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The black-hole—qubit correspondence has been proven to be “useful for obtaining addi-
tional insight into one of the string black hole theory and quantum information theory
by exploiting approaches of the other” [Phys. Rev. D 82, 026003 (2010)]. Though dif-
ferent classes of stringy black holes can be related to the well-known stochastic local
operations and classical communication (SLOCC) entanglement classes of pure states,
the string theory requires a more detailed classification than the SLOCC classification
of three qubits. In this paper, we derive the entanglement family of three qubits under
local unitary operations (LU), and use the black-hole—qubit correspondence to classify
“large” black holes into seven inequivalent families. In particular, we show that two
black holes with 4 non-vanishing charges (qo, p', p?, and p3) are LU equivalent if their
difference is only in the signs of charges. Thus, the classification of black holes is inde-
pendent of the signs of charges and is only related to the ratio of the absolute values
of charges. This observation simplifies the classification task, as one would only need
to consider either the classification of non-BPS black holes or the classification of BPS
black holes, but not both. Moreover, through the LU classification, the physical basis
for this black-hole—qubit correspondence can be observed, and a relation between the
black-hole entropy and the von Neumann entanglement entropy is revealed. Therefore,
the LU classification offers a more straightforward physical connection than the SLOCC
classification. Based on the LU classification, we further study the properties of von
Neumann entanglement entropy for each of the seven families, and find the black holes
with the maximal von Neumann entanglement entropy.

Keywords: entanglement; black hole; qubit; LU equivalent

1 Introduction

The entanglement classification of n qubits under SLOCC was first proposed in [1]. Based on
SLOCC classification, pure states of four qubits were classified into nine families [4], and pure
states of three qubits were classified into six SLOCC equivalence classes: GHZ, W, AB-C,
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AC-B, BC-A, and A-B-C [2]. The entanglement classification of three qubits under LU has
also been studied. For example, in [29, 28], pure states of three qubits were classified into five
types: types 1, 2 (2a and 2b), 3 (3a and 3b), 4 (4a, 4b, and 4c), and 5. Further, the states of
the GHZ SLOCC class were classified into types 2b, 3b, 4b, 4c, and 5 in [29, 28].

In the seminal work [5], Duff first related quantum information theory to the physics of
stringy black holes by expressing the entropy of the STU black hole in terms of Cayley’s hy-
perdeterminant of the coefficients of a three-qubit pure state. Since then, the correspondence
between the entanglement of qubits in quantum information theory and black holes in string
theory has been intensively studied [5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

Kallosh and Linde [7] showed that the entropy of the axion-dilaton extremal black hole is
related to the concurrence of a two-qubit state. When the set of electric and magnetic charges
is (p°, p', qo, 1), the entropy of the axion-dilaton black hole is given by % = [p’q1 —qop'|. Tt is
also well known that the concurrence C' is 2|cocg — c1¢2| for a two-qubit state |¢)) = Z?:o ¢ili)
and the concurrence is the unique entanglement measure for pure states of two qubits. In

[7], they indicated that if we identify the charges with the coefficients ¢; of a two-qubit
0

p Co
1
state |[¢), i.e., ‘Z = 21 , then the entropy of axion-dilaton extremal black holes is
0 2
q1 C3

proportional to the concurrence of a two-qubit system, i.e., S = 5C. Thus, they established
a correspondence between axion-dilaton extremal black holes and two-qubit systems.

In [7, 33], they investigated the relationship between the 3-tangle of a three-qubit state
and the entropy of the STU black holes, and related the well-known SLOCC entanglement
classes of pure states of three qubits to different classes of black holes in string theory, and
indicated that there are two types for black holes, i.e., large black holes and small black holes.
The large black holes with non-vanishing entropy correspond to states of GHZ SLOCC class,
and small black holes with vanishing entropy correspond to states of the other five SLOCC
classes. They also selected a representative for each SLOCC classification of extremal black
holes. For example, they selected the black holes with the charges qo, p', p?, and p> as a
representative for black holes corresponding to the GHZ SLOCC class. Lévay [8] obtained a
geometric classification of STU black holes described in the language of twistor theory, and
established a connection between the black hole entropy and the average real entanglement of
the formation. Borsten et al. [11] derived the SLOCC classification of four-qubit entanglement
invoking the black-hole—qubit correspondence.

The physics basis underpinning the connection between quantum entanglement and black
holes is not well established as is pointed out in [5, 3, 8], although the Cayley’s hyperdetermi-
nant provides an interesting mathematical connection between stringy black hole entropy and
quantum entanglement (specifically, 3-tangle). It is well known that the 3-tangle is different
from the von Neumann entropy of entanglement. From the physics point of view, Cayley’s
hyperdeterminant in stringy black hole entropy and 3-tangle of three qubits remains a purely
mathematical coincidence. It was also indicated in [7] that the theory of stringy black holes
requires a more detailed classification than the SLOCC classification of three qubits.

In this paper, we do a more detailed classification of GHZ SLOCC class under LU. In
particular, we investigate the LU classification of black holes with charges qo, p*, p?, and p>,
which correspond to GHZ SLOCC class. It is the first study to discuss LU classification of
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extremal black holes. Under the proposed LU classification, the black holes are classified into
seven different families. We show that between two black holes with the aforementioned four
non-vanishing charges, if the only difference is the signs of the charges, then they are LU
equivalent. This means that the classification of black holes is not related to the signs of the
charges. It is known that two LU equivalent states possess the same amount of entanglement
and can be used to do the same tasks in quantum information theory [4]. Therefore, LU
classification provides a more straightforward physical connection.

It is broadly recognized that von Neumann entropy has direct impact on our understanding
of black holes and is an important means to describe black holes [34, 35, 38, 36, 37]. For
example, von Neumann entropy of black holes was studied [38] and a relationship between
the Hawking radiation energy and von Neumann entropy in a conformal field emitted by
a semiclassical two-dimensional black hole was found [37], and the ratio of von Neumann
entanglement entropy to the transverse growth of the exchanged surface is similar to the
Bekenstein entropy ratio for a black-hole [36]. Therefore, in this paper we will also study
the relation between the black hole entropy and the von Neumann entanglement entropy of
three qubits. The relation between the two entropies contributes to the physical connection
between quantum entanglement and black holes.

The paper is organized as follows. In Section 2, we review the relation between stringy
black holes and three-qubit states. In Section 3, we establish the LU equivalency of two black
holes differing only by signs. In Section 4, we classify large black holes into seven families.
In Section 5, we discuss von Neumann entanglement entropy in quantum information theory
and the entropy of black holes in string theory. In Section 6, we derive the black holes with
the maximal von Neumann entanglement entropy. We give our conclusion in Section 7.

1.1 Notations

e |U): denote a general pure state of three qubits.

|1): denote the three-qubit state corresponding to a black hole with 4 non-vanishing
charges qo, p', p?, and p3, which belongs to the GHZ SLOCC class.

o Tapc: 3-tangle; Tap,TBC, Tac: 2-tangles; T4(pe): denotes the tangle between qubit A
and the pair BC, thinking of the pair BC as a single object [27].

e S(py): denote the von Neumann entanglement entropy.

e Sy denote the classical supergravity entropy of black holes.

e g;: denote an electric charge.

e p: denote a magnetic charge. The superscript ¢ is not an exponent; it is just an index.

e )\ 1, p: denote the coefficients of three qubits in the SD form.

2 Relation between stringy black holes and three-qubit states

The general static solution for a spherically symmetric black hole depends on four electric
charges, denoted as qqg, ¢1, g2, and g3, and four magnetic charges, denoted as p°, p', p?, and
p?® [5]. Note that the superscript i in p® is not an exponent; it is only an index. The STU
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black hole entropy Sy, /7 can be calculated via the 8 charges [17, 7]. We can simplify the
expression for the entropy as follows. Let

A = (P +p'q +0¢ —p’e)?
+4(p°q3 — p'p*) (P90 + @21), (1)

then (S /7)? = —A.
A three-qubit state in the Hilbert space involves eight terms. It can be written as |¥) =

S aell) or >ijkefo1y Gijk|ijk), where a; € C.
Let det ¥ represent Cayley’s hyperdeterminant of |¥), given as follows,

detU = (apar — a1ag — asas + azay)?

—4((10&3 — alag)(a4a7 — CL5CL6). (2)

It is known that the entanglement measure 3-tangle Tapc = 4 |det ¥| ([26, 27]), where
| - | denotes the absolute value.

To make a connection between the entropy of black holes and 3-tangle 74, it is necessary
to make A = det V. When A = det ¥, for BPS and non-BPS, the classical supergravity
entropy formula is given as follows [7],

Sen = g\/TABC- (3)

To make A = det ¥, a dictionary between the eight charges for a black hole and the eight
coeflicients of a three-qubit pure state is needed. Three different dictionaries were given in
the literature [5, 7, 8]. Via egs. (1) and (2), it is easy to derive all the 16 dictionaries (see
Appendix A).

In this paper, we will use the following dictionary [7],

Table 1. A dictionary between charges and coefficients.

2

| P o] aelaes]

‘ Coefficients ‘ ag ‘ —a1 ‘ —asg ‘ —ay ‘ ary ‘ ag ‘ as ‘ as ‘

‘ Charges ‘po ‘ pt ‘ D

Kallosh and Linde [7] investigated the black holes with four non-vanishing charges qo, p*,
p?, and p3. In this paper, we only consider this kind of black holes. Thus, the three-qubit
state corresponding to a black hole of this kind can be written as follows,

W) = p°l000) — p'[001) — p*[010) + ¢*|011) — p*|100) + ¢*[10L) + g1[110) + go|111)
—  —p'[001) — p*[010) — p[100) + go[111). (4)

The |[¢) in Eq. (4) belongs to GHZ SLOCC class (also called Mermin state) [7, 6].
Let u=1/y/(p")2 + (p2)2 + (p3)% + ¢Z, then p|t)) becomes normalized.

