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The degrees of polynomials representing or approximating Boolean functions are a
prominent tool in various branches of complexity theory. Sherstov [31] recently char-
acterized the minimal degree dege(f) among all polynomials (over R) that approxi-
mate a symmetric function f : {0,1}"™ — {0,1} up to worst-case error e: deg:(f) =

© (degl/g(f) +/n log(l/s)) . In this note we show how a tighter version (without the
log-factors hidden in the é-notation), can be derived quite easily using the close connec-

tion between polynomials and quantum algorithms.
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1 Introduction

1.1 Setting
Boolean functions are one of the primary objects of study in theoretical computer science.
Such functions can be represented or approximated by polynomials in a number of ways, and
the algebraic properties of such polynomials (such as their degree) often give information
about the complexity of the function involved. Areas where this approach has been used
include circuit complexity [28, 33, 6], complexity classes [8, 7, 34], decision trees [26, 12],
communication complexity [11, 29, 32, 21], and learning theory [25, 23].

In this note we focus on polynomials over the field of real numbers. An n-variate multi-
linear polynomial p is a function p : R™ — R that can be written as

p(x1,...,xn) = Z GSHJ%
SCn]  i€S

for some real numbers ag. The degree of p is deg(p) = min{|S| | ag # 0}. If is well known
(and easy to show) that every function f : {0,1}"™ — R has a unique representation as such
a polynomial; deg(f) is defined as the degree of that polynomial.

In many applications it suffices if the polynomial is close to f instead of being equal to it:

Definition 1 The e-approximate degree of f: {0,1}" — R is
dege(f) = min{deg(p) | Vz € {0,1}" : |p(x) — f(x)] < }.
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A function f is called symmetric if its value only depends on the Hamming weight |z| of
its input « € {0,1}". Equivalently, f(z) = f(w(x)) for all x € {0,1}" and all permutations
m € S,. We will restrict attention here to symmetric functions f. Examples are OR, AND,
PARITY, MAJORITY etc. Since the only thing that matters is the Hamming weight |z|
of the input, one can actually restrict attention to wnivariate polynomials. We say that a
univariate polynomial p e-approzimates a symmetric function f if |p(|z]) — f(z)| < e for
all z € {0,1}". By a technique called symmetrization [24], it turns out that for symmetric
functions, the minimal degree of such univariate e-approximating polynomials is the same
degree deg.(f) as for n-variate multilinear polynomials. Hence we can switch back and forth
between these two kinds of polynomials at will.

Paturi [27] tightly characterized the 1/3-approximate degree deg; /3(f) of all symmetric
f (see the start of Section 2 for the precise statement). Recently Sherstov [31] studied the
dependence on the error €. He proved the surprisingly clean result that for all e € [27",1/3],

deg.(f) = © (degys(f) + v/nlog(1/5) ) .

where the © notation hides some logarithmic factors. Note that the statement is false if
€ K 27", since clearly deg(f) < n for all f.

Sherstov gave an interesting application of his result in the context of the inclusion-
exclusion principle of probability theory. Let f : {0,1}" — {0,1} be a Boolean function.
Suppose one has events Ay, ..., A, in some probability space, and one knows the exact val-
ues of Pr[N;esA;] for all sets S C [n] of size at most k. How well can we now estimate
Pr[f(A1,...,4,)]?7 In other words, what is the maximal difference |Pr[f(A41,...,A4,)] —
Pr[f(Bu,..., Bn)]|, maximized over all pairs of sequences of events A4, ..., 4, and By,..., B,
satisfying Pr[N;esA;] = Pr[N;esB;| for all sets S of size up to k7 Sherstov [31, Theo-
rem 1.1] proved that this maximal distance equals exactly twice the minimal error e for
which deg_(f) < k. Hence tight bounds on deg_(f) give tight bounds for this question of
probability theory. This generalizes earlier results for the case where f is the OR function,
i.e. where one is estimating Pr[U;c[,, As] [22, 17].

