δ � 1. (13)

It will be shown later that δ is the precision up to which the ground-state energy of H̃

approximates the ground-state energy of Htarget (as before, we assume for simplicity that
||Bj || and ||Helse|| are of order O(1)). Note that Eq. (13) implies ω � Δx � Δz. Also
note that all local terms in H and V are stoquastic. The only 3-local term in H̃ is the one
proportional to −X1X2X3, so that H̃ is a special 3-local stoquastic Hamiltonian.

The Hamiltonian HM is diagonal in the basis of states

|Ψ±〉 =
1√
2
|000〉 ± 1√

2
|111〉, and |φ±

j 〉 = Xj |Ψ±〉, j = 1, 2, 3. (14)

The spectrum of HM is illustrated in Figure 1. By construction, HM has a unique ground-
state |Ψ+〉 having zero energyg, while the first excited state |Ψ−〉 has energy Δx. The top
part of the spectrum involves six nearly-degenerate (as long as Δx � Δz) states φ±

j . Since
||V || = O(ω) � Δx, we can treat V as a perturbation and compute the self-energy operator
on the zero-energy subspace of H , that is L− = Hdata ⊗ |Ψ+〉.

We can use the expansion of Eq. (10). The perturbation V is designed such that V−− =
〈Ψ+|V |Ψ+〉 = Helse, see Eq. (12). The contribution of the second-order term is proportional

gOne should not confuse labels ± of the states Ψ± and φ± with the labels ± referring to the low-energy and
high-energy subspaces that appear in the perturbative series Eq. (10).
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to the identity operator (see Appendix C for details of the calculation):

V−+G+V+− = −(3/4)ω2
[
Δ−1

z + (Δz + Δx)−1
]

I ≡ Ω I.

We can regard it as a shift of energy. Therefore

Σ−(z) = Ω I + Helse + V−+G+V++G+V+− + [higher order terms]. (15)

The key feature of the gadget is that the perturbation V cannot cause a direct transition from
the ground-state Ψ+ to the first excited state Ψ− (or vice versa). Any direct transition maps
Ψ+ into the high-energy band φ± spanned by six states φ+

j and φ−
j having energy of order

Δz � Δx, see Figure 1. Thus any third-order process follows the following scheme:

Ψ+ → φ± → φ± → Ψ+.

Since the energy splitting Δx of the φ± band is much smaller than its absolute energy Δz ,
one can use an approximation in which the two intermediate Green’s functions G+ in Eq. (15)
are proportional to the identity operator, G+(z) = (zI − H+)−1 ≈ −I/Δz for any z = O(1).
Within this approximation one has

Σ−(z) − Ω I ≈ Helse +
1

Δ2
z

V−+V++V+− = Helse +
1

Δ2
z

〈Ψ+|V 3|Ψ+〉

≈ Helse − 3ω3

Δ2
z

(B1 ⊗ B2 ⊗ B3 + B†
1 ⊗ B†

2 ⊗ B†
3), (16)

which approximates Htarget since ω3 = Δ2
z. An accurate calculation of Σ−(z), performed in

Appendix C, shows that the error in the approximation is of order O(δ). Contributions from
transitions involving the Ψ− level appear only in the fourth-order term in Eq. (10) according
to the following scenario:

Ψ+ → φ± → Ψ− → φ± → Ψ+, (17)

see Figure 1. In Appendix C we show that the fourth-order term is of order O(δ). Therefore
Σ−(z) = Ω I + Htarget + O(δ) for any z = O(1), and thus the ground-state energy of Htarget

is δ-close to the ground-state energy of H̃ − Ω I.
One can applying this gadget in parallel to each term in the Hamiltonian Eq. (11) and

obtain the desired reduction to a special 3-local stoquastic Hamiltonian.