It is also easy to see that Cayleys hyperdeterminant of |¢) has the following property,

det ¢ = —4p'p*p*qo.
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It was indicated in [12] that the 4-charge solution with just qo, p*, p?, and p® may be
considered as a bound state of four individual black holes with charges qo, p', p?, and p?,
with zero binding energy.

The following state is a representative of real states of GHZ SLOCC class [6].

1) = —N3[001) — N3|010) — N [100) + No|111), (5)

where N; € R, for j =0,1,2,3.
It is known from [2] that two pure states |¢) = ZLO ai|l) and |¢") = Zl7=0 ay|l) are LU
equivalent if and only if there are local unitary operators A, B, and C such that

) =A@ B®C ), (6)

Accordingly, two STU black holes with charges qo, p',p?, and p? are LU equivalent if and
only if their corresponding states of three qubits are LU equivalent.

3 LU equivalency of two black holes differing only by signs
The Schmidt decomposition (SD) for three qubits was proposed as follows [29, 28]:

A0]000) + A1€™?[100) + A2|101) + A3]110) + A\g|111), (7)

where \; > 0 for ¢ =0,1,2,3,4, and Z?:o )\% =1; 0 < ¢ < 27 is called the phase. Note that
SD is normalized by definition.

3.1 Two non-BPS black holes with p'p*p3qy < 0 differing only by signs are LU
equivalent
We show that two non-BPS black holes with p'p?p3qy < 0 differing only by signs are LU
equivalent. For example, for a black hole with p! = p? = p? =1, ¢y = —1, and the other one
with p! = 1, p? = p = gy = —1, their corresponding states are LU equivalent.
For two black holes with p'p?p3qy < 0, there are eight cases:

o Sl - {pl < 07p2 > 07p3 > ano > 0}7

52 = {pl > O7p2 < Oapg > anO > 0}7

S3 = {pl > O’pQ > Oapg < anO > 0}7
o Sy={p'>0,p>>0,p* > 0,90 < 0},

e The mirror cases S, of S; for ¢ = 1,2,3,4, in which all charges flip their signs.

We first calculate the Schmidt decomposition of u|y) in Eq. (4) with plp?p3ge < 0, then
we show that for S; and S}, their SDs are the same.
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3.1.1  Schmidt decomposition of u|y) in Eq. (4) with p*p*p3qe < 0
To find the SD of yu|t) in Eq. (4), we need to construct three unitary operators U4, UZ, and
U¢, which are applied to the qubits A, B, and C, respectively.

Let t = “—QO By solving Eq. (8) in [31], we have,

Up1

PP ®)

2 _
t* = 2

For p'p?p3qo < 0, we have t2 > 0. Then, a tedious calculation yields

()
o (L4

c 1 -p> —tp!
U = 5 5 /12 —tpl 3 ) (11)
va? +b2vit? 41 p p

where

~+

_ \/_p?’qo: P qol
plp? Iptp?|’

W _

P tpt’

a = —p /et

b = —tpt/ViE2+1.

Note that ¢, k, a, and b are all real. Let
1

XU i/a b2(t2 + 1) (12)
A straightforward calculation of the |¢’) in (6) yields:
W) = UteUeU%y) (13)
= 10/000) + 11[100) + 12[101) + 13|110) + n4|111),
where

o = \/m\/m, (14)

mo= xt[®)?+ ) -0 -q¢g], (15)

e = —x{#+1)(p'p*+ 1), (16)

s = —x(®+1) (P’ +p'w), (17)

n = —2xt (p'p’ - p’q) . (18)

Clearly, all coeflicients 7; are real, and 19 > 0. We can write ; = |nj\ei91' for j =1,2,3,4,
where ; = 0 or 7. Then, [¢)) becomes the following using the method in [31]:
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[4') = 110/000) + [171]€"*[100) + [112][101) + |13][110) + |na[111), (19)

where ¢ = 01 — 03 — 03 + 0. Since §; = 0 or m, it is easy to see e!* = +1. Therefore, [¢)') is a
real state.

Computing the normalizing factor p from (19), we obtain u|¢)’), which is the SD of uly)
in Eq. (4).

3.1.2  Two non-BPS black holes with p*p*p3qe < 0 differing only by signs are LU equivalent
In the following we establish that two non-BPS black holes with p'p?p3qo < 0 differing only
by signs are LU equivalent. Consider the [¢)') in (19). We want to show that all eight cases
(S; and Sf, i = 1,2,3,4) have the same [¢').

First, we calculate |n;]. For 7, in Eq. (16), p'p® and p?qy have the opposite signs because
p'p*piqo < 0. Thus, [n2| = x (2 + 1) ||p*p?| — [p?qo||. Similarly, |ns| = x (t* + 1) |[p?p®| —
Ip'qo|| and |ng| = 2xt(|p'p?| + [p3qo|) # 0. Clearly, |n;|, j = 0,1,2,3,4, are independent of
the sign of charges. Therefore, |n;| is the same for S; and S}, i = 1,2, 3,4.

Next, we show €' are the same for S; and S!, i = 1,2,3,4. Since S/ are mirror to S;, we
only need to consider S; below.

From Eq. (15), clearly 6, is the same for S;, i = 1,2,3,4.

There are four cases from egs. (16) and (17) based on the values of 75 and ns3:

o A). [p?p®| > |pqo| and [p'p?| > [p?qol;

For each case, we can see that e’? is the same for S;, i = 1,2, 3, 4.

Thus, for all eight cases S; and S;, i = 1,2,3,4, |¢) in Eq. (4) is transformed into the
same [¢') under LU. Thus, all |[¢) with p'p?p3¢y < 0 in Eq. (4) are LU equivalent [31].
For example, one black hole with p' = p? = p3 =1 and ¢y = —1 , the other one with
pt= p?=1, p>=—1and g = 1, their [¢') are both v/2(]000) + |111)).

3.2 Two BPS black holes with p'p?p’qy > 0 differing only by signs are LU
equivalent

For example, one with p! = p? = 1, p3 = qo = —1, and the other one with p? = p3 = —1,
p! = qo = 1, we can show that their corresponding states are LU equivalent.

Next, generally consider two black holes with p'p®p3go > 0.

For p'p?p3qo > 0, there are eight cases:

o Hl = {pl > Oap2 > Oapg < anO < O},

o H2 = {pl > 07p2 < 07p3 > 07QO < 0}7

e Hy={p'>0,p? <0,p* <0,q >0},
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L4 H4 = {pl > 07p2 > 07p3 > ano > 0}7
e The mirror cases H] of H;, for i = 1,2,3,4, in which all charges flip their signs.

We first calculate the SD of u|t) in Eq. (4) with p'p?p3go > 0, then we show that for H;
and H/, their SDs are the same.

3.2.1  Schmidt decomposition of p|y) in Eq. (4) with p'p?p3qe > 0
To find SD of ultp) in Eq. (4), we need to construct three unitary operators W4, W, and
W, which are applied to the qubits A, B, and C, respectively.
Let i = Z—g} By solving Eq. (8) in [31], we obtain
3
2=- i 122. (20)

For p'p?p3qo > 0, we have 2 < 0. A tedious calculation produces

1 t 1
v (), .
N RN @)

wh = 1(; ’f> (22)

IR+ 1 =
WC B 1 _~p3 _tN*pl
- ~ ~ _ *t*pl 7p3 )
v/a2 4+ bl2PV/It2 4+ 1
(23)
where t* is the conjugate of £, and
- [pPq . [ 1PPqol
t = T2~ ¢ 12|’
p'p p'p?|
- in>
P P w
p tp
a = _p3/ |£|2 + ]-7
8 = _Epl/ |£|2 + ]-7
where @ is a real number; 7, k and b are imaginary numbers. Let
- 1
X = (24)

VIRE +1y/a + 5P + 1)

Then, a straightforward calculation yields

W) = whewFewy)
p0]000) + p1]100) + p2[101) + p3|110) + p4[111), (25)
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where
po = Il +BRyIER + 1, (26)
po= xt () + ") - (°)° - q), (27)
p2 = X(P+1) (p'p* - 1’q), (28)
ps = —x(t”+1) ®*p* —p'q), (29)
pa = 2Xp'P" +1’q0). (30)

Clearly, pg > 0 is real, ps and p3 are real; p; and p4 are imaginary numbers. We can write
pj = |p;jl e, for j =1,2,3,4, where wy; = £m/2, we =0 or m, w3 =0 or 7, and wy = +7/2.
Then, |1)) becomes the following by using the method in [31]:

[¥"") = p0l000) + |p1]e™[100) + [p2][101) + [p3][110) + [pa][111), 31)

where ¢ = w; —ws — w3z +wy. It is easy to see €9 = 1, thus |¢") is a real state. Normalizing
it, we obtain the SD u|¢").

Next, we calculate |pz|. For ps in Eq. (28), p'p3 and p?qo have the same sign because
p'p*p*q0 > 0. Therefore, |pa| = X ([t + 1) [|p"p®|=[p?qol|. Similarly, [ps] = X (|£]* + 1) [[p*p?|—
' qol| and |pa| = 2x[#[(Ip"p?| + [P q0]) # O.

For example, two black holes with charges p'! = p?> = p? = ¢y =1, and p' = p? =1,
p3 = —1, qo = —1, respectively, their |[¢"") are both v/2(]000) 4 |111)).