1.2 Owur result

In this note we give a different proof, for a slightly tighter version of Sherstov’s degree-result:
Theorem For every non-constant symmetric function f : {0,1}" — {0,1} ande € [27™,1/3]:

deg.(f) = © (degy/s(f) + V/nlog(1/e) ).

Note that there are no hidden logarithmic factors anymore. As a consequence, the result
on approximate inclusion-exclusion is sharpened as well, but we won’t elaborate on that here.

The lower bound on deg.(f) follows immediately from combining Paturi’s tight bound for
deg /3(f) with the tight bound on the e-approximate degree of the OR-function proved in [10].
More interestingly, our upper bound is obtained by exhibiting an efficient e-error quantum
algorithm for computing a symmetric function. It is well known (at least in quantum circles)
that the acceptance probability of a quantum algorithm that makes T queries to its input
can be written as an n-variate multilinear polynomial of degree at most 2T [5] (see also [14]).
The upper bound of Theorem ?? actually applies to a larger class of functions, namely all
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functions f : {0,1}"™ — [0, 1] that are constant when |z| € {¢,...,n —t}. These functions
may take arbitrary real values in [0, 1] and may be non-symmetric for inputs with smaller or
larger Hamming weights. For every such function we have deg.(f) = O(Vitn + /nlog(1/e)).

1.8 Discussion

The main message of this note is that one can obtain essentially optimal polynomial approxi-
mations of symmetric Boolean functions by arguing about quantum algorithms. This fits in a
line of papers in recent years that prove or reprove theorems about various topics in classical
computer science or mathematics with the help of quantum computational techniques. This
includes results about locally decodable codes [19, 35], classical proof systems for lattice prob-
lems inspired by earlier quantum proof systems [3, 4], limitations on classical algorithms for
local search [1] inspired by an earlier quantum proof, a proof that the complexity class PP is
closed under intersection [2], lower bounds on the rigidity of Hadamard matrices [36], classical
formula size lower bounds from quantum query lower bounds [20], and an approach to proving
lower bounds for classical circuit depth using quantum communication complexity [18].

There are advantages as well as disadvantages to our approach in this note. We feel that
for someone familiar with quantum algorithms and their connection to polynomials, our proof
should be quite simple and straightforward. Also, our bound is tight up to constant instead
of logarithmic factors, and applies to a larger class of functions than Sherstov’s. On the other
hand, for those unfamiliar with quantum computation our proof is probably somewhat less
accessible. Also, we do not construct the e-approximating polynomials explicitly (though one
may derive them from our quantum algorithm), in contrast to Sherstov’s construction based
on Chebyshev polynomials.

2 Proof

Let f: {0,1}™ — {0,1} be a non-constant symmetric function that is constant if the Hamming
weight |z| of the input is in the interval {¢,...,n —¢} (where 0 < ¢ < n/2 is the smallest ¢ for
which this holds). We know deg; /3(f) = ©(v/tn) from Paturi [27]. In the next two subsections
we provide matching upper and lower bounds on deg.(f), thus proving Theorem ?7.

2.1 Upper bound on deg.(f)

Beals et al. [5] showed that the acceptance probability of a T-query quantum algorithm on
n-bit input is a multilinear n-variate polynomial p : R™ — R of degree at most 27". Hence
it suffices to give an e-error quantum algorithm for f that uses O(deg,/3(f) + /nlog(1/e))
queries. The acceptance probability of the algorithm will be our e-error polynomial.

Here is the algorithm. It uses various quantum algorithms based on Grover’s search
algorithm, which are explained in Appendix 1. Let « € {0,1}" be the input string. The
algorithms have access to this string via queries. In the quantum case, one query is one
application of the unitary that maps |i) — (—1)%¢|i). A solution is an index ¢ € [n] such that
xTr; = 1.

