
Quantum Information and Computation, Vol. 24, No. 7&8 (2024) 0541–0564
© Rinton Press

BASE OF EXPONENT REPRESENTATION MATTERS - MORE EFFICIENT

REDUCTION OF DISCRETE LOGARITHM PROBLEM AND ELLIPTIC

CURVE DISCRETE LOGARITHM PROBLEM TO THE QUBO PROBLEM

MICHA L WROŃSKI

Department of Cryptology, NASK National Research Institute, Kolska 12 Str.

Warsaw, 01-045, Poland

 LUKASZ DZIERZKOWSKI

Faculty of Cybernetics, Military University of Technology in Warsaw, Kaliskiego 2 Str.
Warsaw, 00-908, Poland

Received December 29, 2023
Revised May 10, 2024

This paper presents further improvements in the transformation of the Discrete Loga-
rithm Problem (DLP) and Elliptic Curve Discrete Logarithm Problem (ECDLP) over

prime fields to the Quadratic Unconstrained Binary Optimization (QUBO) problem.

This is significant from a cryptanalysis standpoint, as QUBO problems may be solved
using quantum annealers, and the fewer variables the resulting QUBO problem has, the

less time is expected to obtain a solution. The main idea presented in the paper is al-

lowing the representation of the exponent in different bases than the typically used base
2 (binary representation). It is shown that in such cases, the reduction of the discrete

logarithm problem over the prime field Fp to the QUBO problem may be obtained using

approximately 1.89n2 logical variables for n being the bitlength of prime p, instead of
the 2n2 which was previously the best-known reduction method. The paper provides a

practical example using the given method to solve the discrete logarithm problem over

the prime field F47. Similarly, for the elliptic curve discrete logarithm problem over the
prime field Fp, allowing the representation of the exponent in different bases than typ-

ically used base two results in a lower number of required logical variables for n being

the bitlength of prime p, from 3n3 to 6n3

log2(3
4
n)

logical variables, in the case of Edwards

curves.

Keywords: elliptic curve discrete logarithm problem, D-Wave, quantum annealing, crypt-
analysis.

1 Introduction

Quantum computation is an area experiencing significant progress nowadays. Alongside ad-

vancements in building quantum computers, there is simultaneous progress in quantum algo-

rithms. This includes all areas of quantum computing, particularly quantum cryptanalysis.

In quantum cryptanalysis of classical asymmetric cryptography problems—such as factoriza-

tion, the discrete logarithm problem (DLP), and the elliptic curve discrete logarithm problem

(ECDLP)—Shor’s algorithm [11] and its modifications (as in the case of ECDLP in paper [8])

were for years the fastest known algorithms. Nevertheless, there has been very little progress

in this area for many years. However, more substantial advancements emerged in 2023. That

year, Regev introduced an algorithm with lattice reduction post-processing that reduced the

541

542 Base of exponent representation matters – more efficient reduction of ...

number of gates from Õ(n2) (the original count in Shor’s algorithm) to Õ(n
3
2) [10], albeit

at the cost of increasing the number of logical qubits from O(n) (as in the optimized Shor’s

algorithm) to O(n
3
2). Shortly after that, Ragavan and Vaikuntanathan [9] demonstrated a

method to reduce the necessary qubits to only Õ(n) while maintaining the circuit size (depth

and a total number of gates) at Õ(n
3
2). Following these developments, another paper by

Eker̊a and Gärtner [6] showed how to adapt the ideas presented in [10] and [9] for discrete

logarithm problem computations. These advancements are significant theoretically, but their

impact on actual quantum circuit implementations remains to be seen.

Simultaneously with research in quantum cryptanalysis using general-purpose quantum

computers, cryptanalysis using quantum annealing has also been analyzed. In this context,

interest in applying quantum annealing to the cryptanalysis of classical asymmetric problems

began with results in integer factorization [7], where the most significant progress has been

made.

The application of quantum annealing to cryptography has yet to be fully explored. Several

papers have discussed the application of quantum annealing to the discrete logarithm problem

[12] and the elliptic curve discrete logarithm problem [13]. Additionally, there have been

investigations into the use of quantum annealing for symmetric cryptography, focusing on

ciphers such as AES [4, 2], Speck [3], and the Grain cipher family [14]. These studies suggest

that applying quantum annealing to symmetric cryptography might offer greater potential

for practical implementation.

Although algorithms for quantum cryptanalysis using quantum annealing and general-

purpose quantum computers differ significantly, some high-level ideas from one area inspire the

other. One such idea is the method of exponent representation. Ragavan and Vaikuntanathan

[9] decreased the necessary logical qubits by using an exponent representation different from

the usual binary representation. Specifically, they used Fibonacci numbers rather than powers

of two in the exponent representation to avoid modular squaring and instead rely solely on

modular multiplication. This idea was also an inspiration for our work. We posed the question:

Is binary representation of the exponent the best method for reducing DLP over prime fields

to the Quadratic Unconstrained Binary Optimization (QUBO) problem? As detailed below,

our results indicate that it is not: ternary representation of the exponent is better than binary!

