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The problem 2-LOCAL HAMILTONIAN has been shown to be complete for the quan-
tum computational class QMA [1]. In this paper we show that this important problem
remains QMA-complete when the interactions of the 2-local Hamiltonian are between
qubits on a two-dimensional (2-D) square lattice. Our results are partially derived with
novel perturbation gadgets that employ mediator qubits which allow us to manipulate
k-local interactions. As a side result, we obtain that quantum adiabatic computation
using 2-local interactions restricted to a 2-D square lattice is equivalent to the circuit
model of quantum computation. Our perturbation method also shows how any stabi-
lizer space associated with a k-local stabilizer (for constant k) can be generated as an
approximate ground-space of a 2-local Hamiltonian.
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1 Introduction

The novel possibilities that quantum mechanics brings to information processing have been
the subject of intense study in recent years. In particular, much interest has been devoted to
understanding the strengths and weaknesses of quantum computing as it pertains to important
problems in computer science and physics.

An important part of this research program consists of understanding which families of
quantum systems are computationally complex. This complexity can manifest itself in two
ways. On the one hand, a positive result shows that a given family of systems is “complicated
enough” to efficiently implement universal quantum computation. On the other hand, a
negative result shows that certain questions about such systems are unlikely to be efficiently
answerable. A proof of QMA-completeness offers compelling evidence of the negative kind
while also locating the given problem in the complexity hierarchy, since QMA, –the class
of decision problems that can be efficiently solved on a quantum computer with access to a
quantum witness–, is analogous to the classical complexity classes NP and MA. More precisely,
the class QMA is defined as
Definition 1 (QMA) A promise problem L = Lyes ∪ Lno ⊆ {0, 1}∗ is in QMA if there is
an efficient (of poly(|x|) size) uniform quantum circuit family {Vx}x∈{0,1}∗ such that

∀x ∈ Lyes, ∃ |ψx〉 ∈ H⊗poly(|x|), Prob(Vx(|ψx〉〈ψx|) = 1) ≥ 2/3,
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and

∀x ∈ Lno, ∀ |ξ〉 ∈ H⊗poly(|x|), Prob(Vx(|ξ〉〈ξ|) = 1) ≤ 1/3.

The work on finding QMA-complete problems was jump-started by a ‘quantum Cook-
Levin Theorem’ proved by Kitaev [2] (see also the survey [3]). Kitaev showed that the
promise problem k-LOCAL HAMILTONIAN for k = 5 is QMA-complete. Before we state
this problem, let us review some definitions. A Hamiltonian is a Hermitian operator. A
Hamiltonian on n qubits is k-local for constant k if it can be written as

∑r
j=1Hj where

each term Hj acts non-trivially on at most k qubits and thus r ≤ poly(n). Furthermore, we
require that ||Hj || ≤ poly(n) and the entries of Hj are specified by poly(n) bits. The smallest
eigenvalue of H , sometimes called the ‘ground state energy’ of H , will be denoted as λ(H).

With these definitions in place one can define the promise problem k-LOCAL HAMILTO-

NIAN as:
Definition 2 (k-LOCAL HAMILTONIAN) Given is a k-local Hamiltonian H and α, β such
that β − α ≥ 1

poly(n) . We have a promise that either λ(H) ≤ α or λ(H) > β. The problem is
to decide whether λ(H) ≤ α. When λ(H) ≤ α we say we have a ‘YES-instance’.

Kitaev’s result was strengthened in Ref. [4], which showed that 3-LOCAL HAMILTONIAN

was QMA-complete. The subsequent [1] proved that also 2-LOCAL HAMILTONIAN is QMA-
complete.

In another direction it was first shown by Aharonov et al. [5] that adiabatic quantum com-
putation using 3-local Hamiltonians is computationally equivalent to quantum computation
in the circuit model. In the adiabatic computation paradigm one starts the computation in
the ground-state, i.e. the eigenstate with smallest eigenvalue, of some Hamiltonian H(t = 0).
The computation proceeds by slowly (at a rate at most poly(n)) changing the parameters of
the Hamiltonian H(t). The adiabatic theorem (see Ref. [6] for an accessible proof thereof)
states essentially that if the instantaneous Hamiltonian H(t) has a sufficiently large spectral
gap, – i.e. the difference between the second smallest eigenvalue and the smallest eigenvalue
is Ω(1/poly(n))–, then the state at time t during the evolution is close to the ground-state of
the instantaneous Hamiltonian H(t). At the end of the computation (t = T ), one measures
the qubits in the ground-state of the final Hamiltonian H(T ). Ref. [1] improved on the result
by Aharonov et al. by showing that any efficient quantum computation can be efficiently
simulated by an adiabatic computation employing only 2-local Hamiltonians.

These results on the complexity of Hamiltonians can be viewed as the first (see also
Ref. [7]) in a field that is still largely unexplored as compared to the classical case. The
class of Hamiltonian problems is likely to be a very important class of problems in QMA.
Hamiltonians govern the dynamics of quantum systems and as such contain all the physically
important information about a quantum system. The problem of determining properties of
the spectrum, in particular the ground state (energy) or the low-lying excitations, is a well-
known problem for which a variety of methods, both numerical and analytical, (see e.g. [8, 9])
have been developed. Furthermore, finding QMA-complete problems may help us in finding
new problems that are in BQP.

Let us briefly review the classical situation. In some sense the 2-LOCAL HAMILTONIAN

problem is similar to the MAX-2-SAT problem [10]. But perhaps a better analogue is the set
of problems defined with ‘classical’ Hamiltonians such as ISING SPIN GLASS:
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Definition 3 (ISING SPIN GLASS) Given is an interaction graph G = (V,E) with Hamilto-
nian

HG =
∑

i,j∈E

Jij Zi ⊗ Zj +
∑
i∈V

ΓiZi. (1)

Here the couplings Jij ∈ {−1, 0, 1} and Γi ∈ {−1, 0, 1} and Z = |0〉〈0| − |1〉〈1| is the Pauli Z
operator. The problem is to decide whether λ(HG) ≤ α for a given α.

It is known that the problem ISING SPIN GLASS, which is a special case of the 2-local
Hamiltonian problem, is NP-complete on a planar graph. In fact, it is even NP-complete
on a planar graph when Jij = J = 1 and Γi = Γ = 1 [11]. In this paper we prove some
results on the complexity of a quantum version of this model, a quantum spin glass. Our
results are based on two ideas. The first one is a small modification to the ‘quantum Cook-
Levin’ circuit-to-5-local Hamiltonian construction that will prove QMA-completeness of a
5-local Hamiltonian on a ‘spatially sparse’ hypergraph (to be defined below). Such QMA-
completeness result on a spatially sparse hypergraph could also have been obtained from the
6-dim particle Hamiltonian on a 2D lattice that was constructed in [5].

Secondly, we introduce a set of mediator qubit gadgetsato manipulate k-local interactions.
These gadgets can be used to reduce any k-local interaction for constant k to a 2-local inter-
action. Then we use the gadgets to reduce a 2-local Hamiltonian on a spatially sparse graph
to a 2-local Hamiltonian on a planar graph, or alternatively to a 2-local Hamiltonian on a
2D lattice. The general technique is based on the idea of perturbation gadgets introduced in
Ref. [1]. However the gadgets that we introduce here are more general and more powerful
than the one in Ref. [1].

Before we state the results, let us give a few more useful definitions. With a 2-local
Hamiltonian HG acting on n qubits we can associate an interaction graph G = (V,E) with
|V | = n. For every edge in e ∈ E between vertices a and b there is a nonzero 2-local term
He on qubits a and b such that He is not 1-local nor proportional to the identity operator
I. We can write HG =

∑
e∈E He +

∑
v∈V Hv where Hv is a potential 1-local term on the

vertex v. Similarly, with a k-local Hamiltonian one can associate an interaction hypergraph
in which the k-local terms correspond to hyper-edges in which k vertices are involved. We also
use the following definition of a spatially sparse hypergraph. A spatially sparse interaction
(hyper)graph G is defined as a (hyper)graph in which (i) every vertex participates in O(1)
hyper-edges, (ii) there is a straight-line drawing in the plane such that every hyper-edge
overlaps with O(1) other hyper-edges and the surface covered by every hyper-edge is O(1).

A Pauli edge of an interaction graph G is an edge between vertices a and b associated
with an operator αabPa ⊗ Pb where Pa, Pb are Pauli matrices X = |0〉〈1| + |1〉〈0|, Y =
−i|0〉〈1|+ i|1〉〈0|, Z = |0〉〈0|− |1〉〈1| and αab is some real number. For an interaction graph in
which every edge is a Pauli edge, the degree of a vertex is called its Pauli degree. For such a
graph, the X- (resp. Y -, resp. Z-) degree of a vertex a is the number of edges with endpoint
a for which Pa = X (resp. Pa = Y , resp. Pa = Z).