5.3 Reduction from special 3-local to 2-local Hamiltonians

To simplify the discussion let us consider a special 3-local stoquastic Hamiltonian with a single
3-qubit interaction:

Htarget = Helse − 6B1 ⊗ B2 ⊗ B3,

where Bj are non-negative operators proportional to Xj and Helse is a 2-local stoquastic
Hamiltonian. The 3-qubit interaction can be treated using the original three-qubit gadget
in [7]. This original gadget coincides with the gadget defined in Eq. (12) if one chooses Δx = 0.
In this case the zero-energy subspace of H is L− = Hdata ⊗ L−, where L− is spanned by the
mediator qubit states |000〉 and |111〉. Note that H̃ is now a 2-local stoquastic Hamiltonian.
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We can choose Δz = δ−3 and ω = δ−2. The analysis performed in [7] implies that the
ground-state energy of H̃ = H + V , see Eq. (12), is δ-close to the ground-state energy of an
effective Hamiltonian

Heff = Ω I + Helse ⊗ Im − 6B1B2B3 ⊗ Xm,

where Im and Xm act on the two dimensional subspace of the mediator qubits spanned by |000〉
and |111〉 (regarded as logical |0〉 and |1〉 states). The energy shift is Ω I = −δ−1(B2

1+B2
2+B2

3).
Since Heff is a stoquastic Hamiltonian, the Perron-Frobenius theorem implies that its ground-
state |Ψ0〉 can be chosen as a non-negative vector. Then a state

|Ψ′
0〉 = |Ψ0〉 + (I ⊗ Xm) |Ψ0〉

is also a non-negative ground-state of Heff . In addition, we have (I ⊗ Xm)|Ψ′
0〉 = |Ψ′

0〉.
Therefore Heff − Ω I has the same ground-state energy as Htarget. This proves that the
ground-state energies of H̃ −Ω I and Htarget are δ-close. To deal with multiple 3-qubit terms
in Eq. (9) one applies this three-qubit gadget in parallel to every individual 3-qubit term.

Remark: In the original three-qubit gadget the operators Bj are required to be positive
semi-definite in order to guarantee that the ground-state of Heff belongs to the sector where
Xm has eigenvalue +1.

6 Stoquastic LH-MIN and Classical Post-Selected Computation

The main goal of this section is to examine the complexity of stoquastic LH-MIN in the
special case when the Hamiltonian possesses a polynomial spectral gap (i.e., the spectral gap
scales as 1/p(n), where n is the number of qubits and p is a fixed polynomial). We shall prove
that this problem can be placed in the complexity class PostBPP — a class of languages
recognizable by a probabilistic polynomial time classical circuits with a post-selective readout
of the answer. Speaking informally, any problem in the class PostBPP can be solved by a
classical probabilistic circuit that outputs two random bits: a (the answer bit) and b (the
success flag). The answer bit a contains the correct answer of the problem provided that
b = 1 (if b = 0 the value of a may be arbitrary). The success probability P[b = 1] must be
positive for all input strings (however it may be exponentially small). Here is a more formal
definition:
Definition 9 (PostBPP) A promise problem L = Lyes ∪ Lno belongs to the class PostBPP
iff there exist a polynomial p, predicates a(x, y) and b(x, y) from the class P defined for any
y ∈ Σp(|x|), such that

x ∈ L =⇒ P[b(x, y) = 1] > 0,

x ∈ Lyes =⇒ P[a(x, y) = 1 | b(x, y) = 1] ≥ 2/3,

x ∈ Lno =⇒ P[a(x, y) = 1 | b(x, y) = 1] ≤ 1/3.

where y ∈ Σp(|x|) is a random uniformly distributed bit string, and P[a | b] is the conditional
probability.

The quantum version of this class, PostBQP, was defined in Ref. [27] and in that paper it
was shown that PP=PostBQP. The following lemma provides a characterization of PostBPP
in terms of the standard complexity classes.
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Lemma 4 MA ⊆ NPBPP ⊆ PostBPP = BPPpath ⊆ BPPNP ⊆ Σp
3.

Here BPPpath is a class of problems solvable in polynomial time with a bounded error prob-
ability by a non-deterministic Turing machine that chooses its computational path randomly
from the uniform distribution on a set of all possible paths, see [28]. The class BPPpath is
more powerful than BPP, since it offers the possibility to amplify the total probability of suc-
cessful computational paths by adding ‘idle’ computational branches to a non-deterministic
algorithm. In Appendix B we give a proof of the equality PostBPP=BPPpath. All other
statements made in the previous lemma follow directly from [28].

Theorem 10 k-local stoquastic LH − MIN with the promise that the spectral gap Δ =
1/poly(n) belongs to PostBPP.