3.2.2 Two BPS black holes with p*p*p3qo > 0 differing only by signs are LU equivalent

For H; and H/, i = 1,2,3,4, we will show that [¢) in Eq. (4) is transformed into the same
|¢"") under LU. Thus, |¢) in Eq. (4) with p'p?p3qo > 0 are LU equivalent [31]. The following
is the argument.

Clearly, |p;|, j = 0,1,2,3,4, are independent of the sign of the charges. Therefore, |p,]|
are the same for H; and H/, i =1,2,3,4.

Similarly, we can show €% is the same for any H; and H. From Eq. (27), we know that
w1 = +7/2, and w; is independent of the signs of the charges. Moreover, for each of the four
cases A), B), C), and D), € is the same for H; and H}, i =1,2,3,4.

3.3 A non-BPS black hole with p'p*p3qy < 0 and a BPS black hole with p'p?*p3qy >
0 differing only by signs are LU equivalent

For example, for one state |¢1) with p'p?p3qy < 0 (e.g., p! = p?> =p® =1 and ¢y = —4), and

another state |1) with p'p?p3go > 0 (e.g., p' = p?> = p®> = 1 and qp = 4), we can show that

they are LU equivalent.

Let [¢/) = U2 @ UP @ U%y), and |[¢") = WA @ WB @ WCih,). We first show that
) = "),

It is easy to see |n;| = |pj|, 7 = 0,1,2,3,4. We next show e!¥ in Eq. (31) and e'?
in Eq. (19) are equal. From eqgs. (15) and (27), we know #; = 0 and wy = —m/2 whenever
(pH)2+(p?)2—(p®)?—q2 > 0, while §; = m and w; = /2 whenever (p')?+(p?)?—(p*)2—¢2 < 0.
Then, one can see that e’? = e!® for each of the four cases A), B), C), and D). Therefore,

[9') = [¢").
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Then from U4 @ UZ @ U%h1) = WA @ WE @ WC4hs), we can derive that
() = (WU @ (WH)TUP @ (W)U )

(WA)~LUA is still a unitary operator, and so is (W?Z)71UP and (WC)~'UC. Thus, |¢;)
and [¢2) are LU equivalent.

Proposition 1. (Sufficient condition for LU equivalence of two black holes (BPS or non-
BPS) with p'p?p3qo # 0) Between two black holes (BPS or non-BPS) with p'p?p3qy # 0, if
their only difference is in the signs of the charges, then they are LU equivalent.

Remark 1. BPS black holes (with p'p?p3¢p > 0) and non-BPS black holes (with
plp?p3qo < 0) are regarded as two inequivalent subclasses of GHZ SLOCC class [7, 3]. Note
that the two subclasses of GHZ SLOCC class are not classified under LU. Proposition 1 shows
that they could be LU equivalent.

Remark 2. Via Eq. (44) of [17] and Eq. (43) of [8], one can see that any two LU
equivalent black holes with charges p', p?, p3, and ¢ have the same entanglement, black hole
entropy, area of the black hole horizon, and black hole mass.

4 Classify “large” black holes into seven families

Although the physical basis for the black hole—qubit correspondence is not completely under-
stood ([10]), it is widely accepted that additional insight into the string black hole theory or
quantum information theory can be obtained by exploiting methods and techniques of the
other ([18, 5, 19, 20, 9, 21, 6, 23, 24, 25, 3]), and a more detailed classification than the SLOCC
classification of three qubits is required [7]. In this section, by exploiting the LU classification
of three qubits we classify black holes with non-vanishing charges p', p?,p>, and ¢o. Because
[") = |¢"), we only need to classify the |¢') in Eq. (19). Then, we classify “large” black
holes into seven families that are pairwise LU inequivalent. The detailed derivation of the
seven families can be found in Appendix A.
Family 1. Let Family 1 consist of the black holes satisfying the following equation:

") =®")? =" =g (32)

Note that Eq. (32) holds if and only if [p'p?| = |p?qol, [p*p?| = |p'qo| and (p')? + (p?)? —
(p®)? — g2 = 0. In other words, Eq. (32) holds if and only if n; = 1y = n3 = 0. Thus, Family
1 corresponds to the states of the following form:

[ [v/2(|000) + [111)). (33)

Generally speaking, |¢) in Eq. (4) cannot be transformed into the canonical GHZ state
under LU. |¢) in Eq. (4) can be transformed into the canonical GHZ state under LU if and
only if Eq. (32) holds, under which the canonical GHZ state is |p'|v/2(|000)+|111)). Specially,
when (p')? = (p?)? = (p*)? = (¢o)? = 1, the canonical GHZ is 4/2(|000) + [111)).

Family 2. Let Family 2 consist of the black holes satisfying the following equation:

®)? =% 0% =, ') # () (34)
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Note that Eq. (34) holds if and only if (p')2+(p?)? —(p®)?—¢2 = 0 (i.e., n1 = 0), |p*p?| = [p o
(i.e., n3 = 0), but [p'p3| # |p®qo| (i-e., m2 # 0). In other words, Eq. (34) holds if and only if
m =mn3 =0, but 73 # 0. Thus, Family 2 corresponds to the states of the following form:

10/000) + [72][101) + [n4[111). (35)
Family 3. Let Family 3 consist of the black holes satisfying the following equation:
®*)? = @)% 0" =4, (') # (*)* (36)

Note that Eq. (36) holds if and only if (p')?+(p?)?—(p*)?—¢2 = 0 (i.e., ;1 = 0), [p'p3| = [p?qo|
(i.e., ;2 = 0), but [p?>p?| # |p'qo| (i-e., n3 # 0). In other words, Eq. (36) holds if and only if
m =12 = 0, but n3 # 0. Thus, Family 3 corresponds to the states of the following form:

10/000) + [n3[110) + [na|[111). (37)
Family 4. Let Family 4 consist of the black holes satisfying the following equation:
")? = 0*)* °)* = a3, (0")* # (0*)? (38)

Note that Eq. (38) holds if and only if (p')2 + (p?)? — (p*)? — g2 # 0, but [p*p?| = |p'qo|, and
Ip'p?| = |p?qo|. In other words, Eq. (38) holds if and only if 7o = 13 = 0, but 1; # 0. Thus,
Family 4 corresponds to the states of the following form:

10]000) = [71][100) + |n4][111). (39)
Family 5. Let Family 5 consist of the black holes satisfying the following equation:
") # *)% (0°)* # a3, Ip'P’| = [P ol (40)

Note that Eq. (40) holds if and only if (p*)? + (p?)? — (p®)% — @3 # 0, |p*p?| # [P *qol, [p'P?| =
|p?qo|. In other words, Eq. (40) holds if and only if 7; # 0, n2 = 0, 3 # 0. For example,
(PH)? =4, (p*)? =1, (p*)? = 16, ¢3 = 64, which satisfies Eq. (40). Thus, Family 5 corresponds
to the states of the following form:

70[000) = |71{[100) + [n3][110) + [n4][111). (41)
Family 6. Let Family 6 consist of the black holes satisfying the following equation:
*)? # a5, (0°)* # a3, P*P’| = |p"q0l- (42)

Note that Eq. (42) holds if and only if (p*)? + (p?)? — (p*)% — @3 # 0, |p*p?| = [p'qol, [p*P?| #
|p?qo|. In other words, Eq. (42) holds if and only if n; # 0, 72 # 0, n3 = 0. Thus, Family 6
corresponds to the states of the following form:

701000) = [ ][100) + o] [101) + el [111). (43)

Family 7. Let Family 7 consist of the black holes satisfying the following equation:

p'p°| # [P*qol, 1P°P?| # Ip"qol- (44)
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Table 2. LU invariants Jy, Jo and J3. G; stands for Group i, corresponding to F; in table 3, for

i=1,...,7. The “Don’t care” term means it can be either = 0 or % 0.
| 1G] G |G |G| G |Ge| Gr |
‘Jl‘O‘O‘ ‘7&0‘7&0‘7&0‘D0n’tcare‘
[0 J#0] 0 J 0] O |#0] #0 |
[ Sl 0] 0 f#0] 0 [#A0] 0] #0 |

Table 3. Criteria for the seven families of black holes. Fj stands for Family 1.

‘ ‘ Criteria ‘
| B 0= =0 =q |
| B | ()= "% %) =g, (") # (%) |
| B | ()2 = %)% 0 =@, (") # (*)* |
| Fa | (02 =% 0% = a3, (") # (°)* |
B 0P AP0 A =
| B | 072 # & 0% £ 63, 12} = I |
B \

Note that Eq. (44) holds if and only if nen3 # 0 but 71 may vanish. Thus, Family 7
corresponds to the states of the following form:

170/000) + [171]€*?[100) + [2|[101) + [713]]110) + [ma] | 111), (45)

where 77 may vanish.

The LU invariants J; = [A\;Ase®? — XaA3]%, J; = (Aoi)?, i = 2,3, were defined in [29]. In
Table 2, we calculate J; for states in eqgs. (33), (35), (37), (39), (41), (43), and (45). From
Table 2, we obtain the following proposition:

Proposition 2. Let Group 1 (resp. 2, 3, 4, 5, 6, 7) consist of the states in egs. (33) (resp.
(35), (37), (39), (41), (43), (45)). Then, the seven groups are pairwise LU inequivalent.

From Proposition 2, we obtain the following proposition:

Proposition 3. The black holes with non-vanishing charges qo, p*, p?, p® are classified
into seven inequivalent families (see Table 3).