We will prove the following results. First we show that

aThese gadgets are inspired by the idea of superexchange between particles with spin. Loosely speaking,
superexchange is the creation of an effective spin ‘exchange’ interaction due to a mediating particle, first
calculated by H.A. Kramers in 1934 [12].
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Theorem 4 2-LOCAL HAMILTONIAN on a planar graph with maximum Pauli degree
equal to 3 is QMA-complete.

With only a little more work, we prove that
Theorem 5 2-LOCAL HAMILTONIAN with Pauli interactions on a subgraph of the 2-D

square lattice is QMA-complete.
Lastly, we answer an open problem in Ref. [5] (see Section 5 for a more detailed statement

of the result), namely that:
Theorem 6 Universal quantum computation can be efficiently simulated by a quantum

adiabatic evolution of qubits interacting on a 2-D square lattice.
We believe that our Theorem 5 is in some sense the strongest result that one can expect

for qubits, since we consider it unlikely that 2-LOCAL HAMILTONIAN restricted to a linear
chain of qubits is QMA-complete. A recent surprising result in this respect is that 2-LOCAL

HAMILTONIAN on a one-dimensional lattice with 12-dimensional qudits is QMA-complete
[13]. With regards to Theorem 6, one should note that Aharonov et al. [5] had already proven
that interactions of six-dimensional particles on a two-dimensional square lattice suffice for
universal quantum adiabatic computation. Our improvement to qubits on a two-dimensional
lattice is an application of our perturbation gadgets to [5]’s 6-dim particle construction.

We would like to draw attention to the power of the perturbative method and in particular
to the gadgets that we develop in this paper. There are a variety of interesting states that can
be defined as the ground-states or ground-spaces of k-local Hamiltonians. Prime examples
are the stabilizer states where the Hamiltonian equals H = I−∑i Si and S = {Si} is a set of
commuting stabilizer operators. The ground-space is formed by all states with +1 eigenvalue
with respect to the stabilizer S and this space is separated by a constant gap from the rest of
the spectrum. An example is the cluster state [14], the toric code space [15] or any stabilizer
code space. Typically, the stabilizer operators Si are k-local with k > 2 which seems to
preclude the generation of such ground-space as the ground-space of a natural Hamiltonian,
see the arguments in Ref. [16]. The perturbative gadgets introduced in this paper show how to
generate a 2-local Hamiltonian which has a ground-space with is approximately a product of
a trivial ancilla-qubit space times the ground-space of the desired k-local Hamiltonian. Thus
the use of ancillas and the use of approximation get us past the constraints derived in [16]. If
the original k-local Hamiltonian has some restricted spatial structure, one can show that the
resulting 2-local Hamiltonian can be defined on a planar graph or, if desired, on a 2-D lattice.

In the Appendix of this paper we prove a stronger perturbation theorem than what has
been shown in [1]. The results in the Appendix show that under the appropriate conditions the
perturbative method does not only reproduce the eigenvalues of the target Hamiltonian, but
also the eigenstates, possibly restricted to the low-lying levels of the target Hamiltonian. We
believe that these results may have applications beyond reductions in QMA and the adiabatic
universality results in Section 5.

This paper is organized as follows. In Section 2 we show how to modify Kitaev’s original
5-local Hamiltonian construction [2] to a 5-local Hamiltonian with interactions restricted
to a spatially sparse hypergraph. In Section 3 we introduce our perturbation gadgets and
in Section 3.1 we show how to go from a 5-local to a 2-local Hamiltonian using our basic
mediator qubit gadget. In Section 3.2 we use new variants of the basic gadget to further
reduce the 2-local Hamiltonian on a spatially sparse hypergraph to a 2-local Hamiltonian
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on a planar graph of Pauli degree at most 3, Theorem 4. With a bit more work we reduce
it to a 2-local Hamiltonian on a 2-D square lattice, Theorem 5. Finally, Section 5 presents
the proof that adiabatic quantum computation using 2-local Hamiltonians on a 2D lattice is
computationally universal (Theorem 6).

2 A Spatially Sparse 5-local Hamiltonian Problem

We start by modifying the proof that 5-LOCAL HAMILTONIAN is QMA-complete in Ref. [2]
(see also [3]). The essential insight is (1) to modify any quantum circuit to one in which any
qubit is used a constant number of times and (2) make sure that the program to execute the
gates in the correct time sequence is spatially local. We note that some of the ideas in this
section are quite similar to those behind the adiabatic 2D-lattice Hamiltonian construction
with 6-dim particles in Ref. [5].

Let a quantum circuit use N qubits where n qubits are input qubits and the other N − n

qubits are ancilla qubits. We first modify this circuit such that gates are executed in R =
poly(N) ‘rounds’ where in every round only 1 (non-trivial) gate is performed b. After a round,
the N qubits are swapped to a next row of N qubits and then the next gate in the original
circuit is executed. The total number of qubits in this modified circuit is M = RN . The rows
of N qubits for different rounds R are depicted in Fig. 1. Let us specify an order in which
the swap and gate operations are executed. In the first round R = 1 we start by applying
gates, I and the non-trivial gate, with the qubit on the left in Figure 1. After this round, the
swapping starts with the qubit on the right. Then again the R = 2 gate-round starts with
qubits on the left etc. If we label the gates (including I) with a time-index depending on
when they are executed, then it is clear that in this model time changes in a spatially local
fashion.

We also note that in our construction, each physical qubit enters a gate at most 3 times,
twice in a swap gate, and once in a I gate or a nontrivial gate.

In the class QMA the verifier Arthur uses a verifying quantum circuit Vx for an instance x.
We will use the fact that we can always replace such verifying quantum circuit by a modified
verifying circuit with the properties that we derived above.

Given any instance x of a promise problem L ∈ QMA and the verification circuit Vx, we
will construct a 5-local Hamiltonian H(5) such that

• if on some input |ξ, 0〉 Vx accepts with probability more than 1−ε (x is a YES-instance),
then H(5) has an eigenvalue less than ε

p1(n) for some polynomial p1(n).

• if Vx accepts with probability less than ε then all eigenvalues of H(5) are larger than
1−ε−√

ε
p2(n) for some polynomial p2(n).

Thus we can map each promise problem in QMA onto a 5-local Hamiltonian problem where the
specific restricted form of Arthur’s verifying circuit will lead to restrictions on the interactions
in the 5-local Hamiltonian, that is, the interaction hypergraph will be spatially sparse. In
particular, when ε = O(2−n) for a n qubit proof from Merlin, we obtain a Hamiltonian which
obeys the promise in Definition 2. Note that Definition 1 uses ε = 1/3 but it has been shown,
see e.g. [17], that one can make the error ε = O(2−n) for a n qubit proof input.

bOne could do more gates per round, but this construction is perhaps more easily explained.
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R=1

R=2

R=3

R=4

Fig. 1. Two-dimensional spatial layout of the qubits in a quantum circuit for R = 4. A qubit is
indicated by a •. One and two-qubit gates are indicated by boxes. After the gate is executed in
row R, those qubits are swapped with the qubits above them in row R + 1. The order in which
the swap and gate operations are executed can be represented by a (time)cursor that snakes over
the circuit as follows. We start with the qubit on the left in row R = 1. Identity gates are applied
on qubits in this row except for the one non-trivial gate. We end up at the right and then start
swapping the qubits in row 1 with those in row 2, starting with the qubit on the right. By doing
this we end up at the left. Now we perform a round of gate-applications (going right) on the
qubits in row R = 2. We end up at the right and go left while swapping the qubits in rows R = 2
and R = 3. We continue until all necessary gates are executed and the computational qubits are
sitting in the last row.

Thus, these arguments will prove that the 5-local Hamiltonian problem on a so-called spa-
tially sparse hypergraph is QMA-hard. Since it is also known that 5-LOCAL HAMILTONIAN

is in QMA [2], this proves the QMA-completeness of 5-LOCAL HAMILTONIAN on a spatially
sparse hypergraph.