Proof. Let H =
∑

S HS ∈ Ω(k, p1, p2) be k-local stoquastic Hamiltonian on n qubits, see
Definitions 1 and 2. The first step is to transform H into a doubly-substochastichmatrix G.
This is achieved by choosing

G =
1
2

(I − H/q(n)), q(n) = 2 max(1, 2k

(
n

k

)
p1(n)). (18)

The choice of q(n) in Eq. (18) takes into account that H contains at most
(
n
k

)
local terms HS

and each local term HS has at most 2k non-zero matrix elements in any row (column). This
choice of q(n) also guarantees that all eigenvalues of G are between 0 and 1, while the matrix
elements Gx,y = 〈x|G|y〉 obey the inequalities

Gx,y ≥ 0 and
1
4
≤
∑

z∈Σn

Gx,z ≤ 1 for all x, y ∈ Σn. (19)

Obviously, q(n) is a fixed polynomial. Let μ(G) be the largest eigenvalue of G. The correct
decision for LH-MIN with the Hamiltonian H can be made if we can evaluate μ(G) with
polynomial precision:

λ(H) ≤ 0 ⇒ μ(G) ≥ μ+ =
1
2
,

λ(H) ≥ 1/p2(n) ⇒ μ(G) ≤ μ− =
1
2

(
1 − 1

q(n)p2(n)

)
.

We shall present a polynomial-time probabilistic algorithm that evaluates μ(G) with a
precision 1/poly(n) using a post-selective readout of the answer.

Define a matrix B which is diagonal in the standard basis such that

Bx ≡ 〈x|B|x〉 =
∑

y∈Σn

Gx,y. (20)

We can transform G into a doubly-stochastic matrix F as follows:

F = G ⊗ I + (I − B) ⊗ X =
(

G I − B
I − B G

)
.

hBy definition, a non-negative matrix is doubly-substochastic iff the sum of the elements in every row and
every column is smaller or equal to 1, see [29]
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The matrix F acts on n original qubits and one extra ancillary qubit. The states |0〉 and
|1〉 of the ancillary qubit label the four blocks in the matrix representation of F given above.
The purpose of the ancillary qubit is to enlarge the space of states of the random walk such
that for every under-normalized row of G the walker can ”leak” to one of the ancillary states
(those in which the ancillary qubit is |1〉) thus making the corresponding row of F normalized.
Therefore F specifies a random walk on a space Σn+1. The fact that H is a k-local Hamiltonian
implies that F is a sparse matrix — it has at most

(
n
k

)
2k +1 non-zero elements in each column

(row). Moreover, for any fixed column (row) positions of the non-zero matrix elements and
their values can be computed in poly(n) time. This means that the random walk defined by
F can be efficiently simulated on a BPP machine, provided that the number of steps is at
most poly(n).

Our algorithm requires the simulation of w independent random walks (X(i)
t )t=0,...,L,i=1,...,w

whose transition probabilities are given by F . Here 0 ≤ t ≤ L is the (discrete) time param-
eter, i is the index of the random walk and L, w will be specified later. Let us start each
random walk X

(i)
t from a point X

(i)
0 = (x(i)

0 , 0) ∈ Σn+1, such that the ancillary bit (the last
one) is set to 0, and the n bits constituting the original system are initialized by a random
string x

(i)
0 ∈ Σn drawn from the uniform distribution with independent choices of x

(i)
0 for

different i. Suppose that after t steps the ith random walk arrives at a point X
(i)
t = (x(i)

t , b
(i)
t )

(0 ≤ t ≤ L, 1 ≤ i ≤ w). Let us postselect only those samples where the ancillary bits remain
in the state 0 for the whole duration of each of the w walks. In terms of the formal definition
of PostBPP we have to define the success flag bit as b = ¬(∨w

i=1 ∨L
t=0 b

(i)
t ). The probability

for the ancillary bit to stay in 0 is

P[b = 1] =

⎛
⎝ 1

2n

∑
x0,xL∈Σn

〈x0|GL|xL〉
⎞
⎠

w

≥ 1
4wL

> 0,

where we have used the inequality Eq. (19).
Conditioned on b = 1, the random variables (x(i)

L )w
i=1 are independent samples from the

probability distribution PL(·) given by

PL(y) =
∑

x∈Σn〈x|GL|y〉∑
x,y∈Σn〈x|GL|y〉 , y ∈ Σn.