4.1 Some properties for LU classification of the black holes with charges qq, p*,
p?, and p’

It is known that there are infinite LU equivalence classes for the black holes with charges qq,

p', p?, and p®. Via LU transformation, the infinite LU classes are classified into seven families

in this section. Thus, some families include infinite LU equivalence classes.

(i). Clearly, two LU equivalent black holes must be in the same family while two black
holes belonging to different families must be LU inequivalent, i.e.,
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— Two black holes are LU equivalent <~ they belong to the same family. Note that
two black holes being in the same family does not necessarily imply that they are
LU equivalent.

— Two black holes are from different families — they belong to different LU equiva-
lence classes (i.e., they are LU inequivalent).

(ii). Via Eq. (44) of [17] and Eq. (43) of [8], one can see that for two LU equivalent
black holes with charges qo, p*, p?, p3, they have the same entanglement, the same black hole
entropy, the same area of the black hole horizon, and the same black hole mass.

(iii). For Family 1, we show Family 1 has the maximal entanglement, entropy of black
holes, area of the black hole horizon, and black hole mass for normalised black holes

Remark 3. In [7], Kallosh and Linde showed that the supergravity charges ¢; and p
(i =0,1,2,3) originate from the number of DO, D2, D4 and D6 branes: the number nDO0 of
DO branes is qg, and the numbers kD2, mD2, 1D2 of D2 branes are q1, g2, and g3, respectively;
the number nD6 of D6 branes is p°, and the numbers kD4, mD4, 1D4 of D4 branes are p', p?,
and p3, respectively. Therefore, Eqgs. (32, 34, 36, 38, 40, 42, 44) can be rewritten by replacing
pl, p?, p3, qo with kD4, mD4, 1D4, nDO, respectively. For example, Eq. (32) can be written
as (kD4)2 = (mD4)2 = (lD4)2 = (nD0)2, etc.

5 A relation between two entropies: von Neumann entanglement entropy in
quantum information theory and the entropy of black holes in string theory

The von Neumann entanglement entropy is an important entanglement measure of the degree
of entanglement between two subsystems. In [8, 5], the authors indicated that since the
near horizon geometry of black holes is AdSs x S?, using the idea of AdS/CFT (anti-de
Sitter/conformal field theory) holography, one might expect a relation between entanglement
entropy in quantum information theory and black hole entropy in string theory. However,
until this day, the correspondence between these two different physical notions, black hole
entropy and von Neumann entanglement entropy, is not well-understood [8, 5].

It is known that Cayley’s hyperdeterminant provides an interesting mathematical con-
nection between the entropy of black holes in string theory and the quantum entanglement
measure 3-tangle [5]. However, in any event, the 3-tangle is a different notion from entan-
glement entropy for three qubits. Thus, “The appearance of the Cayley hyperdeterminant
in these two different contexts of stringy black hole entropy and 3-tangle for three qubits
remains, for the moment, a purely mathematical coincidence” [5].

In the following, we propose a correspondence between the black hole entropy and von
Neumann entanglement entropy.

In [32], the following von Neumann entanglement entropy of three qubits A, B, and C is
given:

S(p) = —(M A + 4P Ay ?), (46)

where v € {A, B,C}, 75” = 1fvi-day V1274a”, and 752) = 1=vizday ”12740‘”, in which 0 < a,, < 1/4 can be
calculated as follows,
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TAB +TAc + TaBCc  TA(BC)

= = 47
QA 4 4 ) ( )
TAB +TBC + T. TB(AC
ap — AB 540 ABC _ (4 )7 (48)
TACc + TBC +TA TC(AB
ac = = CELTABC - 2D (49)

Via the classical supergravity entropy formula [7], we obtain

45?7
TABC = Wgh~ (50)

Thus, from the above equations we obtain a relation between the von Neumann entan-
glement entropy S(p,) and the black hole entropy Sp,. We have the following approximate
relations:

452,
25(pa) =~ 2In2—1+7ap+Tac + ca
452,
25(pp) = 21n2—1+TAB+TBc+T2,
452,
QS(pc) ~ 2In2—14 740 +7Bc + 2

Let us consider the average 2-tangles and the average von Neumann entanglement entropy

A = TAB+T‘§C+TBC, (51)
S S(pA)JrS(gB)JrS(pc). (52)

Thus, we obtain a relation between the average entanglement entropy (i.e., average von
Neumann’s entanglement entropy) and the entropy of black holes:

1 257
Myn =~ (In2 — =)+ A+ Sin

2 2 (53)

Discussion:

e Since the W SLOCC state has the maximal average 2-tangles A = w = 0.63651,

one can see from Eq. (53) that the difference between the average von Neumann entan-
QSgh

glement entropy and =5~ reaches the maximal 0.829 66.

e Note that In2 — 1/2 = 0.19315. Ignoring In2 — 1/2 in Eq. (53), we obtain

252
Myn — A = W;’h. (54)
For the general GHZ states \p|000) + A\4|111), we have A = 0, thus,
257
My, = ——2h (55)

T2
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6 Black holes with the maximal von Neumann entanglement entropy

Von Neumann entropy has direct impact on our understanding black holes and is an important
mean to describe black holes. For example, von Neumann entropy of black holes was computed
[38]. In this section, we derive the black holes with the maximal von Neumann entanglement
entropy S(pa) = S(pp) = S(pc) = In2, the maximal von Neumann entanglement entropy
S(pz) = S(py) = In2 while S(p.) < In2, and the maximal von Neumann entanglement en-
tropy S(pz) = In2, while S(p,) < In2 and S(p.) < In2, where zyz = {ABC, BCA, CAB}.
Thus, we study the properties of von Neumann entanglement entropy for each of seven fami-
lies. For example, we show that Family 1 includes all the black holes which have the maximal
von Neumann entanglement entropy S(pa) = S(pp) = S(pc) = In2.

As stated before, the black hole with four non-vanishing charges qq, p*, p?, and p® corre-
sponds to a three-qubit pure state,

[4) = —p*1001) — 7/010) — p°|100) + go|111). (56)

The |) belongs to GHZ SLOCC class. For plp?p3qy < 0, we list the above |1’) as follows.

[¥') = 10]000) & [11]]100) + |72]|101) + [3][110) + |na[111). (57)

From Proposition 4 in Appendix D, we know n3+n?+n35+n3+n3 = (p1)2+(p2)?+(p3)?+43.
Therefore, the following u|y’) is SD of p|t).

pl") = pnol000) £ pulnr [[100) + pln2|[101) + plns|[110) + plna|[111). (58)

Family 1. Family 1 corresponds to the states of the following form:

[v) = [p'[v2(|000) + [111)). (59)
Under the condition in Eq. (32) u|v) is normal and
1
V2

By Lemma 1 in Appendix C, u|v) (i.e. |GHZ)) has the maximal von Neumann entangle-
ment entropy S(pa) = S(pp) = S(pc) = In2. Therefore, under the factor u each black hole
of Family 1 has the maximal von Neumann entanglement entropy S(pa) = S(pp) = S(pc) =
In 2.

Family 2. Family 2 corresponds to the states of the following form:

ulv) = |GHZ) = —(|000) + |111)). (60)

[€) = 1701000) + [172][101) + [na[111). (61)
Clearly, pls) is normal and

pls) = 1nol000) + pu[n2][101) + plnal|111). (62)

By Proposition 5 in Appendix D and the condition (p!)? + (p?)? — (p®)? — g3 = 0 for Family
2, obtain uny = % Thus,

1
pls) = ﬁ|000> + pn2[[101) 4 pufna|[111). (63)
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By Corollary 1 in Appendix C, ul¢) has the maximal von Neumann entanglement entropy
S(pa) = S(pc) = In2 while S(pp) < In2. Thus, for Family 2, under the factor p each
black hole has the maximal von Neumann entanglement entropy S(pa) = S(pc) = In2 while
S(pB) <In2.

Family 3. Family 3 corresponds to the states of the following form:

|t) = 10]000) + |n3]|110) + |na||111). (64)
Clearly, p]e) is normal and

ple) = pnol000) + 03] [110) + pufna|[111). (65)

By Proposition 5 in Appendix D and the condition (p*)?+ (p?)2 — (p*)? —¢2 = 0 for Family
3, obtain uny = % Thus,

) = —
/"LL_\/§

By Corollary 2 in Appendix C, p|¢) has the maximal von Neumann entanglement entropy
S(pa) = S(pp) = In2 while S(pc) < In2. Thus, for Family 3, under the factor p each
black hole has the maximal von Neumann entanglement entropy S(pa) = S(pp) = In2 while
S(pc) < In2.

Family 4. Family 4 corresponds to the states of the following form:

000) + a[3|[110) + palnal[111). (66)

[¥9) = 10[000) =£ |11][100) + |n4|[111). (67)
Clearly, p|9) is normal and

p|9) = pnol000) £ 1n1[[100) + pefna||111). (68)

From (p')? = (p?)?, (p®)? = ¢, and (p')? # (p*)? for Family 4, a calculation yields that
wlng| = % Then,

1
) = p1|000) + 100) + —=|111). 69
pl0) = po|000) =+ pafa [[100) \/§| ) (69)

By Corollary 4 in Appendix C, p|d) has the maximal von Neumann entanglement entropy
S(pp) = S(pc) = In2 while S(pa) < In2. Thus, for Family 4 under the factor pu each
black hole has the maximal von Neumann entanglement entropy S(pp) = S(pc) = In2 while
S(pA) <In2.

Family 5. Family 5 corresponds to the states of the following form:

|2) = 10|000) = [11][100) + [13[[110) + |na[|111). (70)

Clearly, p|s) is normal. By Lemmas 1-8 in Appendix C, u|s) has the von Neumann
entanglement entropy S(p,) < In2, y = A, B,C, and under the factor p each black hole of
Family 5 also has the von Neumann entanglement entropy S(p,) <In2, y = A, B,C.