1. Use t repeated applications of exact Grover to try to find up to ¢ solutions (initially
assuming |z| = ¢, and “crossing out” in subsequent applications the solutions already
found). If |z| < t, then with probability 1 these repeated applications find all solutions.
This costs O(v/tn) queries.
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2. Use &/2-error Grover to try to find one more solution. This costs O(y/nlog(1/¢))
queries.

3. The same as step 1, but now looking for positions of Os instead of 1s.
4. The same as step 2, but now looking for a 0 instead of a 1.

The total number of queries is indeed O(v/tn++/nlog(1/¢)). We need to show that this gives
error probability at most < e for every input « € {0,1}". Observe the following:

o if step 1 found ¢ solutions, then we know |z| > ¢ with probability 1 (note that you can
verify whether a given position is a solution with only 1 extra query).

e if step 1 found fewer than ¢ solutions, but step 2 found another solution, then we know
|x| > t (for if |x| < t then step 1 would certainly have found all solutions and there
would be none left to be found in step 2).

e if step 1 found fewer than ¢ solutions, but step 2 did not find another solution, then
the probability that there are more solutions than those found by step 1, is at most €/2
(because step 2 ran an €/2-error search algorithm which didn’t find any solution); hence
in this case we assume step 1 has found all solutions.

e similar observations for steps 3 and 4 (with Os and 1s switching roles).

These observations imply that at the end of the 4 steps we have enough information to
compute f. Note that with probability at least 1 — ¢ we can distinguish between the three
cases |z| < t, |x| € {t,...,n—1t}, and |z| > n—t. If |z] € {t,...,n — t} then we are done
because f is constant on this interval. If |z| < ¢ then step 1 found all solutions, so we know z
completely and can compute f(z). If || > n —t then step 3 found all non-solutions of =, and
again we know z completely. In all cases we compute f(z) with error probability at most e.

This algorithm even works for many other functions f : {0,1}™ — [0, 1]: it suffices if f is
constant on all inputs with Hamming weight in {¢,...,n —t}; f may be arbitrary if |z| < t or
|x| > n — t since in these cases the algorithm actually determines x completely, rather than
just its Hamming weight. Once it knows z, it can just output a random bit whose probability
of being 1 equals f(z).

2.2 Lower bound on deg.(f)
We can assume t < n/4, because if ¢t > n/4 then we already have a tight bound from Paturi:
n > deg(f) = dege(f) = degy/3(f) = O(n).

Buhrman et al. [10] showed for the n-bit OR function that deg.(OR,,) = ©(y/nlog(1/¢)). For
completeness we include a proof of this in Appendix B.*Since ¢ < n/4, we can embed an OR
on at least n — 2t > n/2 bits into f by fixing at most 2¢ of the n input bits to specific values.
Hence

deg. (f) > max (degy 3(f). 2(v/n1og(1/2)) ) = © (degy/s(f) + V/nlog(1/5) )

aThe earlier paper by Kahn et al. [17] showed a ©-version of this bound.
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Appendix A: Grover’s Algorithm and Applications

A.1 Finding one solution

Grover’s quantum algorithm [16] for finding a solution (i.e. an ¢ € [n] such that z; = 1)
consists of T applications of a certain unitary G, starting from the uniform superposition
% Yo |i). We won’t explain the details of G here. Suffice it to say that each G’ makes one
quantum query, so the total number of queries is T'. The intuition is that G changes the state
by moving amplitude from non-solutions to solutions. One can show [9] that the probability
that a measurement of the state after T steps gives a solution, is exactly

(sin((2T + 1)0))*, where 0 = arcsin(+/]z|/n).

If |z| > 0 and T = [(7/4)\/n/|z|], then this probability is close to 1. Hence if we know (at
least approximately) the number of solutions |z|, then we can find one with good probability
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using O(y/n/|z|) queries. If we know |z| exactly, a small modification of the algorithm finds
a solution with probability 1 [9]. This uses exactly [(7/4)\/n/|z|] queries; we will refer to it
as “exact Grover”.