Consider a quantity

μest(G) ≡
∑w

i=1 B
x
(i)
L

w
=

∑w
i=1

(∑
x∈Σn〈x|G|x(i)

L 〉
)

w
(21)

Given the samples x
(i)
L , the quantity μest(G) can be efficiently computed since G is a sparse

matrix.
The expectation value of μest(G) taken over the w independent samples of x

(i)
L ) is equal

to

E(μest(G)) =

∑
x,y∈Σn〈x|GL+1|y〉∑

x,y∈Σn〈x|GL|y〉 .

Since 1/4 ≤ Bx ≤ 1 for all x ∈ Σn, Azuma’s inequality implies that

∀δ > 0, P( |μest(G) − E(μest(G))| > δ | b = 1) ≤ 2e−
δ2w
2 . (22)
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We now claim that for L chosen sufficiently large,

E(μest(G)) =

∑
x,y∈Σn〈x|GL+1|y〉∑

x,y∈Σn〈x|GL|y〉

is close to the largest eigenvalue μ(G) of G. More precisely, we will show that
Lemma 5 Let μ0 ≥ μ1 be the largest eigenvalue and second largest eigenvalue of G. Suppose
that log (μ(G)) − log (μ1) ≥ 1

r(n) . If one chooses L = 5nr(n)
2 then

|μ0 − E(μest(G))| = O(2−n).

This is the only step where the spectral gap assumption is used. Let us postpone the proof
of the lemma until the end of the section. We choose L = 5nr(n)

2 (clearly, the spectral gaps
of H and G are related by a polynomial factor, so that r(n) is a fixed polynomial). Then by
Eq. (22)

∀δ > 0, P
( |μest(G) − μ(G)| > δ + O(2−n)

∣∣ b = 1
) ≤ 2e−

δ2w
2 .

For some constant c > 0, taking w = 2n2c ln(6) ensures that |μest(G) − μ(G)| = O(n−c)
with probability at least 2/3. Since the coefficients By can be computed efficiently for any
bit-string y and vary within a constant range we can evaluate μest(G) (as in Eq. (21)) with a
precision 1/poly(n) using w = poly(n) random walks of length L = poly(n). The complexity
of simulating the random walks is polynomial in L, w, and n; it follows that we can solve our
decision problem in PostBPP. �.
Proof of Lemma 5:
Define an operator

Δ̂� =
1
μ�

0

(
G� − μ�

0 |Ψ0〉〈Ψ0|
)
.

After simple algebra one gets

E(μest(G)) = μ0

(
1 + ε2

∑
x,y∈Σn〈x|Δ̂L+1|y〉

1 + ε2
∑

x,y∈Σn〈x|Δ̂L|y〉

)
, ε ≡ 1∑

x〈x|Ψ0〉 .

Let μ0 ≥ μ1 ≥ . . . , μ2n−1 be the eigenvalues of G. Note that G is chosen such that μj ≥ 0.
Therefore

||Δ̂L|| =
(

μ1

μ0

)L

≤ 2−
L

r(n) .

Let us choose L = 5nr(n)
2 . Then ||Δ̂L|| ≤ 2−5n/2 and therefore∣∣∣∣∣

∑
x,z

〈x|Δ̂L|z〉
∣∣∣∣∣ ≤ 2n

∣∣∣∣
(∑

x〈x|
2n/2

)
Δ̂L

(∑
z |z〉

2n/2

)∣∣∣∣ ≤ 2n||ΔL|| ≤ 2−3n/2.

Clearly, the same inequalities hold with L + 1 replacing L. On the other hand, ε ≤ 1 since

∑
x∈Σn

〈x|Ψ0〉 ≥
√∑

x∈Σn

(〈x|Ψ0〉)2 = 1.
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It follows that |μ0 − E(μest(G))| ≤ O(μ02−3n/2) = O(2−n) as μ0 ≤ maxx Bx ≤ 1 under our
assumptions.