Family 6. Family 6 corresponds to the states of the following form:

|R) = 10/000) £ [11][100) + |n2|[101) + [na][111). (71)
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Clearly, p|R) is normal. By Lemmas 1-8 in Appendix C, p|R) has the von Neumann
entanglement entropy S(py) < In2, y = A, B,C and under the factor p each black hole of
Family 6 also has the von Neumann entanglement entropy S(p,) <In2, y = A, B,C.

Family 7. Family 7 corresponds to the states of the following form:

|T') = 10]000) = [11][100) + [n2[[101) + |n3|[110) + |na|[111), (72)
Then, |T) is normal and

p|T) = pmo|000) % p|n1|[100) + pa|n2|[101) + 03] [110) + pefna||111), (73)

Let us divide Family 7 into four subfamilies.
Family 7.1. Let Family 7.1 consist of the black holes satisfying the following equation:

@)+ @) - ") — ¢ =0. (74)

Note that when (p)2+ (p?)2 — (p)? — g2 = 0, then |n;| = 0. Thus, Family 7.1 corresponds
to the states of the following form

T1) = 10]000) + |72[101) + [93[[110) + [na[[111). (75)
One can see that p|77) is normal and ung = % by Proposition 5 in Appendix D. Thus,

plTy) = )+ pln2|[101) + p|ns|[110) + plna|[111), (76)

1
51000
Clearly, |pT1) has the maximal von Neumann entanglement entropy S(pa)(= In2) while
S(pp) <In2 and S(pc) < In2 by Corollary 3 in Appendix C. Therefore, under the factor u
each black hole of Family 7.1 has the maximal von Neumann entanglement entropy S(pa)(=
In 2) while S(pp) < In2 and S(pc) < In2.
Family 7.2. Let Family 7.2 consist of the black holes corresponding to the following states:

|T2) = 10[000) — |m1[[100) + |72|[101) + [n3][110) + [na[[111), (77)

where

2[(ulna))® + (ulma))?) = 1, (78)
sl > [n2l, (79)
72|74
Im| = W (80)
u|T3) is normal and
(| Ta) = prol000) — gl |[100) + palm2|[101) + palns|[110) + pafnal[111), (81)

where 2[(u|n3])? + (u|na])?] = 1 by the condition in Eq. (78), |uns| > |unz2| by the condition
in Eq. (79), and || = % by the condition in Eq. (80).
By Corollary 5 in Appendix C, |T5) has the maximal von Neumann entanglement entropy

S(pp)(= In2) while S(pa) < In2 and S(pc) < In2. Thus, under the factor u, each black
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hole of Family 7.2 has the maximal von Neumann entanglement entropy S(pp)(= In2) while
S(pa) <In2 and S(pc) <In2.
Family 7.3. Let Family 7.3 consist of the black holes corresponding to the following states:

|T3) = 10|000) — |n1][100) + |n92[[101) + |n3[|110) + |n4]|111), (82)
where
2[(ulm2])® + (ulmal)?] = 1, (83)
In2| > |nsl, (84)
|m3]|ma]
m| = el 85
T T )
1|T3) is normal and
p|T5) = pno|000) — pan1[|100) + palnme]|101) + pln]|110) + plnal|111), (86)

where 2[(12|n2])% + (12|n4])?] = 1 by the condition in Eq. (83), |una| > |uns| by the condition
in Eq. (84), and |um | = % by the condition in Eq. (85).

By Corollary 6 in Appendix C, x|T3) has the maximal von Neumann entanglement entropy
S(pc)(= In2) while S(pa) < In2 and S(pc) < In2. Thus, under the factor u, each black
hole of Family 7.3 has the maximal von Neumann entanglement entropy S(pc)(= In2) while
S(pa) <In2and S(pg) < In2.

Family 7.4 includes other black holes. Then, by Lemmas 1-8 in Appendix C each black
block of Family 7.4 has von Neumann entanglement entropy S(p,) <In2, z = A, B, C.

Remark 4. STU black holes can also be partitioned into eight types by von Neumann
entanglement entropy in Table 4. Clearly, any two types are LU inequivalent because they
have different von Neumann entanglement entropy which is LU invariant. Therefore, we
obtain another LU classification of STU black holes.

Table 4 Eight types of STU black holes.

| Type | | S(pa) | S(ps) | S(pc) |
‘1 ‘isFamilyl ‘:1n2‘:1n2‘:1n2‘
|2 | is Family 2 | =In2 | <In2 | =ln2 |
| 3| is Family 3 | =In2 | =In2 | <In2 |
| 4 | is Family 4 | <In2 | =In2 | =n2 |
|5 | is Family 7.1 | =In2 | <In2 | <In2 |
| 6 | is Family 7.2 | <In2 | =In2 | <In2 |
| 7| is Family 7.3 | <In2 | <In2 | =In2 |
| 8 | is Families 5, 6, and 7.4 | <In2 | <In2 | <In2 |
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7 Summary

The black holes with p'p?p3gy # 0 correspond to the three-qubit states |¢) in Eq. (4).
A complicated calculation yields the Schmidt decomposition of plt) in Eq. (4). Using the

Ul = 1, Bt = P and (55t = (4 (obtained from (p)?+(p?)2— (p*)? —43 = 0,

Ip?p?| = [plqol, and |p'p?®| = |p®qol), the SD of u|y) in Eq. (4) is classified into seven groups,
and accordingly, the black holes are classified into seven families. The seven families of black

criteria

holes are regarded inequivalent under LU because their corresponding states are inequivalent
under LU.

Clearly, the criteria are independent of the sign of charges. Thus, the classification of
the black holes is not related to the signs of charges, but related to the ratio of the absolute
values of charges. The fact that the criteria are independent of the signs of charges verifies
that between two black holes with p'p?p3qy # 0 if their only difference is the signs of charges,
then the two corresponding states are LU equivalent.

In [7], Kallosh and Linde studied the classification of black holes under SLOCC. Also, in
[7], Kallosh and Linde claimed that the theory of stringy black holes requires a more detailed
classification than the standard three-qubit classification provided by their Table 1. Our
contribution is that we do a more detailed classification for the black holes corresponding to
GHZ SLOCC class of three qubits and classify the black holes into seven families under LU.
In addition, we also derive the black holes with the maximal von Neumann entanglement
entropy and propose another LU classification of black holes by von Neumann entanglement
entropy.

As indicated in [5], the appearance of the Cayley hyperdeterminant in the contexts of
stringy black hole entropy and the three-qubit quantum entanglement may be a purely math-
ematical coincidence, so the intriguing relation between STU extremal black holes and three-
qubit systems in quantum information theory may be coincidental. It was pointed out in [7]
that the coincidence may be a consequence of the underlying symmetry of the theory, i.e., the
two different theories have the same underlying symmetry: the symmetry of extremal STU
black holes is [SL(2,R)]?; in ABC system the symmetry is [SL(2, C)]3.
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Appendix A Detailed derivation for the criteria of the seven families

Family 1. Let Family 1 consist of the black holes satisfying the following Eq. (A.1):
") = (0*)* = (»*)* = g (A1)

Condition 1. Eq. (A.1) holds if and only if [p'p?| = |p?qol, |P?P®| = |p'qo| and (p')? +
(r*)? = (p°)* — a5 = 0.

Proof.

(=>) If (p)? = (p*)* = (p°)* = g3, certainly [p'p®| = |p*qol, [P*P’| = |p'qo| and (p*)* +
(r*)? = (p°)* — g5 = 0.

(<=) From |p'p?®| = |p?qo| and |p?p?| = |p'qol, obtain (p*)? = (p?)? and (p®)? = ¢2. Then,
from (p')? = (p*)%, (p°)? = ¢ and (p')* + (»*)* — (b*)* — ¢§ = 0, obtain (p')* = ¢§. Thus,
obtain Eq. (A.1).

Family 2. Let Family 2 consist of the black holes satisfying the following Eq. (A.2):
") =" 0 = ¢, ") # () (A.2)

Condition 2. Eq. (A.2) holds if and only if (p')? + (p*)? — (p*)? — ¢ = 0, [p*p?| = [P qol,
but [p'p?| # |p*qol-

Proof.
(=>) Clearly, (p')*+(p®)*~(p*)*~q5 = 0 and [p*p®| = [p'qo|. Assume that [p'p*| = |p®qo|.
In light of Condition 1, we get (p')? = (p?)? = (p*)? = ¢3, which contradicts (p)? # (p?)2.
2 1

(<=) From [p?p3| = |p'qo], let % = ‘lig! = (. Then, p2’ = {|qo| and ‘p1| =/ ’p3‘. Then,
P+ (*)? = (0°)? — @5 = (> = D[(p*)* + ¢3]. Let (€2 — 1)[(p*)> + 5] = 0. Then, we get
¢ = 1. Thus, we get (p*)? = (p*)? and (p?)? = ¢3. Then, from [p'p3| # |p?>qo| we obtain
(') # (0*)%.
Family 3. Let Family 3 consist of the black holes satisfying the following Eq. (A.3):
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#*)* = (") (0")* = a3, (0")* # (0*)? (A.3)
Condition 3. Eq. (A.3) holds if and only if (p')?+ (p?)? — (p*)2 — ¢2 = 0, |p'p®| = [P0l

but [p?p?| # [p'qo-

Proof.

(=>) Clearly, (p')*+(p?)*—(»*)*—q5 = 0 and [p'p®| = [p*qo|. Assume that |p*p?| = |p'qol.
In light of Condition 1, we obtain (p*)? = (p?)? = (p*)? = ¢2, which contradicts (p!)? # (p*)?.