Analytical methods were used to obtain such a result, presented in detail in the subsequent

sections. Therefore, this paper introduces a new method for transforming the DLP over prime

fields to the QUBO problem. This method allows for converting a discrete logarithm problem

over a prime field Fp to the QUBO problem using approximately 1.89n2 logical qubits, where

n is the bitlength of p, instead of the previous best result of 2n2 [12].

Similar analytical methods have been employed to reduce the necessary logical variables

for transforming the ECDLP to the QUBO problem. In the case of Edwards curves, the

optimal representation of the exponent is in base 3n
4 . This approach allows for converting a

discrete logarithm problem over a prime field Fp to the QUBO problem using approximately
6n3

log2 (3
4n)

logical qubits, where n is the bitlength of p, compared to the previous best result of

3n3 [13].

Our contribution includes:

• Presenting a more efficient method of reducing the discrete logarithm problem to the

Micha l Wroński and Lukasz Dzierzkowski 543

QUBO problem, which requires approximately 1.89n2 instead of the previously known

2n2 logical qubits for such reduction as presented in [12]. While this improvement may

not seem significant, it provides a considerable advantage, especially for small fields

where we can compute DLP using quantum annealing.

• Introducing a more efficient method of reducing the elliptic curve discrete logarithm

problem to the QUBO problem, requiring approximately 6n3

log2 (3
4n)

logical qubits instead

of the previously known 3n3, as shown in [13]. While the difference may not be significant

for small values, it is substantial asymptotically.

• Providing a practical example and result of solving DLP over F47 with a generator

order of 23 using the D-Wave Advantage QPU. To compute the discrete logarithm in

this field, using the base three representation of the exponent, the equivalent QUBO

problem requires 36 logical variables and, using the Zephyr topology, 117 physical qubits.

We successfully solved this problem using the D-Wave Advantage 2 quantum computer.

Conversely, using the base two representation of the exponent, the equivalent QUBO

problem requires 57 logical variables and 189 physical qubits. We could not solve the

problem using the D-Wave Advantage 2 quantum computer in this case. This marks

progress in directly computing DLP using quantum annealing without resorting to brute

force (exponential) methods. The previous best result using the direct method was

computing discrete logarithm over the field F11.

• Demonstrating a practical example and result of embedding ECDLP over F13 with

a generator order of 20 using the D-Wave Advantage QPU. To compute ECDLP in

this field, using the base three representation of the exponent, the equivalent QUBO

problem requires 218 logical variables and, using the Pegasus topology, the 2654 number

of physical qubits. However, using the base two representation of the exponent, the

equivalent QUBO problem requires 435 logical variables and may not be even embedded

in the D-Wave Advantage QPU. Unfortunately, we were unable to solve neither of these

problems using the D-Wave Advantage quantum computer.

2 Methods of Transformation of the Discrete Logarithm Problem to the QUBO

Problem

The following description is based on findings in [12]. This section will present an approach

to transforming the discrete logarithm problem into the Binary Quadratic Model (BQM)

problem. The problem can be easily transformed into the QUBO problem by omitting the

constant in the given BQM formulation.

QUBO [5] is a significant problem type with numerous real-world applications. The fol-

lowing optimization problem can express the QUBO model:

min
x∈{0,1}n

xTQx, (1)

where Q is an N × N upper-diagonal matrix of real weights, and x is a vector of binary

variables. Additionally, diagonal termsQi,i are linear coefficients, and the nonzero off-diagonal

terms Qi,j are quadratic coefficients.

544 Base of exponent representation matters – more efficient reduction of ...

The QUBO problem can also be viewed as a problem of minimizing the function

f(x) =
∑
i

Qi,ixi +
∑
i<j

Qi,jxixj . (2)

It is important to note that the QUBO problem is a special case of the BQM problem,

where BQM can be defined as ∑
i

aivi +
∑
i<j

bi,jvivj + c, (3)

with ai and bi,j being real numbers and vi ∈ {−1,+1} or {0, 1}. The transformation from

the QUBO problem to the BQM problem for vi ∈ {0, 1} is straightforward; we ignore the

constant c appearing in the BQM formulation.

We begin the main part of this section by defining the discrete logarithm problem:

gy = h, (4)

in the multiplicative subgroup of the prime field Fp, so g, h ∈ F∗
p and y ∈ {1, . . . ,Ord(g)− 1}.

This problem is equivalent to:

gy ≡ h mod p, (5)

for integers g, h ∈ {1, . . . , p− 1} and y ∈ {1, . . . , Ord(g)− 1}.
Let m be the bitlength of Ord(g). We begin by making the following transformation.

Noting that y can be written using m bits and if y = 2m−1um + · · · + 2u2 + u1, where

u1, . . . , um are binary variables, then

gy = g2
m−1um+···+2u2+u1 = g2

m−1um · · · g2u2gu1 . (6)

It is worth noting that writing y = 2m−1um + · · ·+ 2u2 + u1 allows us to obtain y > Ord(g),

but since we operate in a cyclic group, one can always get the result from {0, . . . , Ord(g)− 1}
by computing y mod Ord(g).