Let us now look at the details of mapping a QMA circuit onto a Hamiltonian problem.
Our construction is a small modification from the standard construction by Kitaev [2]. We
define a set of clock-qubits. We use T = (2R − 1)N clock-qubits labeled as c1 . . . , cT . Time
t will be represented as the state |1t0T−t〉c1...cT as in Ref. [2]. Let U1 . . . UT be the sequence
of operations on the computational qubits of the quantum circuit V , one operation for every
clock-qubit c1, . . . , cT . The set of operations includes the actual gates, the I operations
when only time advances and the swap gates. Let Qin be the set of n qubits that contain
the input |ξ〉. Let qout be the final qubit that is measured in the quantum circuit Vx. The
5-local Hamiltonian H(5) that we associate with this circuit is as follows. H(5) = Hin+Hout+
Hclock + 1

2

∑T
t=0Hevolv(t) where

Hin =
∑

q/∈Qin

|1〉〈1|q ⊗ |100〉〈100|ctq−1,ctq ,ctq+1 ,

Hout = |0〉〈0|qout ⊗ |1〉〈1|cT ,

Hclock =
T−1∑
t=1

|01〉〈01|ct,ct+1 . (2)
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and

Hevolv(1) = |00〉〈00|c1,c2 + |10〉〈10|c1,c2

−U1 ⊗ |10〉〈00|c1,c2 − U †
1 ⊗ |00〉〈10|c1,c2 ,

Hevolv(t) = |100〉〈100|ct−1,ct,ct+1 + |110〉〈110|ct−1,ct,ct+1

−Ut ⊗ |110〉〈100|ct−1,ct,ct+1 − U †
t ⊗ |100〉〈110|ct−1,ct,ct+1 , 1 < t < T

Hevolv(T ) = |10〉〈10|cT−1,cT + |11〉〈11|cT−1,cT

−UT ⊗ |11〉〈10|cT−1,cT − U †
T ⊗ |10〉〈11|cT−1,cT . (3)

Hin is the only term that is different from the 5-local Hamiltonian considered in Ref. [2];
it uses the definition of a set of special times tq. Before we define these times, let us look
more closely at the interactions in the Hamiltonian and how the qubits can be laid out so
that each qubit only interacts with a set of qubits in its neighborhood. The precise form
of this neighborhood is irrelevant, we only require that the interaction hyper-graph of this
Hamiltonian spatially sparse, as defined in the Introduction.

Given the lay-out of the computational (non-clock) qubits in Figure 1 we can ‘drape a
string’ of clock qubits over the line following the sequence of computational steps. This
ensures that the terms in Hevolv involve qubits that are in each other’s local neighborhood.
We can also ensure this locality property of Hout by choosing the output qubit qout to be
the last qubit on the right in the final row. Now let us consider Hin. For every qubit in the
layout in Figure 1 there is a time in which the running cursor which snakes over the circuit
first arrives at this qubit. For the qubits in R = 1, this is when the cursor comes from the
left doing the I operations or the non-trivial gate. For the qubits in the other rows R > 1, it
is when the cursor, coming from the right, starts swapping the qubit with the previous row
R− 1. These cursor actions are represented in Hevolv. For a qubit q we define the clock-qubit
ctq as the clock-qubit whose bit is flipped in the interaction representing the earliest gate (the
action of the cursor) on the qubit q in Hevolv. Then it is clear that the clock-qubit ctq is local
to the qubit q and therefore Hin again represents an interaction between qubits that are in
each other’s local neighborhood. It is also clear that the role of Hin is to make sure that the
state of the qubits is set to 0 before the gates actually act on these qubits. Note that we
set the state of all qubits (except those in Qin) to zero, also the ones in the later rows that
are merely used as dummy qubits to be used in swaps. This is not absolutely necessary but
merely convenient.

These arguments show that the interaction hypergraph of the Hamiltonian is spatially
sparse. Note also that given a quantum circuit with N qubits one can efficiently construct
the interaction hypergraph of the corresponding Hamiltonian and draw this hypergraph in
the plane where hyperedges involving 5 qubits are represented as five-sided polygons.

The proof of the following Lemma is analogous to the proof of Theorem 14.3 in [2].

Lemma 1 Let |ψ〉 =
√

1
T+1

∑T
t=0 |ξt〉q1...qM |1t0T−t〉c1...cT where |ξt〉 = Ut|ξt−1〉 for all 1 ≤

t ≤ T and |ξ0〉 = |ξ〉|0M−n〉 for some state |ξ〉 of the input qubits. If Arthur’s verifying
quantum circuit Vx accepts with probability more than 1 − ε on some input |ξ, 00 . . .0〉 then
〈ψ|H(5)|ψ〉 < ε

T+1 . If Vx accepts with probability less than ε on all inputs |ξ, 0〉 then all

eigenvalues of H(5) are larger than or equal to c(1−ε−√
ε)

T 3 for some constant c.
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Proof. Consider first 〈ψ|H(5)|ψ〉. We only need to check that 〈ψ|Hin|ψ〉 = 0 since this
term is different than the one in Ref. [2]. We note that
Hin|ψ〉 ∝

∑
q/∈Qin

|1〉〈1|q|ξtq−1, 1tq−10T−(tq−1)〉 = 0 since in |ψ〉 all computational qubits are
set to 0 before they are being acted upon, i.e. qubit q is the state 0 at all times t < tq. Thus
|ψ〉 has zero eigenvalue with respect to all terms in H(5) except Hout. If Vx accepts with
probability more than 1 − ε, this implies that 〈ψ|H(5)|ψ〉 = 〈ψ|Hout|ψ〉 < ε

T+1 . The second
part of the proof is to show that if Vx accepts with small probability, the eigenvalues of H
are bounded from below. Again the proof is identical in structure to the proof in [2] except
for Hin. We first note that H(5) preserves the space of ‘legal’ clock-states S, i.e. clock-states
of the form |1t0T−t〉 and thus we can consider the minimum eigenvalue problem of H(5) on S
and S⊥ separately. On S⊥ this minimum eigenvalue is 1 since at least one of the constraints
of Hclock is not satisfied. Now we consider H(5)|S which we can express using the definition
|t〉 ≡ |1t0T−t〉. We have Hin|S =

∑
q/∈Qin

|1〉〈1|q ⊗ |tq − 1〉〈tq − 1|. As in the standard proof
we perform a rotation W to a more convenient basis where W =

∑T
t=0 Ut . . . U1 ⊗ |t〉〈t|. Let

H2 ≡W †Hevolv|SW = I ⊗ E, (4)

where E is defined below Eq. (14.9) in [2]. Let

H1 ≡W †(Hin +Hout)|SW =
∑

q/∈Qin

|1〉〈1|q ⊗ |tq − 1〉〈tq − 1| + U †|0〉〈0|qoutU ⊗ |T 〉〈T |, (5)

where U = UT . . . U1. Note that Hin|S is unchanged by the rotation W since there are no
gates acting on a qubit q prior to the time tq. Now we would like to use Lemma 14.4 in
Ref. [2] and lower-bound the smallest eigenvalue of H1 + H2. Let L1 and L2 be the non-
empty null-spaces of H1 and H2. Lemma 14.4 states that for such H1 ≥ 0 and H2 ≥ 0 we can
bound H1 +H2 ≥ 2v sin2(θ/2) where v is the smallest non-zero eigenvalue of H1 and H2 and
cos2 θ = maxη∈L2〈η|PL1 |η〉 where PL1 is the projector on L1. The minimum of the smallest
non-zero eigenvalue of H1 and H2 is as in Ref. [2], namely v ≥ cT−2.

Now we show that, as in [2], one can bound sin2 θ ≥ 1−ε−√
ε

T+1 . Putting these results

together shows that the minimum eigenvalue of H(5) is at least c(1−ε−√
ε)

T 3 for some constant
c, as claimed. As in Ref. [2] any state in L2 is of the form |ξ〉 ⊗ 1√

T+1

∑T
t=0 |t〉 where |ξ〉

is arbitrary. We can also write PL1 =
∑T

t=0 Pt ⊗ |t〉〈t| where PT = U †|1〉〈1|qoutU , and
Pt = Πq/∈Qin|tq=t+1|0〉〈0|q ⊗ Ielse,t where Ielse,t is the I operator on all computational qubits
for which tq �= t + 1. At some times Pt may just be I on all qubits. Here Πq/∈Qin|tq=t+1 is
tensor product of |0〉〈0| for all qubits q for which tq = t+ 1. Thus we need to bound

cos2 θ =
1

T + 1
max

ξ
〈ξ|
∑

t

Pt|ξ〉. (6)

All Pt for t < T commute and their common eigenspace is the space where all qubits q /∈ Qin

are set to |00 . . .0〉. We can write any |ξ〉 as |ξ〉 = α|00 . . . 0, ψ0〉 + |β〉 where ψ0 is a state for
all qubits in Qin and |β〉 is a state with norm 1− |α|2 in which at least one of the k non-input
qubits is not in |0〉. Thus we have

cos2 θ ≤ 1
T + 1

[ |α|2T + |α|2〈0, ψ0|PT |0, ψ0〉 + 2|α| |〈0, ψ0|PT |β〉|
+ (T − 1)〈β|β〉 + 〈β|PT |β〉]. (7)
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Given the acceptance probability of the circuit Vx we can bound 〈0, ψ0|PT |0, ψ0〉 < ε. We
also bound 〈β|PT |β〉 ≤ 〈β|β〉. This gives

cos2 θ ≤ 1
T + 1

(
T + |α|2ε+ 2|α|√ε

√
1 − |α|2

)
≤ 1 − 1 − ε−√

ε

T + 1
. (8)

�.