2

(<=) Via [p'p?| = [p*qol, let % = ||q—0| = (. Then, p2| = €|p3} and |p1| = {|qo|. Then,
(P + (*)* — (0°)? = a§ = (€ = D[(p*)* + g5]- Let (£2 = D[(p®)* + ] = 0. Then, we get
¢ = 1. Thus, we get (p')? = ¢3, and (p?)? = (p)2. Then, from |p?p3| # |p'qo|, we obtain
»)* # (r*)%.
Family 4. Let Family 4 consist of the black holes satisfying the following Eq. (A.4):

)= E")% 0°) =@, (') # (*)? (A.4)

Condition 4. Eq. (A.4) holds if and only if (p')? + (p?)? — (p*)2 — g2 # 0, but [p*p?| = |p'qol,
and [p'p®| = [p?qol.

Proof.

(=>) It is trivial.

(<=) From |p°p®| = Ip'qo| and [p'p?| = |p*qol, we get (p')* = (p?)*and (p*)? = ¢§. Then,
from (p')? + (p°)? — (0°)? — a5 = 2[(p")* — (p*)°] # 0, we get (p')* # (p°)*.
Family 5. Let Family 5 consist of the black holes satisfying the following Eq. (A.5):

(*)? # (0°)?, (0°)* # a5, Ip"p°| = [P qol (A.5)

Condition 5. Eq. (A.5) holds if and only if (p')2+(p?)2—(p*)2—¢2 # 0, [p*p3| # |p'qol, Ip'p?| =
[P*qol-

Proof. From |p'p?| = [p?qo|, let % = i%;} = /{. Then,
I’ =, (A.6)
P!l = taol. (A7)

(<=) From Egs. (A.6, A.7) and (p*)? + (p*)? — (p®)? — ¢2 # 0, we obtain ¢ # 1. Thus,
|p?| # |p?| and |p'| # |qo|. Via [p?p?®| # |p'qo| and Eqgs. (A.6, A.7), we obtain (p?)? # ¢2.

(=>) Via (p?)? # (p*)? and Eq. (A.6), obtain £ # 1. Via Eq. (A.6) and (p?®)? # ¢3, obtain
Ip?||p3| = £|p®|? # Lg?. Via Eq. ( A.7), obtain |p!||qo| = €g3. Thus, obtain |p?p3| # |p'qol.
Via ¢ # 1 and Egs. (A.6, A.7), obtain (p*)? + (p?)? — (p®)? — g2 # 0.

Family 6. Let Family 6 consist of the black holes satisfying the following Eq. (A.8):
(r*)* # a3. (0°)* # a5, 10*P°| = |p" ol (A.8)

Condition 6. Eq. (A.8) holds if and only if (p')2+(p?)2—(p*)?—¢2 # 0, [p*p?| = |p'qol, [p'p?| #
P qol-
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Proof. From |p?p?| = |[plqol, let % = ig—;l = (. Then,

P’ = ‘ol (A.9)
Pt = dp’l. (A.10)

(<=) From Egs. (A.9, A.10) and (p*)? + (p*)? — (p®)? — ¢3 # 0, obtain ¢ # 1. Then,
obtain [p?| # |qo| and [p'| # |p®|. Then, from Eqs. (A.9, A.10) and [p'p®| # |[p?qo|, obtain
(p°)* # a5

(=>) Via Eq. (A.9) and (p?)? # ¢3, obtain £ # 1. Via £ # 1 and Egs. (A.9, A.10), obtain
(p1)* + (p*)* = (p°)* — g3 # 0. Via Eqs. (A.9, A.10), [p'p?| = £(p®)* and [p*qo| = g5 Since
(»°)? # 4§, then £(p®)? # (g5, and [p'p®| # |p?qol-

Family 7. Let Family 7 consist of the black holes satisfying the following Eq. (A.11):

W P

lgol 12?1 lgol PP

Condition 7. Eq. (A.11) holds if none of the other six conditions holds, so that the seven
families form a partition of the space based on the equivalence classes of black hole charges.

(A.11)

The seven families and their criteria are summarized in Table 3 in the main text.

Appendix B The 16 Dictionaries

B.1 Duff’s correspondence between charges and local bases product states has 16 dictionaries

The entropy of black holes can be shortened. We know that to make a relation between
the entropy of black holes and 3-tangle 745, it is necessary to make A = det W, where A is
defined as in eq. (1).

To make A = det U, one way is to associate all magnetic charges (electric charges) with
the presence of 1’s (0’s) in local bases product states from the rightmost position to the
leftmost position. That is, let the state with magnetic charge p° (p!, p?, p3) correspond to
|000) (]001), |010), |100)), and the state with electric charge qo (q1, g2, g3) correspond to [111)
(|110), |101), |011)) [5] (see Table B.1).

Table B.1. Duff’s correspondence between charges and local bases product states.

| Charge | p° | ¢ | 28 | P | w | P | @ | @ |
| State | |000) | [011) | [001) | 010) | [111) | [100) | [110) | |101) |

Table B.1 gives the correspondence between the charges and the states, however, the signs
of the charges are not explained. To determine the signs, let 0; € {+1,—1}, and we then
create Table B.2. By substituting the charges in A with the corresponding items in Table B.2
and solving the equation A = det ¥, we obtain all the 16 solutions for §;. Thus, we obtain
16 different versions of Table B.2. Each version of the table is called a dictionary [7]. In
total, there are 16 dictionaries for Duff’s correspondence. The 16 dictionaries are generated
by having B = £C; for i = 1,...,8. Table B.3 shows eight dictionaries generated by having
B = (C;, and another eight dictionaries can be generated by having B = —C}, in which all
elements in the table will have their signs flipped. In the literature, the dictionaries generated
by having B = C; with i = 1,2, 3 appeared in [5, 7, 8].
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Table B.2. The general dictionary.

| p° | doaooo |
| ! | d1a001 |
| p? | d2a010 |
| p? | dsa100 |
‘ 4o ‘ drain ‘
| @ | dsaiio |
K2 | dsa101 |
‘ 43 ‘ dzao11 ‘

Table B.3. Eight dictionaries generated by having B=C;,i=1,..., 8.
51C |G |G G G |G G |G

‘ P° ‘ —@000 ‘ @000 ‘ G000 ‘ @000 ‘ @000 ‘ —@000 ‘ —@000 ‘ —@000 ‘
‘ p' ‘ —@001 ‘ —ao01 ‘ G001 ‘ —@001 ‘ @001 ‘ Q001 ‘ —a001 ‘ G001 ‘
‘ p2 ‘ —ao10 ‘ —ap10 ‘ ao10 ‘ ao10 ‘ —ao10 ‘ ao10 ‘ ao10 ‘ —ao10 ‘
| p* | a0 | —a100 | @00 | @r00 | @00 | —a@100 | @00 | @00 |
‘ do ‘ —ai1 ‘ aiil ‘ —ain ‘ aii ‘ aiii ‘ ari ‘ aiil ‘ aiil ‘
‘ q1 ‘ aiio ‘ aiio ‘ aiio ‘ aiio ‘ —@110 ‘ aiio ‘ —aiio ‘ aiio ‘
‘ q2 ‘ G101 ‘ a101 ‘ a101 ‘ —a101 ‘ a101 ‘ a101 ‘ a101 ‘ —a101 ‘

|

‘ a3 ‘ —ao11 ‘ ao11 ‘ aop11 ‘ —ao11 ‘ —ao11 ‘ —aop11 ‘ ao11 ‘ aop11
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B.2 There are many correspondences between the charges and local bases product states dif-
ferent from Duff’s.

A correspondence must satisfy A = det W. It is easy to see that to ensure A = det ¥,
when the state with magnetic charge p’, i = 0,1,2, 3, correspond to the state |izizi1), where
i1,12,13 € {0,1}, then ¢; must correspond to |i37271), where 7y = 1 — iy, £ = 1,2, 3, via egs.
(1) and (2). From this property we can construct many correspondences. For example, by
exchanging p' and p? in Duff’s correspondence, we can obtain another correspondence.

Appendix C The states with the maximal von Neumann entanglement entropy

It is well known that von Neumann entanglement entropy is an important entanglement
measure. We explore what states have the maximal von Neumann entanglement entropy.
For readability, we list the above Schmidt decomposition for the non-BPS black holes with
p'p?p3qo < 0 as follows.

A0[000) % A1[100) + Ao|101) + Ag|110) + Ag|111), (C.1)

where \; > 0, Z?:o A? = 1, the state is written as (Ao, £A1, A2, A3, A1) sometimes. It is well
known that A\gAy # 0 for GHZ SLOCC class. We use the notations J; = | + A\; g — AaAs/?,
Ji = (MoAi)?, i =2,3,4, where J;, i = 1,2,3,4, are LU invariant and defined in [29].

It is known that ps = trpopapc, where papc is the density matrix. For the states of the
form (Mg, A1, A2, A3, A\4), von Neumann entanglement entropy S(p,), where x = A, B, C, is
given as follows [32].

P = R N =

where 0 < a, < 1/4. (see Table C.1.) We showed that S(p,) increases strictly monotonically
as oy increases. Thus, S(p,) = In2 if and only if o, = 1/4. It is well known that the maximal
von Neumann entanglement entropy is In 2.

Table C.1. Values of a,ap, and ac.
‘ oy ‘ Jo+Jz+Jy ‘
‘ ap ‘ Ji+J3+Jy ‘
| ac | i+ J2+ s |

Lemma 1. A state of the form (Ag, £A1, A2, A3, Ag) has the maximal von Neumann
entanglement entropy S(pa) = S(ps) = S(pc)(= In2) if and only if the state is GHZ state
%(|000> +[111)).