Our result has a simple implication for adiabatic quantum computation using stoquastic
Hamiltonians. It is known that the power of efficient adiabatic quantum computation with
general 2-local Hamiltonians is equal to that of polynomial-time quantum circuits [30]. All
Hamiltonians on the adiabatic path are required to have a polynomial gap in order for the
adiabatic theorem to apply. Now let us restrict ourselves to stoquastic Hamiltonians with a
polynomial gap. By the MA-hardness construction and analogous to the arguments in [30], one
can argue that any polynomial-time probabilistic computation can be simulated by an efficient
adiabatic path using stoquastic Hamiltonians only. It is a more interesting but open question
whether every efficient adiabatic path using stoquastic Hamiltonians can be simulated by a
polynomial-time probabilistic machine. The proof of Theorem 10 shows that post-selected
classical computation allows one to efficiently sample from the ground-state distribution of a
stoquastic Hamiltonian. Note that this may be potentially stronger than merely estimating
the lowest-lying eigenvalue. In the proof we use the ability to sample from the ground-state
to estimate the lowest-lying eigenvalue. A adiabatic path with stoquastic Hamiltonians, each
of which has a 1/poly(n) gap, can thus be simulated by post-selected classical computation
and the decision problem that can be solved by these means is contained in PostBPP.
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Appendix A The Approximate Counting Problem and Hash Functions

For the sake of completeness we explain how to choose the parameters of the hash functions
in the proof of Theorem 6, see the original paper [20] for more details. Define

b = �log LARGE� + 3.

Without loss of generality b ≤ k (otherwise Arthur has to verify that Ω contains a finite
fraction of k-bit strings, which can be done by the standard Monte-Carlo method without
compression). Let h1, . . . , hk be k × b binary matrices chosen uniformly at random. Each
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matrix hj defines a linear hash function hj : Σk → Σb. Denote

h(Ω) =
k⋃

j=1

hj(Ω) ⊆ Σb.

We need the following technical lemma from [20] (a proof is given at the end of this appendix).
Lemma A.1 For any set Ω ⊆ Σk and for any b ≤ k such that |Ω| ≤ 2b−2 one has

P

[
|h(Ω)| ≥ |Ω|

k

]
≥ 1 − 1

2k
.

Neglecting the exponentially small error probability 2−k one gets

|Ω| ≥ LARGE =⇒ |h(Ω)| ≥ LARGE
k

≥
(

1
8k

)
2b,

|Ω| ≤ SMALL =⇒ |h(Ω)| ≤ k · SMALL ≤ k2−n LARGE ≤
(

k

2n+2

)
2b

For the second line we have used the trivial bound |h(Ω)| ≤ k|Ω| and Eq. (4). If n is sufficiently
large, h(Ω) contains a polynomially large fraction of b-bit strings for positive instances and
an exponentially small fraction for negative instances. Arthur can distinguish the two case by
the Monte-Carlo method using Merlin’s advice to verify membership in h(Ω). This completes
the proof of Theorem 6.
Proof of Lemma A.1:
Let us say that a function hj is invertible at the point x ∈ Ω if hj(x) �= hj(y) for all y ∈ Ω\{x}.
Define a set

Ωj = {x ∈ Ω : hj is invertible at x}.
Clearly,

|h(Ω)| ≥ |hj(Ω)| ≥ |Ωj | for any j = 1, . . . , k.

Thus

P

[
|h(Ω)| ≥ |Ω|

k

]
≥ P

⎡
⎣ k⋃

j=1

Ωj = Ω

⎤
⎦. (A.1)

Since the probability of collisions for hj is 2−b, we have

P[hj is not invertible at x] ≤ |Ω|
2b

.

Therefore

P

⎡
⎣ k⋃

j=1

Ωj �= Ω

⎤
⎦ = P[∃x ∈ Ω : ∀j hj is not invertible at x] ≤ |Ω|

( |Ω|
2b

)k

. (A.2)

Combining Eqs. (A.1) and (A.2) and taking into account the conditions on b, k, and |Ω|
finishes the proof.

Appendix B PostBPP = BPPpath
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The class BPPpath is defined most conveniently in terms of non-deterministic Turing machines.
Let M be a non-deterministic Turing machine (TM). We shall assume that at each step M

chooses one of two computational paths. Given an input string x ∈ Σ∗, a polynomial-time
non-deterministic TM makes at most q(|x|) steps before it stops, where q is a fixed polynomial.
Whenever M stops, it outputs an answer bit a = 1 (accept), or a = 0 (reject).