3 Perturbation Theory

In this section we introduce the perturbation method. Our main new idea is the use of
mediator qubits that perturbatively generate interactions. The mediator qubits are weakly
coupled to the other qubits and to lowest order in the perturbation this coupling generates
an interaction between the other qubits, see Section 3.1. We will show as a first step how this
can be used to reduce any k-local Hamiltonian problem to a 3-local Hamiltonian problem.
We can then use the perturbation gadget in [1] to reduce a 3-local to a 2-local Hamiltonian
(we also sketch an alternative mediator qubit method). To reduce a 2-local Hamiltonian to
a 2-local Hamiltonian on a 2D lattice or a planar graph, we need a few other applications of
our mediator qubit gadgets which will be introduced in Section 3.2.

In Ref. [1] the authors reduce the problem 3-LOCAL HAMILTONIAN to
2-LOCAL HAMILTONIAN by introducing a perturbation gadget. The idea is to approxi-

mate λ(Htarget) of a desired (3-local) Hamiltonian Htarget by λ(H̃) of a 2-local Hamiltonian
H̃ where λ(H̃) is calculated using perturbation theory. One sets H̃ = H + V where H is
the ‘unperturbed’ Hamiltonian which has a large spectral gap Δ and V is a small perturba-
tion operator. We will choose H such that it has a degenerate ground-space associated with
eigenvalue 0 and the eigenvalues of the ‘excited’ eigenstates are at least Δ. The effect of the
perturbation V is to lift the degeneracy in the ground-space and create the target Hamiltonian
in this space.

More accurately, we have a Hilbert space L = L+ ⊕ L− where L− is the ground-space of
H . Let Π± be the projectors on L±. For some operator X we define X++ = Π+XΠ+, X−+ =
Π−XΠ+, X+− = Π+XΠ−, X−− = Π−XΠ− and X+ ≡ X++. In order to calculate the
perturbed eigenvalues, one introduces the self-energy operator Σ−(z) for real-valued z

Σ−(z) = H− + V−− + V−+G+(I+ − V++G+)−1V+−, (9)

where we can perturbatively expand

(I+ − V++G+)−1 = I+ + V++G+ + V++G+V++G+ + . . . . (10)

Here G+, called the unperturbed Green’s function (or resolvent) in the physics literature, is
defined by

G−1
+ = zI+ −H+. (11)

In Ref. [1] the following theorem is proved (here we state the case where the ground-space of
H has eigenvalue 0 and H has a spectral gap Δ above the ground-space):

Theorem 7 ([1]) Let ||V || ≤ Δ/2 where Δ is the spectral gap of H and λ(H) = 0. Let
H̃ |<Δ/2 be the restriction of H̃ = H+V to the space of eigenstates with eigenvalues less than
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Δ/2. Let there be an effective Hamiltonian Heff with Spec(Heff) ⊆ [a, b]. If the self-energy
Σ−(z) for all z ∈ [a− ε, b+ ε] where a < b < Δ/2 − ε for some ε > 0, has the property that

||Σ−(z) −Heff || ≤ ε, (12)

then each eigenvalue λ̃j of H̃ |<Δ/2 is ε-close to the jth eigenvalue of Heff . In particular

|λ(Heff) − λ(H̃)| ≤ ε. (13)

This theorem can be generalized to Theorem A.1 proved in the Appendix. Theorem A.1
shows that under appropriate conditions, the effective Hamiltonian is approximately identical
to H̃ restricted to its low-lying eigenspaces. With the same technique we also prove Lemma
A.1 in the Appendix which shows that the ground-space of a target Hamiltonian can be
generated perturbatively (under the assumption that the target Hamiltonian has a 1/poly(n)
gap). Lemma A.1 was also proved in [1] in the special case that the ground-space is non-
degenerate.

3.1 Mediator Qubit Gadgets

In the following explanation of the gadgets we will refer to Htarget as the desired Hamiltonian
that we want to generate perturbatively and the effective Hamiltonian is Heff = Htarget ⊗
|00 . . .〉〈00 . . . |, i.e. the ancillary ‘mediator’ qubits are in their ground-state |00 . . . 0〉.

The gadgets that we introduce below to accomplish the reduction are what we call mediator
qubit gadgets and seem to be useful in general to manipulate k-local interactions. The idea
is that we replace a direct interaction between two groups of �k/2� qubits with indirect
interactions through a mediator qubit. In the ground-state of the unperturbed Hamiltonian
H the mediator qubit is in state |0〉. The perturbation V is chosen such that interaction with
the other qubits can flip the mediator qubit. The perturbative corrections to the self-energy,
up to second order in the perturbation, involve the process of flipping the mediator qubit by
interaction with a group of qubits a and flipping the mediator qubit back to |0〉 by a second
interaction with a group of qubits b. If a = b we potentially obtain some �k/2�-local terms.
For a �= b we obtain an effective k-local interaction involving groups a and b. This gadget could
also be used with three or more groups of qubits (or higher dimensional quantum systems);
in this case interactions would be generated between all groups of qubits. An example of such
application is the Cross gadget, explained in Section 3.2.

a b a bw

A B A BX X

Fig. 2. Subdivision gadget. A k-local interaction is reduced to �k/2� + 1-local interactions using
a mediator qubit vertex w. The operators A, B, X next to the edges indicate which operators
correspond to the edges.

Subdivision Gadget. Assume that a k-local operator associated with (hyper)edge ab
is of the form A ⊗ B and let r = max(||A||, ||B||). The hyper-edge ab is part of a larger
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(hyper)graph and a corresponding Hamiltonian. Let all other terms in the Hamiltonian be
Helse. We can write the Hamiltonian as

Htarget = (Helse +A2/2 +B2/2) − (−A+B)2/2 ≡ H ′
else − (−A+B)2/2, (14)

so that H ′
else contains some additional �k/2�-local terms as compared to Helse. W.l.o.g. we

assume that max(||H ′
else||, r) ≥ 1.

The terms in the gadget Hamiltonian H̃ = H + V are the following

H = Δ|1〉〈1|w, V = H ′
else +

√
Δ/2 (−A+B) ⊗Xw. (15)

The operator Xw is the Pauli X operator acting on qubit w. The degenerate ground-space L−
of H has the mediator qubit in the state |0〉. We have the following: H− = 0, G+(z) = |1〉〈1|w

z−Δ ,
V−− = H ′

else ⊗ |0〉〈0|w and

V+− =
√

Δ/2(−A+B) ⊗ |1〉〈0|w. (16)

Thus the self-energy Σ−(z) equals

Σ−(z) =
(
H ′

else +
Δ

2(z − Δ)
(−A+B)2

)
⊗ |0〉〈0|w +O

( ||V ||3
(z − Δ)2

)
. (17)

We can expand the self-energy around z = 0 and identify Heff = Htarget ⊗ |0〉〈0|. This gives

||Σ−(z) −Heff || = O

( |z|r2
Δ2

)
+O

( ||V ||3
Δ2

)
+O

( |z|||V ||3
Δ3

)
. (18)

In order for Theorem 7 to apply the following must hold: (1) for z ∈ [−‖Heff‖− ε, ‖Heff‖+ ε],
Σ−(z) should be ε-close to Heff and (2) ||V || ≤ Δ/2. Let us consider how to choose Δ such that
these conditions are fulfilled. We can bound ||V || ≤ ||H ′

else||+
√

2Δr ≤ √
Δ
(||H ′

else|| +
√

2r
)
.

We will choose Δ such that |z| < Δ. Then, using the bound on ||V || gives

||Σ−(z) −Heff || ≤ O

(
r2

Δ

)
+O

(
(||H ′

else|| +
√

2r)3

Δ1/2

)
. (19)

Let us choose
Δ = (||H ′

else|| + C2r)
6
/ε2, (20)

for some constant C2 ≥ √
2. This choice lets us bound the last term in Eq. (19) by O(ε).

Since Δ−1 ≤ ε2

C2r6 , we can bound the first term in Eq. (19) by O(ε2). Let us verify the second
condition ||V || ≤ Δ/2 with this choice of Δ. We have indeed

||V ||
Δ

≤ ε

(||H ′
else|| +

√
2r)2

≤ ε. (21)

Consider the conditions on |z|, i.e. z ∈ [−‖Heff‖ − ε, ‖Heff‖ + ε] and |z| < Δ. Since ||Heff || ≤
||H ′

else||+ 2r2, we can consider the interval |z| ≤ ||H ′
else||+ 2r2 + ε. For sufficiently small ε we

have (using max(||H ′
else||, r) ≥ 1)

|z|
Δ

=
ε2(||H ′

else|| + 2r2 + ε)
(||H ′

else|| + C2r)6
≤ O(ε2) < 1. (22)



R. Oliveira and B. M. Terhal 911

Thus for the choice of Δ as in Eq. (19) we have Σ−(z) = Htarget ⊗ |0〉〈0|w + O(ε). ¿From
Theorem 7 it follows that |λ(Heff) − λ(H̃)| = O(ε). When ||H ′

else||, r and 1/ε are polynomial
in n (n is the number of qubits of Htarget), it is clear from Eq. (20), that the norm of the
gadget Hamiltonian H̃ which uses Δ is polynomially larger than the norm of the effective
Hamiltonian. This implies that the gadget can only be used a constant number of times in
series if norms have to remain polynomial.