What if we don’t know how many solutions there are in the input? We can first apply
Grover assuming the number of solutions is n/2, then assuming it is n/4 etc. This finds
one solution with probability at least some constant, even if we don’t know the number of
solutions. The complexity is Eiofl" O(y/n/2%) = O(y/n) queries. If we know there are at least
t solutions, this can be improved to O(y/n/t). We will refer to this as “usual Grover”.

And what if we want to have probability at least 1 — ¢ of finding a solution? Buhrman et
al. [10] designed an algorithm that achieves this using O(y/nlog(1/¢)) queries, and showed
(by proving the lower bound on deg.(OR) mentioned in Section 2.2) that this complexity is
optimal up to a constant factor. Their algorithm is quite simple. Apply exact Grover log(1/¢)
times, first assuming there is 1 solution, then assuming there are 2 solutions, then assuming
there are 3 solutions, etc. If the actual number of solutions is between 1 and log(1/¢), at least
one solution will have been found with probability 1 by now. If no solution has been found
yet, then apply usual Grover O(log(1/¢)) many times assuming there are at least ¢t = log(1/¢)
solutions. It is easy to verify that this has overall query complexity O(y/nlog(1/e)) and error
probability at most €. We will refer to this as “c-error Grover”.

A.2 Finding all solutions

De Graaf and de Wolf [15, Lemma 2] observed that exact Grover can be used to find all
solutions with probability 1, as long as we know an upper bound t on the number of solutions.
Suppose we run exact Grover t times: the first time assuming we have exactly t solutions,
the second time assuming we have exactly ¢ — 1 solutions, etc. Each time we find a solution
i, we “cross it out” in the sense of modifying the input by setting x; to 0 (this can easily
be achieved by some unitary pre- and post-processing around the query). This prevents the
algorithm from finding the same solution twice. The total number of queries used is

t

> [r/4)V/n]i] ~ 5 Vin.

i=1
To see that this finds all solutions with probability 1, observe that the assumed number of
solutions t —i+1 of the ith run always upper bounds the actual number of remaining solutions
(this “loop invariant” is easily proved with downward induction). Hence if we start with at
most ¢t remaining solutions, then after ¢ runs we end with 0 solutions—meaning all solutions
have been found.

Appendix B: The BCWZ Lower Bound for deg.(OR,,)

Here we give a brief proof of the Q(y/nlog(1l/e)) degree-bound for e-approximations of the
n-bit OR function from [10]. By symmetrization, it suffices to lower bound the degree d of a
single-variate polynomial p with the following properties:

p(0) € [—g,e] and p(i) € [1 —e,1+¢] forall i € {1,...,n}.
Defining ¢(z) = (1 — p(n — x))/e, we get a degree-d polynomial satisfying

g(n) >1/e =1 and |q(i)] <1 for alli e {0,...,n—1}.
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By a result of Coppersmith and Rivlin [13, p. 980], we can extend the latter bound to a bound
on the real interval: there exist absolute constants a,b > 0 such that

lg(x)] < ae?®/=1 for all z € [0,n —1].
We now rescale the domain [0,n — 1] to [—1, 1]. Define
r(#) = (a((x + D)0 = 1)/2) = 1)/(ae /D).
This polynomial has degree d and satisfies
Ir(z)| < 1 for all z € [~1,1], and r(1 + p) = q(n)/(ae’® /™ 1) > (1/e — 1)/(ac?® /("= D)

for 1 = 2/(n + 1). In other words, r is bounded by 1 on the interval [—1,1] and grows fast
to the right of that interval. It is known that among all degree-d polynomials bounded by 1
on the interval [—1, 1], the fastest-growing is the Chebyshev polynomial of the first kind [30],

defined by: . ; ]
Ta(z) = = <<x+\/x2—1) +(x— xz—l) >

2

Hence we have
d d
r( ) ST +p) < (A + VT T2 1) < (14+2V20+p2) < 2V,

Combining upper and lower bounds on r(1 + u) and rearranging gives d = Q(y/nlog(1/¢)).