Let path(M, x) and acc(M, x) ⊆ path(M, x) be a set of all computational paths and a set
of accepting paths for a machine M running on input string x. By definition, |path(M, x)| ≤
2q(|x|). One can visualize path(M, x) as a subtree of a binary branching tree of a height q(|x|).
Some paths make it all the way from the root to a leaf of the tree and some paths end before
making q(|x|) steps. Let us introduce a branching variable y ∈ Σq(|x|), such that a bit yj

specifies what path M chooses at step j (if a computational path ends before making q(|x|)
steps, the remaining bits of y can be ignored). For any x ∈ Σ∗ and y ∈ Σq(|x|) let l(x, y) be
the number of steps that M does on input x before it stops and a(x, y) be the value of the
answer bit. By definition, 1 ≤ l(x, y) ≤ q(|x|) for any x, y and

|path(M, x)| =
1

2q(|x|)
∑

y∈Σq(|x|)
2l(x,y), |acc(M, x)| =

1
2q(|x|)

∑
y : a(x,y)=1

2l(x,y). (B.1)

Now we can define the class BPPpath more formally.
Definition B.1 A promise problem L = Lyes ∪ Lno belongs to the class BPPpath iff there
exist a non-deterministic polynomial-time Turing machine M such that

x ∈ Lyes =⇒ |acc(M, x)| ≥ 2
3
|path(M, x)|

x ∈ Lno =⇒ |acc(M, x)| ≤ 1
3
|path(M, x)|

Let us first prove BPPpath ⊆ PostBPP. Indeed, consider a non-deterministic polynomial-
time Turing machine M as above. Let C be a classical circuit (more strictly, a uniform family
of circuits) that takes as input a pair (x, y) with y ∈ Σq(|x|), and simulates M for q(|x|) steps
according to the computational path y. The circuit C outputs the answer bit a(x, y) and
the number of steps l(x, y) in the path y. The idea is that we can simulate M by choosing
y randomly from the uniform distribution and use post-selection to balance the resulting
distribution on path(M, x). Indeed, define a random success flag bit b, such that we have a
probability distribution of b conditioned on x and y

P[b = 1 |x, y] =
1

2q(|x|)−l(x,y)
.

Since the circuit C outputs l(x, y), one can easily generate a bit with the desired distribution
using a polynomial number of ancillary random bits. Making use of the formulas in Eq. (B.1)
one can easily get

P[a = 1 | b = 1] =
P[a = 1, b = 1]

P[b = 1]
=

2−2 q(|x|)∑
y : a(x,y)=1 2l(x,y)

2−2 q(|x|)∑
y 2l(x,y)

=
|acc(M, x)|
|path(M, x)| .

Comparing it with Def. 9, we conclude that a language recognized by M belongs to PostBPP.
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Now let us prove PostBPP ⊆ BPPpath. Indeed, let L = Lyes ∪ Lno be a language from
PostBPP. One can use the standard majority voting procedure to reduce the error probability
from 1/3 to 1/4, i.e., we can assume that the predicates a(x, y) and b(x, y) from Def. 9 satisfy

x ∈ L =⇒ P[b(x, y) = 1] > 0,

x ∈ Lyes =⇒ P[a(x, y) = 1 | b(x, y) = 1] ≥ 3/4,

x ∈ Lno =⇒ P[a(x, y) = 1 | b(x, y) = 1] ≤ 1/4.

Here y ∈ Σp(|x|) is a uniformly random bitstring and p is a polynomial. The inequality
P[b = 1] > 0 implies that there exists at least one y ∈ Σp(|x|) such that b(x, y) = 1. Therefore
we can bound the probability of successful computation from below as

P[b = 1] ≥ 1
2p(|x|) .

Construct a non-deterministic Turing machine M that takes x as input and does the following:
(1) Perform p(|x|) branchings to initialize a string y ∈ Σp(|x|),
(2) Compute predicates a = a(x, y) and b = b(x, y),
(3) If b = 0, output a,
(4) If b = 1, perform p(|x|) + 4 idle branchings and output a.
Let us verify that M recognizes the language L in the sense of Def. B.1. Indeed, one can
easily check that

|path(M, x)| = 2p(|x|)
[
P[b = 0] + 2p(|x|)+4

P[b = 1]
]

and
|acc(M, x)| = 2p(|x|)

[
P[a = 1, b = 0] + 2p(|x|)+4

P[a = 1, b = 1]
]
.