We will use this type of gadget in parallel, that is, in many places in an interaction graph
at once. Let us explain how this happens in detail and argue that the local gadgets operate
independently, i.e. there are no cross-gadget contributions to 2nd order in the perturbation.
Let Htarget = Helse −

∑k
i=1H

i
target where Hi

target = (−Ai +Bi)2/2 for some operators Ai and
Bi. Helse contains all interactions that are not generated perturbatively in addition to the
compensating terms A2

i /2 etc., similar as above. We introduce k mediator qubits w1 . . . wk

and choose H̃ =
∑

iHi+V whereHi = Δ|1〉〈1|wi and V = Helse+
√

Δ/2
∑

i(−Ai+Bi)⊗Xwi .
The degenerate ground-space L− of H has all mediator qubits w1 . . . wk in the state |0〉.

Let h(x) be the Hamming weight of a bit-string x ∈ {0, 1}k of the qubits w1 . . . wk. We have
the following: G+ =

∑
x 
=00...0

|x〉〈x|
z−h(x)Δ , V−− = Helse ⊗ |00 . . .0〉〈00 . . . 0| and

V+− =
√

Δ/2
∑

i

(−Ai +Bi)|00 . . . 1i . . . 0〉〈00 . . . 0|, (23)

where |00 . . . 1i . . . 0〉 has qubit wi in the state |1〉. To second order in the perturbation V ,
there are no cross-gadget terms in Σ−(z). Thus the self-energy Σ−(z) to second order equals

Σ−(z) =

(
Helse +

Δ
2(z − Δ)

∑
i

(−Ai +Bi)
2

)
⊗ |00 . . . 0〉〈00 . . . 0| +O

( ||V ||3
(z − Δ)2

)
. (24)

Choosing Δ = poly(n)/ε2 for some sufficiently large poly(n) gives

Σ−(z) = Htarget ⊗ |00 . . . 0〉〈00 . . .0| +O(ε). (25)

We need to use the parallel application of this gadget twice in order to reduce the ground-
state energy problem of our 5-local Hamiltonian to that of a 3-local Hamiltonian; one appli-
cation results in a 4-local Hamiltonian, another one reduces it to 3. Similarly, any k-local
Hamiltonian for constant k can be reduced to a 3-local Hamiltonian by these means. A 3-to-2-
local reduction can be carried out using the gadget in [1]. However an alternative construction
exists which we now explain.
3-to-2-local gadget. Assume that we have a target Hamiltonian Htarget = A⊗B ⊗ C +
Helse. The idea is to generate the 3-local term A ⊗ B ⊗ C by using perturbative effects up
to third order. As before one introduces a mediator qubit w whose ground-state is |0〉 for
the unperturbed operator. And, as before, we have perturbations proportional to A ⊗ Xw

and B ⊗ Xw which can flip the mediator qubit. We also have a perturbation V which
contains a term proportional to C ⊗ |1〉〈1|w which implies that there is an interaction with
C if the mediator qubit is ‘excited’. Thus, the second-order perturbative corrections give us
terms proportional to A⊗B whereas third-order corrections gives us the desired A⊗B ⊗ C

(and some additional 2-local terms). More precisely, let Htarget = Helse + A ⊗ B ⊗ C. Let
r = max(||A||, ||B||, ||C||). We choose H = Δ|1〉〈1|w and

V = Helse + Vextra − Δ2/3C ⊗ |1〉〈1|w + Δ2/3(−A+B) ⊗Xw/
√

2 (26)
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where the additional 2-local compensating term is Vextra = Δ1/3(−A+B)2/2+(A2+B2)⊗C/2.
One can show that

Σ−(z) = [Helse +A⊗B ⊗ C] ⊗ |0〉〈0|w +O(|z|Δ−2/3) +O(Δ−1/3). (27)

For sufficiently large Δ and |z| ≤ ||Helse|| + O(r3) + ε we make Σ−(z) sufficiently close to
Htarget ⊗ |0〉〈0|.

The important conclusion of this section is that one can derive a 2-local Hamiltonian
on a spatially sparse graph for which the ground-state energy problem is QMA-complete.
The interaction graph is restricted because the perturbation gadgets preserve the spatial
restrictions of the original hypergraph of the 5-local Hamiltonian.

3.2 More Mediator Qubit Gadgetry

For our next round of reductions we need to describe some different uses of the subdivision
gadget acting on 2-local interactions. In the following we will assume that every edge in the
interaction graph is a Pauli edge. It may thus be that the interaction graph contains other
edges between the same vertices, each edge associated with a different product of Paulis. The
Pauli degree of a vertex is then the number of Pauli edges that are incident on this vertex.

The Cross Gadget. For the Cross Gadget we assume that we have a graph G which,
when embedded in the plane, contains two crossing edges such as in Fig. 3. Assume that
the operator on edge ad is αadPa ⊗ Pd and on edge bc we have αbcPb ⊗ Pc. Our desired
Hamiltonian is

Htarget = Helse − (−αadPa − αbcPb + Pc + Pd)2/2. (28)

It is clear that the last term in this Hamiltonian generates the desired crossing edges αadPa⊗Pd

and αbcPb ⊗ Pc in addition to other operators on the edges ab, bd, cd and ac. Thus Helse is a
sum of all other operators associated with the original graph G and a set of operators on the
edges around the cross, see Figure 3, which are meant to cancel the extra operators generated
by the last term in Htarget. As before we set H̃ = H + V with

H = Δ|1〉〈1|w, V = Helse +
√

Δ/2 (−αadPa − αbcPb + Pc + Pd) ⊗Xw, (29)

and the analysis follows as for the subdivision gadget. Note that if there are no edges ab, bd,
cd, or ac in Htarget, there will be such edges in H̃ , as indicated in Fig. 3.

a b

c d

P P

P
P

a b

c
P

d

a b

c d
d

Pa Pb

Pc Pd

c Pc
Pd P

Pb

PbPa

X
X

X
X

Pa

Fig. 3. Cross gadget. A crossing between two edges is removed by placing a mediator qubit in the
middle. Additional edges ab, ac, bd and cd are created.
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a

b c

a

b c

w

P Paa

Pb Pc

Pa

X

Pb Pc

Pb Pc

X X

Fig. 4. Fork gadget. Two edges of the same type at vertex a are merged by the placement of a
mediator qubit w. The additional edge bc is created.

The Fork Gadget. For the Fork gadget we have a subgraph as in Fig. 4 where the
operator on edge ab is αabPa ⊗ Pb and on edge ac it is αacPa ⊗ Pc. The Fork gadget merges
the 2 edges coming from vertex a at the cost of creating an additional edge between b and c.
Our desired Hamiltonian is

Htarget = Helse − (Pa − αabPb − αacPc)2/2, (30)

where Helse contains all other terms not involving edge ab and ac. We take

H = Δ|1〉〈1|w, V = Helse +
√

Δ/2 (Pa − αabPb − αacPc) ⊗Xw, (31)

and the analysis follows as before.
The Triangle Gadget The Fork gadget can also be used in order to reduce the degree of

a vertex, see Fig. 5; this is achieved by applying the Fork gadget together with the subdivision
gadget in series. We first apply a subdivision gadget on the edges ab and ac. Then we apply
the Fork gadget on vertex a, thus generating the inner triangle in Fig. 5.

a

b c

X
X

X

P Pb c

X

w1

w2 w3

Pb Pc

Fig. 5. Triangle Gadget. We first subdivide edges ab and ac and then apply the Fork gadget on
vertex a. This give rise to a ‘mediator triangle’ such that vertices b and c have the same degree
as before and vertex a has reduced its degree by 1.
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4 2-LOCAL HAMILTONIAN on a 2-D Square Lattice

With these tools in place, we are ready to state the reduction which we obtain by applying
the gadgets in the previous section. Together with our previously argued 5-local to 2-local
reduction, this Lemma implies Theorem 4.

Fig. 6. Localizing a vertex.

Lemma 2 Let HG be a 2-local Hamiltonian related to a spatially sparse graph G = (V,E)
with |V | = n and where HG =

∑
e∈E He +

∑
v∈V Hv such that ‖He‖ ≤ poly(n) and ‖Hv‖ ≤

poly(n). For any ε > 0 there exists a graph Gsim which is planar with maximum Pauli degree
at most 3 and a polynomially bounded 2-local Hamiltonian HGsim such that

|λ(HG) − λ(HGsim)| = O(ε). (32)

Moreover, there is a planar straight-line drawing of Gsim such that all edges in Gsim have
length O(1), and all angles between adjacent edges are Ω(1).

Proof.

• We use the subdivision gadget in order to localize each vertex with Pauli degree more
than 3, see Fig. 6. Then we are ready to reduce the Pauli degree (which is some
constant) of these vertices.