From [32], it is easy to see that Lemma 1 holds.

Lemma 2. ay = 1/4 implies \; = 0 and \g = 1/v/2.

Proof. By the definition of a4, we have the following equation.

OZA:J2+J3+J4:1/4. (C3)
From Eq. (C.3), obtain

MNOZEX2 A =221 =M= )\2) =1/4, (C.4)
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and then
M= N1 = ) +1/4=0. (C.5)

The above equation has solutions for A3 if and only if the discriminant (1 —A%)2—1 >0,
ie., (1 —A2)2 > 1. Clearly, (1 — A\?)2 > 1 if and only if A; = 0. Then, obtain

A =0,A=1/V2 (C.6)

Lemma 3. The state of the form (Mg, A1, A2, A3, A4) has the maximal von Neumann
entanglement entropy S(pa) = S(pc) = In2 if and only if the state is %|OOO> + A2|101) +
>\4‘111>7

Proof. Since S(pa) = S(pc) = In2, then we have the following equations:

ay = J2+J3—|-J4:1/4, (C?)
ac = J1+J2+J4=1/4. (08)

Then, from the above two equations, obtain
Ji = Js. (C.9)

From Eq. (C.7) and by Lemma 2, obtain

A =0,A=1/V2 (C.10)
From Egs. (C.9, C.10),
1
AoA3 = AgA3 = —=As. C.11
243 0A3 NG 3 ( )
From the above equation, one can see that if A3 # 0 then Ay = % It is impossible

because E?:o A? = 1. So, A3 = 0. Then, obtain the following state

1
V2

Thus, we show that if a state of the form (Ag, A1, A2, A3, Ay) has the maximal von Neu-
mann entanglement entropy S(pa) = S(pc) (= 1n2), then the state must be |§). Conversely,
let us calculate S(p.), * = A, B,C, for the state |£{) below. Clearly, J1 = 0, J3 = 0,
Jo = (1/2)A3 and Jy = (1/2)A]. So, ax = ac = Jo+ Jy = (1/2)(A\3 + A]) = 1/4 and
S(pa) = S(pc) =In2. ap = $A42. Thus, |£) has the maximal von Neumann entanglement
entropy S(pa) = S(pc) =In2.

From Lemmas 1 and 3, we have the following corollary.

Corollary 1. The state of the form of (Ag, £A1, A2, A3, Ay) has the maximal von Neumann
entanglement entropy S(pa) = S(pc) (= In2) while S(pp) < In2 if and only if the state is
%\oom + A2|101) + A\4|111), where Ay # 0.

Lemma 4. The state of the form (Mg, £A1, A2, A3, A4) has the maximal von Neumann
entanglement entropy S(pa) = S(pp) (=In2) if and only if the state is %|000> + A3|110) +
Ag|111).

1€) 1000) + A2[101) + Ayg|111). (C.12)
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Proof. Since S(pa) = S(pp) = In2, then we have the following equations

agr = Jo+ I3+ Jy=1/4, (C.13)
Ji+Js+ Jy=1/4. (C.14)

B

Then, from the above obtain

J1 = Jo. (C.15)
From Eq. (C.13) and by Lemma 2, obtain
A =00 =1/V2. (C.16)
From Egs. (C.15, C.16),
A2z = Ao = %)\2. (C.17)

From Eq. (C.17), If A2 # 0, then A3 = % However, it is impossible because Z?:o A =1.
Therefore, Ao = 0 and then, we obtain

1
|w) = \/§|000

Thus, we show that if a state of the form (Ag, A1, A2, A3, A4) has the maximal von Neu-
mann entanglement entropy S(pa) = S(pp) = In2, then the state must be |w). Conversely,
let us calculate S(p.), * = A, B,C, for the state |w) below. Clearly, J; = 0, Jo = 0,
Js = (1/2)A3 and Jy = (1/2)A]. So, ax = ap = J3 + Js = (1/2)(A\3 + A7) = 1/4 and
S(pa) = S(pp) =In2. ac = A4 Thus, |w) has the maximal von Neumann entanglement
entropy S(pa) = S(pp) =In2.

From Lemmas 1 and 4, we have the following corollary.

Corollary 2. The state of the form (Mg, £A1, A2, A3, A4) has the maximal von Neumann
entanglement entropy S(pa) = S(pp) (= In2) while S(pc) < In2 if and only if the state is
%\oom + A3]110) + A\4|111), where A3 # 0.

Lemma 5. The state of the form (Mg, £A1, A2, A3, A4) has the maximal von Neumann
entanglement entropy S(p4) (= In2) if and only if the state is %|000> + A2|101) 4+ A3]110) +
Ag|111).

Proof. That S(pa) =In2 implies a4 = 1/4. By Lemma 2, obtain

A =0,A=1/V2 (C.19)

and then )
|k) = ﬁ|000> + A2|101) + A3|110) + A4|111). (C.20)

Thus, we show that if a state of the form (Ag, A1, A2, A3, Ay) has the maximal von Neu-
mann entanglement entropy S(pa) = In2, then the state must be |k). Conversely, one can
verify that for the state |k), aqa = 1/4 and so S(pa) =In2.

Lemmas 1, 3, 4, and 5 imply the following corollary.

Corollary 3. The state of the form (Mg, A1, A2, A3, Ay) has the maximal von Neumann
entanglement entropy S(pa) (= In2) while S(pp) < In2 and S(pc) < In2 if and only if the
state is %|000> + A2[101) + A3|110) + A\4|111), where AgA3 # 0.



Dafa Li, Maggie Cheng, Xiangrong Li, and Shuwany Li 603

Lemma 6. The state of the form (Mg, A1, A2, A3, A\y) has the maximal von Neumann
entanglement entropy S(pg) = S(pc) (= In2) if and only if the state is A\g|000) + A;|100) +

%\111)
Proof. That S(pp) = S(pc) = In2 implies
ap = J1+J3+J4:1/4 (C.?l)
ac = J1+J2+J4:1/4 (C.22)

Then from Egs. (C.21, C.22), obtain Jy = J3, and then Ay = A3. From the definition of
ap, obtain
MAT £ 20030 A2+ AN+ AN - 1/4=0 (C.23)
Note that 327 A? = 1. By substituting Ao with (1 — (A\? 4+ 2A% + A3)), obtain from Eq.
(C.23)

1
A2 £ 20030 + A5 +3A30T — A3+ A — AT+ 1=0 (C.24)

Case 1. Ay = 0. Eq. (C.24) becomes A\] — A3 + 1 =0.
Then, obtain

1
A= — C.25
=7 (C.25)
and then i
= Xo|000) & A\{]100) + —|111). C.26
) = A0l000) & 24100} + =111 (C.26)

Case 2. Ay # 0. We next show that Eq. (C.24) does not have a solution for A\; whenever

Ao # 0.
It is clear that the discriminant for A; in Eq. (C.24) is

1
(F2X200)% — 403N + 30202 — 22+ 0] - A2+ 7 (C.27)

= (@3 +202-1)% (C.28)

A

Let A =0 in Eq. (C.28). Then, obtain 2)\% + 2A% = 1. Thus, from Eq. (C.24), obtain
Al = £\ (C.29)

It is impossible for \; = —XA;. When \; = )4, from Z?:o A2 =1 and 2)\3 +2)\] = 1,
obtain
MN=1-(M+2X32+22)=1-(2\2 +2)3) =0. (C.30)

It is also impossible for A\g = 0 because AgA4 # 0 for GHZ SLOCC class.

Thus, we show that if a state of the form (Ag, A1, A2, A3, Ay) has the maximal von Neu-
mann entanglement entropy S(pg) = S(pc)(= In2), then the state must be |g). Conversely,
one can verify that for the state |o), S(pp) = S(pc)(=1n2).

From Lemmas 1 and 6, we have the following corollary.

Corollary 4. A state of the form (Ao, £A1, A2, A3, A1) has the maximal von Neumann
entanglement entropy S(pp) = S(pc)(= In2) while S(p4) < In2 if and only if the state is
Ao|000) £ A{|100) + %\111% where \; # 0.
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Lemma 7. The state |¢) of the form (Ao, £A1, A2, A3, A4) has the maximal von Neumann
entanglement entropy S(pp)(= In2) if and only if the state is one of the following states

1
= X0[000) + A\{]100) + —=|111), C.31
|¥) 0[000) & A1[100) ﬂl ) (C.31)
1
= —=[000) + A\3|110) + A4|111), C.32
%) \/§| )+ A3[110) + A4111) (C.32)
) = Ao|ooo>—%\100>+A2|101>+A3\110>+A4|111>, where (C.33)
3
Az > Mg, 202 F202 =1 (C.34)

Proof. That S(pp) = In2 implies
O[B:J1+J3+J4:]./4 (C35)
From Eq. (C.35), obtain

MAT £ 20 00030 + A0 + A3A3 + AN\ —1/4=0 (C.36)

Note that 77, A2 = 1. By substituting AZ with (1— (A2 + X3+ A3+ A32)), from Eq. (C.36)
obtain ,
MAZ £ 20 0030 + A3AT A3 H 20307 - A2+ 0 - A+ 10 (C.37)
Case 1 A3 = 0. Eq. (C.37) becomes
M2+ (A2 -1/2)2=0 (C.38)

From Eq. (C.38), obtain Ay =0 and A% = 1/2 and

1
= X|000) = A1]|100) + —=|111). C.39
|¢>0|>1|>\/§|> (C.39)
Tt is known that S(pg) = S(pc) = In2 for the state in Eq. (C.39).
Case 2. A\3 £ 0.
Case 2.1. A2 = 0. Eq. (C.37) becomes
1
AL F2XAT — AT AT AL - A+ 1=0 (C.40)
The discriminant for A} in Eq. (C.40) is
1
A=2X2 - 1) —4(NXN2+ 23— X2+ = —4NIN2, (C.41)

Let A = 0 in Eq. (C.41). Then, obtain A; = 0. From Eq. (C.40), obtain A = 1 — A3
Then, A2 = 1/2. Thus, obtain
1
9 =75
It is known that S(pa) = S(pp) = In2 for the state in Eq. (C.42).