Consider first the case x ∈ Lyes. Then

|acc(M, x)|
|path(M, x)| ≥

P[a = 1, b = 1]
2−p(|x|)−4 + P[b = 1]

≥ P[a = 1, b = 1]
P[b = 1](1 + 2−4)

≥ 3
4(1 + 2−4)

>
2
3
.

Here we have used the fact that P[b = 1] ≥ 2−p(|x|). Consider now the case x ∈ Lno. Then

|acc(M, x)|
|path(M, x)| ≤

2−p(|x|)−4 + P[a = 1, b = 1]
P[b = 1]

≤ 1
4

+ 2−4 <
1
3
.

Thus M indeed recognizes L.

Appendix C The three-qubit gadget

In this appendix we will explicitly calculate the self-energy operator Σ−(z) for the perturbed
Hamiltonian in Eq. (12) up to third order in the perturbative series of Eq. (10). We shall also
evaluate the norm of the fourth-order term. It follows directly from Eq. (12) that

V−− = 〈Ψ+|V |Ψ+〉 = Helse.

A straightforward calculation yields

V+− = −ω

2

3∑
j=1

∑
α=±1

(Bj + αB†
j ) ⊗ |φα

j 〉,
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where |φα
j 〉 = σx

j |Ψα〉, see Eq. (14). Now we can compute the second-order term for the
self-energy operator:

Σ(2)
− (z) = V−+G+V+− =

(
−ω

2

)2 3∑
j=1

∑
α=±1

(B†
j + αBj)(Bj + αB†

j )
z − Δα

, (C.1)

Here we denote Δ+ = Δz and Δ− = Δz +Δx. Substituting z = O(1) and taking into account
that B2

j = 0, BjB
†
j + B†

jBj = I, we come to

Σ(2)
− (z) = Ω I + O(δ4), Ω = −(3/4)ω2

[
Δ−1

z + (Δz + Δx)−1
]
. (C.2)

To compute the third-order term we need to know V++. It is enough to find the matrix
elements of V between the φ± states (since transitions between Ψ− and φ± do not appear in
the third order). A straightforward calculation yields

〈φα
j |V |φβ

l 〉 = Helseδj,lδα,β − ω

2

3∑
k=1

ε(j, k, l)
[
αBk + βB†

k

]
,

where ε(j, k, l) =
{

1 if j �= k �= l
0 otherwise (C.3)

Therefore

Σ(3)
− (z) = V−+G+V++G+V+−

= −ω3

8

3∑
j,k,l=1

∑
α,β=±1

(B†
j + αBj)(αBk + βB†

k)(Bl + βB†
l )ε(j, k, l)

(z − Δα)(z − Δβ)
+ O(δ4).(C.4)

Taking into account Eq. (13) one easily gets (for any z = O(1))

Σ(3)
− (z) = −3(B1 ⊗ B2 ⊗ B3 + B†

1 ⊗ B†
2 ⊗ B†

3) + O(δ). (C.5)

Although we have not calculated the fourth-order correction

Σ(4)
− = V−+G+V++G+V++G+V+−

exactly, we have to get an upper bound on its norm. The fourth-order processes may involve
the low-lying level Ψ−, see Eq. (17), and potentially these processes can give a non-negligible
contribution to Σ− as Σ(3)

− . Keeping in mind Eq. (17) one can easily get (for any z = O(1))

||Σ(4)
− (z)|| = ||V−+G+V++G+V++G+V+−|| = O

(
ω4

ΔzΔxΔz

)
= O(δ−16+12+5) = O(δ).

As for the higher-order corrections to Σ− (from the fifth- order onwards) their contribution
contains an additional factor ω/Δz, or ω/Δx which is at most δ. Therefore we arrive at

Σ−(z) = Ω I + Helse − 3(B1 ⊗ B2 ⊗ B3 + B†
1 ⊗ B†

2 ⊗ B†
3) + O(δ)

for any z = O(1). Here Ω is the energy shift given by Eq. (C.2).