• Consider the set of vertices with Pauli degree more than 3. We are going to apply the
Triangle gadget to all these high degree vertices in the following way. We first apply
the subdivision gadget to all edges that we intend to merge using the Fork gadget; we
can do this in one parallel application. We do this so that the triangle gadgets that we
will apply in parallel never act on the same edges. Then, for a vertex with X-degree dx,
Y -degree dy, Z-degree dz we do the following. We pair the X-edges and apply to each
pairing a Fork gadget. This means we have reduced the X-degree to �dx/2�. In parallel
we pair the Y -edges and the Z-edges using the Fork gadget, halving their degrees. We
do this single perturbative step in parallel for all high-degree vertices in the graph. We
repeat this Triangle gadget process O(1) number of times (since the maximum degree
initially was O(1)) until the total Pauli degree of every vertex is at most 3. Since the
initial degree of every vertex was O(1), the number of additional crossings that we
generate per edge is constant.



R. Oliveira and B. M. Terhal 915

• Next, we reduce the number of crossings per edge, by subdividing each edge a constant
number of times, see Fig. 7. Every subdivision is done in parallel on all edges of the
graph that need subdividing.

• Then we use the subdivision gadget to localize each crossing, see Fig. 8. We apply the
subdivision gadget in parallel on every crossing in the graph and we repeat the process
4 times so that for all crossing edges ab, cd, the quadrilateral acbd contains only these
points and the crossing edges.

• We apply the Cross gadget, see Fig. 3, in parallel to every localized crossing in order
to remove the crossing. Note that due to the localization step the cross-gadget only
involves mediator qubit vertices with degree at most 2. Thus the cross-gadget generates
additional 2-local terms around the square, but the total Pauli degree of the resulting
vertices is at most 4. Note that these vertices with degree 4 are all mediator qubits
which only have non-zero X-degree (and zero Y- and Z-degree).

• On all mediator qubits with X-degree 4 we apply the Triangle gadget reducing the degree
to 3. Since the triangle gadget generates mediator qubits with X-degree 3 we cannot do
any further reductions.

Thus in this final Hamiltonian there are no vertices with Pauli degree more than 3 and the
graph is planar. Theorem 7 is used in every gadget application to give the final result, Eq. (32).
Note that by this reduction all original system qubits have Pauli degree at most 3 by having
X-degree, Y-degree and Z-degree ranging from 0 to 1. The mediator qubits have X-degree
ranging from 2 to 3 and 0 Y- and Z-degree. �.

Fig. 7. An edge that crosses C other edges is subdivided �log C� times by inserting a mediator
qubit.

a b

c d

a
b

c d

Fig. 8. Localizing a crossing by applying the subdivision gadget four times.



916 The complexity of quantum spin systems on a two-dimensional square lattice

Fig. 9. A planar graph of maximal degree ≤ 3 and its representation in the lattice. In the gray
squares, the paths are rerouted to avoid crossings.

4.1 Representation on a 2-D Square Lattice

Any planar graph G = (V,E) with maximal degree 3 in which the (straight-line) edges have
length O(1) and adjacent edges form an angle of Ω(1) can be represented on a planar square
lattice in the following sense: each vertex a of G is mapped to some lattice site φ(a) inside
the square [−O(|V |), O(|V |)]2, and each edge ab of G is mapped to a lattice path φ(ab) of
length O(1) from φ(a) to φ(b) that does not cross any other vertices or any other path. To
see this, one can look at Fig. 9 or follow these steps: draw a fine square grid on the plane.
If the spacing between points on the grid is small enough, moving each vertex a of G to a
vertex in the lattice (and redrawing the edges) still leaves the graph planar, with O(1)-length
edges and Ω(1) angles. Now for each edge, draw a lattice path that stays close to the edge. If
the grid is fine enough, these paths can never cross outside an O(1)-size square (indicated in
grey in Fig. 9) around the vertices of the graph, because of the angle condition. By further
refining the grid if necessary, one can reroute each of the paths stemming out of a vertex a
inside of a’s square, so that no two different paths

collide. It is easy to see that we only need the grid to have spacing Ω(1), and that all the
other conditions above are satisfied.

Clearly, this embedding can be found efficiently, given the adequate embedding of G. If
H is a Hamiltonian that has G as (Pauli) interaction graph, one can use the subdivision
gadget O(1) times in parallel to map each edge ab to a path of the same length as φ(ab). The
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Hamiltonian H̃ thus obtained has interaction graph φ(G) and λ(H̃) is O(ε)-close to λ(H).
These arguments together with our previous results and Lemma 2 prove Theorem 5.

5 Universal Quantum Adiabatic Computation

In Ref. [1] the authors show that their perturbation-theoretic reduction of 3-LOCAL HAMIL-

TONIAN to 2-LOCAL HAMILTONIAN also reduces 3-local adiabatic computations to 2-local
ones. The goal of this Section is to show that an analogous result can be carried out in
the present context, namely that 2-local Hamiltonians with nearest-neighbor interactions on
qubits on a 2D lattice suffice for universal adiabatic quantum computation.

Let us describe in more detail what our goal is. We will construct a (classically) poly-time
computable map Φ that takes as input a classical description 〈Q〉 of a quantum circuit Q and
outputs a description of an adiabatic quantum computation on a 2D lattice. Suppose Q acts
on n qubits and has T gates. Then

Φ(〈Q〉) = (〈H0〉, . . . , 〈Hp〉).

Here

1. p ∈ N is a constant independent of Q;

2. N , the number of qubits on which Hi acts is poly(n, T );

3. for each i ∈ {0, . . . , p}, 〈Hi〉 describes a 2-local nearest-neighbor Hamiltonian on qubits,
acting on the same subset of N = poly(n, T ) sites of the square lattice;

4. ‖Hi‖ = poly(n, T ) for all i ∈ {0, . . . , p};

5. Let

H(s) =
p∑

i=0

siHi (s ∈ [0, 1]).

The spectral gap between the ground-state and first excited state ofH(s) is 1/poly(n, T )
for all s.

6. The ground-state of H(0) is |0〉⊗N and the ground-state of H(1) encodes the result of
the computation of Q on input |0〉⊗n (a more precise description is given in [1, Section
7] or [5]).

Of course, all occurrences of poly above correspond to fixed polynomials that do not
depend on Q. Notice that for any Hamiltonian satisfying the above conditions one has that

sup
s∈[0,1]

∥∥∥∥djH(s)
dsj

∥∥∥∥ ≤ poly(n, T ), for all j = 0, 1, . . .

This is sufficient to ensure that adiabatic computation implemented by H(s), starting from
|0〉⊗N , appropriately simulates the quantum circuit Q, that is, in polynomial time [6]. Note
that the usual adiabatic computation, e.g. the universal adiabatic computation in [5], has
p = 1.
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There are several ways to map a circuit Q to a corresponding H(s). One could modify the
5-local construction in this paper in order to show that one can do universal quantum com-
putation using a quantum adiabatic computation with a 5-local Hamiltonian on a spatially
sparse graph. Then we could apply the perturbation gadgets to derive a 2-local Hamiltonian
with similar properties. However, an easier route to the desired result is the following. In [5]
it was shown how to map a circuit Q to a corresponding Hamiltonian H(6)(s) on a 2D lattice.
That construction satisfies all but one of the above requirements, as it acts on 6-dimensional
qudits rather than qubits. However, we can embed 6-dimensional qudits in states of 3 qubits.
This implies that the 2-local interactions between these particles will be mapped onto 6-local
interactions. Then we can apply the perturbation gadgets to ‘massage’ this Hamiltonian on a
spatially sparse hypergraph to a 2-local Hamiltonian as we have done in our QMA construc-
tion.

Let us first review the 6-dim particle Hamiltonian, see Sec. 4.2 in [5]. The four phases of
the particles, the unborn, the first, second and dead phase, can be described by two qubits in
the states |unborn〉 = |00〉,|first〉 = |01〉, |second〉 = |10〉 and |dead〉 = |11〉. The third qubit
holds the actual computational degree of freedom. In the 6-dimensional representation of the
unborn and dead phase the computational degree of freedom is assumed to be fixed. If we
represent those states as 3-qubit states, we fix the third qubit to be in the state |0〉. Hence
we obtain 6 states: 2 ‘first’ states |010〉, |011〉, two ‘second’ states |100〉, |101〉 and one unborn
state |000〉 and one dead state |110〉. With this mapping the entire Hamiltonian in Sec. 4.2
in [5] can be rewritten in terms of 6-local interaction between qubits. Since we embed the
6-dim particle Hamiltonian in a higher dimensional space, we need to make sure that states
outside the embedded space (i.e. |001〉 and |111〉) are penalized in the Hamiltonian, i.e. do
not contribute to the ground-space. In Table 1 in [5] a list of forbidden configurations is
given. In this list we can replace every unborn state by two unborn states |unborn, 1〉 and
|unborn, 0〉 and similarly for the dead states. This implies a small modification of H ′′

clock. As a
consequence we get that the space of legal shapes S is the same for this embedded Hamiltonian
as for the original 6-dim particle Hamiltonian. It then follows that one can apply Lemma 4.6
and 4.7 bounding the spectral gap of the Hamiltonian in the space of legal states. We note in
passing the Hamiltonian H(6)(s) has only linear terms in s (that correspond to p = 1 above)
and terms independent of s (corresponding to p = 0).