1000 + A3|110) + Ag|111). (C.42)
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Case 2.2. Ag #£ 0. To solve A; from Eq. (C.37), let A be the discriminant for A\;. Then,

1
A = (E2200030)% —AN3OAT A F 20207 — A2 40 - M+ Z) (C.43)
— 2 (2224222 - 1)°. (C.44)
Let A = 0 in Eq. (C.44). Then, obtain 2A3 + 203 — 1 = 0 from Eq. (C.44) and \; =
)‘i—;\“ from Eq. (C.37) when the sign for the second term in Eq. (C.37) takes “—”. Then,
A2 = 82N from YL A2 = 1. Under that 2)3 + 203 = 1, A3 > Ay, and X # 0, i = 2,3,
3
obtain
A2 g
[1)) = Ao|000) — " [100) 4+ A2[101) + A3[110) + A4]111). (C.45)

One can verify S(pp) =1n2 for |[¢) in Eq. (C.45).

Therefore, if a state of the form (A, A1, A2, A3, As) has s(pp) = In2 then the state must
be one of the states in Egs. (C.39, C.42, C.45). Conversely, for the states in Egs. (C.39, C.42,
C.45), clearly s(pp) =In2.

From Lemmas 4, 6, and 7, we have the following corollary.

Corollary 5. A state of the form (Ao, £A1, A2, A3, A1) has the maximal von Neumann
entanglement entropy S(pp)(= In2) while S(pa) < In2 and S(pc) < In2 if and only if the
state is Aog|000) — Ai—;\‘*|100> + A2|101) + A3|101) + A4 [111), where 23 +2A% = 1, A3 > Ao, and
N #£0,i=2,3.

Lemma 8. The state of the form (Mg, £A1, A2, A3, A4) has the maximal von Neumann
entanglement entropy S(pc) (= In2) if and only if the state is one of the following three
states.

1

= X0/000) + £A;[100) + —=|111), C.46
|¥) 0/000) 1/100) ﬂl ) (C.46)

1

= —]000) + Ao|101) + Ag|111), C.A7
|¥) ﬂl )+ A2[101) + A4[111) (C.47)
) = Ao|000) — Ai’\“ 1100) 4 A2|101) + A3|110) + Ag|111), where (C.48)

2

Ay > A3,203 4202 = 1. (C.49)

Proof. That S(pc) = In2 implies
aC=J1—|—J2—|—J4=1/4 (050)

From Eq. (C.50), obtain

MAT £ 20 A3 + AN + A5A3 + A3\ —1/4=0 (C.51)
Note that S35, A2 = 1. Substituting A2 with (1 — (A2 + A3 + A2 + A3)) in Eq. (C.51),
obtain

1
NNZ 420 Aoy + A5+ 20207 — A2+ A2 0 -\ 10 (C.52)

Case 1. Ay =0.
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Eq. (C.52) becomes

MA (M2 -1/2)2=0 (C.53)
Then, A3 = 0 and A% = 1/2 from Eq. (C.53). Thus,
1
= Ao|000) &+ A\{|100) + —=|111). C.54
[¥) = A0|000) + A1[100) \/§| ) (C.54)
It is known that S(pp) = S(pc) = In2 for the state in Eq. (C.54).
Case 2. A\g # 0.
Case 2.1. A3 = 0. Eq. (C.52) becomes
1
ALF2XAT — AT+ AT+ AL — A3+ 7=0 (C.55)

To solve A7 from Eq. (C.55), let A be the discriminant in Eq. (C.55). Then,

1
A=2X3 - 1) =42+ 02— M2+ Z) = —4NIN2 (C.56)

Let A =0 in Eq. (C.56). Then, obtain A; = 0 from Eq. (C.56). From Eq. (C.55), A\ =
1 —A3. Then, A\g = 1/v/2. Thus, obtain

1
V2

It is known that S(pa) = S(pc) = In2 for the state in Eq. (C.57).
Case 2.2. A3 # 0. To solve A\; from Eq. (C.52), let A be the discriminant for A; in Eq.
(C.52). Then,

1) 1000) + Ao|101) + Aq|111). (C.57)

1
A = (£20A30)7 —4A3(A5 +2030] — A3+ A3\ + AL - AT+ 7 (C.58)
= A2 (2A2 4202 1), (C.59)
Let A =0 in Eq. (C.59). Then, obtain 23 + 2\ — 1 = 0. From Eq. (C.52), obtain \; =
Ai—;“‘ when the sign for the second term in Eq. (C.52) takes “—7. Then, A = 51z (A3 — A3).
2

So, under that Ay > A3, 2A3 +2A\3 =1, \; # 0, i = 2, 3, obtain

A3y
A2

One can verify that S(pc) =1In2 for |¢) in Eq. (C.60).

Therefore, if a state of the form (Mg, A1, A2, A3, A\4) has s(pc) = In2 then the state must
be one of the states in Egs. (C.54, C.57, C.60). Conversely, for the states in Egs. (C.54, C.57,
C.60), clearly s(pc) = In 2.

Lemmas 3, 6, 8 imply the following corollary.

Corollary 6. A state [¢) of the form (Mg, £A1, A2, A3, A4) has the maximal von Neumann
entanglement entropy S(pc)(= In2) while S(pa) < In2 and S(pp) < In2 if and only if the
state is A\p|000) — %HOO) + A2|101) + A3|101) + A4]111)., where Ay > A3, 203 + 223 = 1,
N £0,i=2,3.

1) = Ao|000) —

|100> +)\2‘101> +)\3|110> +)\4‘111>. (CGO)
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Appendix D Propositions used in Section 6

Proposition 4. 0§ +n7 +n3 + 03 +nf = (p1)* + (p2)* + (p3)* + 4.
Proof. We consider the case p'p?p3qy < 0. A complicated calculation yields the following.

2 = (r°p® —z;lqgo)(plp?’ ~ V). (D.1)
p'p? — PPqo
2 o= PP e + ()~ ) —45)* (D2)
(p2p® — ptao)(P'p® — p2q0) (P'P* — P3q0)
s 09— PPa0) (09 + p’0)” (03)
BT T = 0 0 - PPo) '
s 09— PPa0) (0% + p'ao)” (D.4)
BT T = 0 0 — PPo) '
2 o= 4p'p*pPao (p'p? — P3q0) ' 05)

(p?p® — p'qo)(P'P® — P?qo)

Via Egs. (D.1-D.5), it is easy to verify that n3 +n?+n3+n3+n3 = (p1)*>+(p2)?+(p3)? +43.
iy _ 1 1,2 3 _ 1)2
Proposition 5. \/(p1)2+(p;7;2+(p3)2+q5 =5 if and only if p'p* + qop® = 0 or (p*)* +
®*)? = (p°)? — a5 = 0.

Proof. Via Eq. (D.1), n3 = @’ —T ZO)_(i ngp “00) . Then,

o _ \/ (P°p* — p'q0)(P'P* — P*q0) . (D.6)
V)2 + )2+ 0°)? + ¢ (P'p? — P2q0) ((P1)2 + (p®) + (P°)? + 43)
N PO
() + @*)? + (0*)° + a3) (0'P* — P*q0)
—2(p°p* — p'q0) (P'P* — P*00)
= (@'P*+ap’) (") + *)? - (°) — @) (D.7)

+
Therefore, p'p® 4+ gop® = 0 or ( ) + () - @*)?—-¢ =0.
Conversely, we next show if p'p? + qop® = 0 or (p*)? + (p*)? — (p®)?> — ¢ = 0, then
10 _ 1

Ve P+ V2
Case 1. Assume that p'p? + qop® = 0. A calculation yields

Assume = % Then, via factoring, a calculation yields

P’ — ') (0'P* — P°q0) (D.8)
= '’ +p'P* (%) — (") + (*)*)qop® (D.9)
p1p2q3 +p'p° (%) = (") + (P)*) (—p'P?) (D.10)
= p'P’((p)* + (p2)* + (13)* + ¢3) (D.11)
and
(»'p* = P’0) (") + 0*)* + (0°)* + ¢5) (D.12)

= 2" (") + ()’ + (°)* + @3) (D.13)
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_ 1
Therefore, from Eq. (D.6), \/(p1)2+(p;’)02+(p3)2+q3 = -
Case 2. Assume

")’ + ") = *)? —q5 =0.

From Eq. (D.14), obtain (p*)? + ¢ = (p*)? + (p?)? and then

—
bS]
—
=
¥
|
3
w
[~
(=)
~
=
i
—
~—
N
_|_
—
=
[
N ~—
[
+
—
hS!
w
~—
(™)
+
]
(=) V)
~

and

®*P* — ') (0'P* — P’ %)
—(")*q0p” +p'P* (45 + (0°)*) — (P*)*q0p”

— _(p1)2q0p3 +p1p2((p1)2 + <p2)2) _ (p2)2q0p3
= ('P*" = P’0) () + (*)?).

Therefore, from Eq. (D.6), \/(p1)2+(p;’;2+(p3)2+q8 = %