Our second step is to analyze how this desired 6-local Hamiltonian can be implemented
using a 2-local Hamiltonian on a 2D lattice. It is clear that one can apply the perturbation
gadgets in Section 3 and 4 of this paper and map a 6-local Hamiltonian on a spatially sparse
hypergraph onto a 2-local Hamiltonian on a subgraph of the 2D lattice. To go from a 3-local
to a 2-local Hamiltonian we will use our alternative 3-to-2-local gadget described in Section
3.1. One needs to show the following properties of the perturbation method in order for these
reductions to work:

1. The 2-local adiabatic path Hamiltonian H(2)(s) obtained through the perturbation gad-
gets simulates the 6-local adiabatic path Hamiltonian. This implies that the ground-
state of the 2-local Hamiltonian should be approximately the ground-state of the desired
6-local Hamiltonian and the gap for the 2-local Hamiltonian is approximately the gap
of the 6-local Hamiltonian. This requires showing that the perturbative method that
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we employ does not only reproduce the lowest-eigenvalue but also the ground-state and
the gap above the ground-state.

2. One needs to verify thatH(2)(s) is of the form
∑p

i=0 s
iHi, with p constant and maxi ‖Hi‖ ≤

poly(n, T ).

Our 2-local simulator Hamiltonian H(2)(s) is determined by applying the perturbative
gadgets in Sections 3.1 and 3.2, on the 6-local Hamiltonian H(6)(s). In [1] it was shown how
to generate, not only the lowest eigenvalues, but also the ground-state with the perturbative
technique. This implies that both the ground-state of the target Hamiltonian as well as
the gap above this ground-state can be generated perturbatively. Since the total number of
applications of the perturbation theory is constant, one can apply this argument for each step
and thus show that the 6-local target Hamiltonian can be effectively generated by a simulator
Hamiltonian H(2).

We now fulfill our second task, i.e. we show that H(2)(s) =
∑p

i=0 s
i Hi, with p constant

and ‖Hi‖ polynomially bounded. In [1] such arguments were developed for the 3-to-2 local
perturbation gadget and basically identical arguments can be given here. The original Hamil-
tonian H(6) is at most linear in s. If a gadget is applied on a term which is linear in s, for
example a 6-local term such sA ⊗ B = A(s) ⊗ B, we obtain a new Hamiltonian of which
the terms are at most quadratic in s. Similarly each application of the perturbation gadgets
takes a Hamiltonian H ′(s) =

∑p′

j=0 s
j H ′

j to another Hamiltonian H ′′(s) =
∑p′′

i=0 s
iH ′′

i where
p′′ ≤ 2p′. Assuming that the norm of each H ′

i is polynomial in n and T , then the norms
of each H ′′

j are also poly(n, T ). Thus the final Hamiltonian H(2), obtained after a constant
number of gadget applications, is indeed of the desired form.

6 Discussion and Acknowledgements

The drawback of the reductions performed by our perturbation theory method is that the
2-local Hamiltonian that we construct has large variability in the norms of the 2-local terms.
In other words, 2-local terms have constant norm whereas others can be fairly high degree
polynomials in n. Such dependence on n may be undesirable from a practical point of view,
e.g. if one wants to perform universal adiabatic quantum computation.

It is possible that a less stringent but still rigorous perturbation theory could be developed
in which only the expectation values of local observables with respect to the ground-space are
perturbatively generated. If such expectation values are reproduced with constant accuracy
(not scaling as 1/poly(n)), then the perturbation theory need not be accurately reproduce the
entire ground-space as in Lemma 3. For adiabatic quantum computation this method would
suffice since one can measure a single output qubit to extract the answer of the computation.

One of the reasons why finding QMA-complete problems is of interest is that it may give us
a hint at what problems can be solved in BQP. One example is the unresolved status of the 2-
local Hamiltonian problem on qubits in one dimension. Another example is to find a quantum
extension of classical 2-local Hamiltonian problems which can be solved efficiently. We thank
David DiVincenzo for an inspiring discussion about superexchange. We would like to thank
Sergey Bravyi for pointing out an improvement in the proof of Lemma 2. We acknowledge
support by the NSA and the ARDA through ARO contract number W911NF-04-C-0098.
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Appendix A General Perturbation Theorem

In order to give a more complete background in the perturbation method we will prove in
Theorem A.1 that under the right conditions the entire operator H̃ |<λ∗ is approximated by
Heff , not only its eigenvalues. In Ref. [1] a similar result was proven, namely that the ground-
state of H̃ is approximately the ground-state of Heff . We extend their result to the case
when the ground-space is degenerate in Lemma A.1 of this Appendix. To a certain extent
our proof-technique is similar to the one used in Ref. [1], however we will use complex z and
contour integration in parts of the proofs.

Some of our notation has been given in Section 3 for the specific cases considered in this
paper. Here we consider the more general setting as defined in Ref. [1].

Assume that H and V are operators acting on the Hilbert space L and H̃ = H + V . H
has a spectral gap Δ such that no eigenvalues lie in the interval [λ∗−Δ/2, λ∗+Δ/2] for some
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cutoff λ∗. Let L− (resp. L+) be the span of all eigenvectors of H whose eigenvalues are less
than λ∗ (respectively larger than λ∗). We will use the resolvent G(z) ≡ (zI − H)−1 of H
with complex z ∈ C and let G̃(z) = (zI − H̃)−1 be the resolvent of H̃ . The definition of the
self-energy Σ−(z) is given by

Σ−(z) = zI− − G̃−1
−−(z). (A.1)

see also Eqs. (9)-(10).
The perturbation theory result of Kempe et al. states that under suitable technical condi-

tions, –namely if Σ−(z) is close to a fixed operatorHeff for all z in some range–, all eigenvalues
of H̃ = H + V that lie below the cutoff λ∗ are close to those of Heff . Our result shows that
the entire operator H̃ restricted to its low-lying energy levels is close to Heff under a slightly
stronger assumption.

λ∗ + Δ/2λ∗bz0a

Spec(Heff)

�
r

Dr

�

b+ ε

Fig. A.1. The disk Dr in the complex plane, the spectrum of Heff and the other parameters in
Theorem A.2.

Theorem A.1 Given is a Hamiltonian H such that no eigenvalues of H lie between
λ− = λ∗ − Δ/2 and λ+ = λ∗ + Δ/2. Let H̃ = H + V where ||V || ≤ Δ/2. Let there be an
effective Hamiltonian Heff with Spec(Heff) ⊆ [a, b], a < b. We assume that Heff = Π−HeffΠ−.
Let Dr be a disk of radius r in the complex plane centered around z0 = b+a

2 . Let r be such
that b + ε < z0 + r < λ∗ (see Figure A.1). Let weff = b−a

2 . Assume that for all z ∈ Dr we
have ‖Σ−(z) −Heff‖ ≤ ε. Then

‖H̃<λ∗ −Heff‖ ≤ 3(||Heff || + ε)‖V ‖
λ+ − ||Heff || − ε

+
r(r + z0)ε

(r − weff)(r − weff − ε)
. (A.2)

Before we prove the theorem, let us make a few comments about how it can be applied.
We have assumed that Heff has no support in L+; this will be the case in typical applications
since Heff approximates Σ−(z) which has support only on L−. It is not hard to modify the
theorem if Heff has (necessarily small) support outside L−.
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The r.h.s in Eq. (A.2) contains the energy scale ||Heff || which is not invariant under shifts
by αI. In applying the theorem to a Hamiltonian H̃ one can always shift this Hamiltonian
H̃ by αI, without changing its eigenvalues or eigenvectors, such that Heff has a spectrum
centered around 0. In that case ||Heff || = minα ||Heff + αI|| = weff , the effective width. Thus
one may replace ||Heff || by weff in the application of the Theorem.

In the construction using mediator qubits, we will choose λ− = 0 and thus λ∗ = Δ/2. L−
is the space in which the mediator qubits are in the state |00 . . .0〉 and Heff is of the form
Htarget⊗|00 . . .0〉〈00 . . . 0|. In order for the right-hand-side of Eq. (A.2) to be small, we need
to take the spectral gap Δ to be sufficiently large (some poly(n)). This will directly bound
the first term on the right hand side. Now consider the second term and the choice for r.
In our applications Heff is derived from the perturbative expansion of Σ−(z). Since H̃ and
H on n qubits have norm poly(n), the Hamiltonian Heff (related to the target Hamiltonian)
will also have norm poly(n). Hence a, b and thus z0 are at most poly(n). Note that we need
to take z0 + r > b + ε which implies that Σ−(z) has to be approximately equal to Heff in
a range of z which is larger than what is needed in Theorem 7. Secondly, it is necessary
that the eigenvalues of H̃ are bounded away from λ∗, the difference between the largest
eigenvalue below λ∗ and the smallest eigenvalue above λ∗ needs to be at least 1/poly(n). For
our mediator qubit gadgets, one could take r (for example) to scale as Δ1/k for some constant
k > 1 in order for these conditions to be fulfilled.

Proof. (of Theorem A.1)We start from Theorem 3 in Ref. [1] (stated as Theorem A.1
in this paper) which shows that under the assumptions in the Theorem one has |λj(H̃<λ∗)−
λj(Heff)| ≤ ε for each 1 ≤ j ≤ dim(L−). We can draw a contour C in the complex plane,
the disk Dr in Figure A.1, that encloses all the eigenvalues of H̃<λ∗ and none of the higher
eigenvalues of H̃ . The radius r needs to be chosen such that b+ ε < z0 + r to include all the
eigenvalues of H<λ∗ . At the same time z0 + r < λ∗ such that none of the higher eigenvalues
of H̃ are included in the contour integral. Using Cauchy’s contour integral formula we can
write

H̃<λ∗ =
1

2πi

∮
C

z G̃(z) dz. (A.3)

The remainder of our proof proceeds in two parts. In the first part we show that H̃<λ∗
is close to Π−H̃<λ∗Π−; this is expressed in Eq. (A.8). In the second part we show that
Π−H̃<λ∗Π− is close to Heff , expressed in Eq. (A.12).

First part. We have

‖H̃<λ∗ − Π−H̃<λ∗Π−‖ = ‖Π+H̃<λ∗Π+ + Π+H̃<λ∗Π− + Π−H̃<λ∗Π+‖
≤ 2 ‖Π+H̃<λ∗‖ + ‖H̃<λ∗Π+‖, (A.4)

using standard properties of the operator norm ||.||. Let Π̃<λ∗ be the projector onto the space
spanned by the eigenvectors of H̃<λ∗ with eigenvalues below λ∗. We can insert Π̃<λ∗ before
or after H̃<λ∗ and use that for projectors P1, P2, ||P1P2|| = ||P2P1||, so that

||H̃<λ∗ − Π−H̃<λ∗Π−‖ ≤ 3 ‖H̃<λ∗‖ ‖Π+Π̃<λ∗‖ ≤ 3 (||Heff || + ε) ‖Π+Π̃<λ∗‖. (A.5)

In order to bound this, we first derive

||Π+HΠ̃<λ∗ || = ||Π+HΠ+Π̃<λ∗ || ≥ λ+||Π+Π̃<λ∗ ||. (A.6)
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On the other hand, we have

||Π+HΠ̃<λ∗ || ≤ ||Π+H̃Π̃<λ∗ || + ||V || ≤ (||Heff || + ε)||Π+Π̃<λ∗ || + ||V ||. (A.7)

Putting the last three equations together gives the final bound

‖H̃<λ∗ − Π−H̃<λ∗Π−‖ ≤ 3(||Heff || + ε)‖V ‖
λ+ − (||Heff || + ε)

. (A.8)

Second part. We consider

Π−H̃<λ∗Π− =
1

2πi

∮
C

zΠ−G̃(z)Π− dz, (A.9)

and recall that Π−G̃(z)Π− = G̃−−(z) = (zI− − Σ−(z))−1, Eq. (A.1). By showing that this
operator is close to Π−(zI − Heff)−1Π− = (zI− − Heff)−1, we will be able to deduce that
Π−H̃<λ∗Π− is close to Heff .

For all z ∈ Dr, ‖Σ−(z)−Heff‖ ≤ ε by assumption. In order to bound ‖(zI−−Σ−(z))−1−
(zI− −Heff)−1‖, we will use the following

||(A−B)−1−A−1|| = ||(I−A−1B)−1A−1−A−1|| ≤ ((1 − ||A−1|| ||B||)−1 − 1
) ||A−1||, (A.10)

when ||A−1|| ||B|| < 1. We choose A = zI− −Heff and B = Σ−(z) −Heff . For z ∈ C (i.e. on
the contour) ||A−1|| ≤ (r − weff)−1 and thus ||A−1|| ||B|| ≤ ε

r−weff
≤ 1. It follows that

sup
z∈C

‖(zI− − Σ−(z))−1 − (zI− −Heff)−1‖ ≤ ε

(r − weff − ε)(r − weff)
.

Now we will use the following for an operator-valued function F (z) and a contour C with
radius r around a real-valued z0:∥∥∥∥ 1

2πi

∮
C

z F (z) dz
∥∥∥∥ ≤ r(r + z0) sup

z∈C
||F (z)||. (A.11)

Using this bound and the resolvent for Heff , we find that

||Π−H̃<λ∗Π− −Heff || =
∥∥∥∥ 1

2πi

∮
C

z
(
(zI− − Σ−(z))−1 − (zI− −Heff)−1

)∥∥∥∥
≤ r(r + z0)ε

(r − weff)(r − weff − ε)
. (A.12)

where we have used that Heff = Π−HeffΠ−. Putting Eqs. (A.8) and (A.12) together gives
the desired result, Eq. (A.2). �.

The proof technique used in this theorem can be easily adapted to prove properties of
the low-lying eigenspace of H̃ ; this is the content of the following Lemma. For the resulting
bound of Eq. (A.13) to be useful one needs (1) to take Δ large enough compared to ||V ||
(which bounds the first term in Eq. (A.13)) and (2) the gap Δeff of the effective Hamiltonian
Heff , defined as Δeff ≡ λ1,eff − λ0,eff , needs to be bounded away from zero. In particular
in the Lemma we can take r = Δeff − 2ε and then the second term in Eq. (A.13) can be
(upper)-bounded by ελ1,eff

(Δeff−2ε)(Δeff−3ε) .
If Δeff ≥ 1

poly(n) we can thus take a polynomially small ε to bound the second term in
Eq. (A.13) by some other inverse polynomial.
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Lemma A.1 Given is a Hamiltonian H such that no eigenvalues of H lie between λ− =
λ∗ −Δ/2 and λ+ = λ∗ + Δ/2. Let the perturbed Hamiltonian H̃ = H +V where V is a small
perturbation with ||V || ≤ Δ/2. We assume that Heff = Π−HeffΠ− and Spec(Heff) ⊆ [a, b]. Let
0 < ε < Δ and assume that for all z ∈ Dr, a disk of radius r centered around z0 = λ0,eff with
ε < r < Δeff − ε, we have ‖Σ−(z)−Heff‖ ≤ ε. Let Π0,eff be the projector onto the ground-space
of Heff with degeneracy d. Let Π̃low be the projector onto the d lowest-lying eigenvectors of
H̃. Then we can bound

||Π̃low − Π0,eff || ≤ 3‖V ‖
λ+ − (λ0,eff + ε)

+
ε(λ0,eff + r)
r(r − ε)

. (A.13)

Proof. As in the proof of Theorem A.1, we first prove that Π−Π̃lowΠ− is close to Π̃low.
Then we show that Π−Π̃lowΠ− is close to the projector onto the ground state of Heff , Π0,eff .
For both parts we will use that due to the assumptions in the Lemma, Theorem 7 implies that
for all i = 0, . . . , d− 1, |λi(Heff)−λi(H̃)| ≤ ε. Let λ0,eff be the lowest (degenerate) eigenvalue
of Heff . We can first bound

||Π̃low − Π−Π̃lowΠ−|| ≤ 3||Π+Π̃low||. (A.14)

As before we bound ||Π+HΠ̃low|| in two different directions:

(ε+ λ0,eff)||Π+Π̃low|| + ||V || ≥ ||Π+HΠ̃low|| ≥ λ+||Π+Π̃low||. (A.15)

These inequalities together with the previous equation give us the first bound

||Π̃low − Π−Π̃lowΠ−|| ≤ 3‖V ‖
λ+ − (λ0,eff + ε)

(A.16)

In order to prove the other part we draw a circular contour C of radius r centered around
z0 = λ0,eff with ε < r < Δeff − ε such that it encloses only the lowest d eigenvalues of H̃ . We
will choose r such that Δeff − r > r or z0 + r is closer to λ0,eff than to λ1,eff . We have

Π−Π̃lowΠ− =
1

2πi

∮
C

Π−G̃(z)Π−. (A.17)

We use that ||Σ−(z) −Heff || ≤ ε for z ∈ C and bound

sup
z∈C

‖(zI− − Σ−(z))−1 − (zI− −Heff)−1‖ ≤ ε

r(r − ε)
, (A.18)

using ||(zI− −Heff)−1|| ≤ r−1 for z ∈ C. It follows that

||Π−Π̃lowΠ− − Π0,eff || ≤ ε(λ0,eff + r)
r(r − ε)

. (A.19)

�.