Let us also note that

g2
i−1ui =

{
1, if ui = 0,

g2
i−1

, if ui = 1,
(7)

which is equivalent to

xi = g2
i−1ui = 1 + ui(g

2i−1

− 1). (8)

Now, we use the observation above to define a transformation approach for the discrete

logarithm problem over prime fields to the BQM and, subsequently, the equivalent QUBO

problem.

We will transform the discrete logarithm problem into the QUBO problem using a regular

binary tree of maximal height for decomposition. It is possible to obtain an equivalent QUBO

problem using approximately 2n2 logical qubits in such a case, where n is the bitlength of

the characteristic of the prime field Fp. The scheme of such a regular binary tree of maximal

height for a general number m of leaves used for the decomposition of the general discrete

logarithm problem to the QUBO problem is presented in Figure 1. For the discrete logarithm

problem over a finite field described above, for each i = 1, 2, ...,m, it holds that Xi = xi.

Micha l Wroński and Lukasz Dzierzkowski 545

Fig. 1. The scheme of decomposition of the general discrete logarithm problem.

The group operation □ is, in this case, equivalent to multiplication in the finite field Fp. The
scheme of such a regular binary tree of maximal height for general m used for decomposing

the discrete logarithm problem to the QUBO problem is reiterated in Figure 1.

It is worth noting that other decomposition methods are possible, such as using a binary

balanced tree. However, the expected number of logical variables for an equivalent QUBO

problem in such a case is approximately n3

2 . Therefore, we do not describe this method here.

Firstly, using the problem decomposition scheme presented in Figure 1, in every step, we

can create a new variable vi = vi−1 · xi+1, which is equivalent to vi ≡ vi−1 · xi+1 mod p. It

is also easy to show that the total number of new variables vi will be equal to m− 2 because

x1, . . . , xm are leaves of the binary tree with m − 1 inner nodes, where each inner node is

equivalent to some auxiliary variable. However, the root is not equivalent to any auxiliary

variable, but it is equivalent to vm−2 · xm ≡ h mod p, so the number of auxiliary variables

vi is equal to m− 2.

Furthermore, each equation for v1, v2, . . . , vm−3, vm−2, vm−2xm must be transformed into

an equation over integers:

f1 = (v1 − x1x2) mod p− k1p = 0,

f2 = (v2 − v1x3) mod p− k2p = 0,
...

fm−3 = (vm−3 − vm−4xm−2) mod p− km−3p = 0,

fm−2 = (vm−2 − vm−3xm−1) mod p− km−2p = 0,

fm−1 = (h− vm−2xm) mod p− km−1p = 0.

(9)

Let us denote the linearized versions of polynomials f1, . . . , fm−1 as fLin1
, . . . , fLinm−1

,

respectively (the linearization method will be described later in the subsection). Then, the

final polynomial F in BQM form is given by

FPen = (fLin1
)2 + . . .+ (fLinm−1

)2 + Pen, (10)

where Pen represents penalties obtained during linearization, and the minimal energy of FPen
is equal to 0.

Therefore, the total number of variables is as follows:

• For x1, . . . , xm - m binary variables are required.

• For v1, . . . , vm−2 - (m− 2)n binary variables are required.

• For k1, . . . , km−1 - (m− 1)(⌊log2(2n)⌋+ 1) binary variables are required.

• For auxiliary variables obtained during the linearization of each polynomial f1, . . . , fm−1

- n variables each, totaling (m− 1)n variables.

Finally, the obtained BQM (and thus equivalent QUBO) problem requires m + (m − 2)n +

(m − 1)(⌊log2(2n)⌋ + 1) + (m − 1)n = 2mn + 2m − 3n + (m − 1)(⌊log2(2n)⌋ + 1), which is

546 Base of exponent representation matters – more efficient reduction of ...

approximately equal to 2mn variables. Assuming m ≈ n (which is true if the given generator

is the generator of the multiplicative subgroup of the field Fp), then the total number of

variables is approximately 2n2.

It is crucial to note that the BQM problem can be derived in two slightly different ways:

1. One can first linearize each equation fi to obtain the linearized equation fLini
, then

compute the sum FPen =
∑m−1
i=1 f2Lini

+ Pen, where Pen denotes penalties obtained

during linearization. The polynomial FPen is in such a case in BQM form.

2. One can first compute the sum F =
∑m−1
i=1 f2i , and then perform quadratization of the

polynomial F to obtain FQuadr, finally deriving FPen = FQuadr + Pen in BQM form,

where Pen denotes penalties obtained during quadratization.

In our methods of reducing the discrete logarithm problem to the BQM problem, the first

method allows one to compute the maximum number of required variables in the resulting

BQM problem and, thus, in the equivalent QUBO problem. Therefore, this method was

employed in the examples presented in Section 5.

Having polynomials f1, . . . , fm−1 in linear form fLin1 , . . . , fLinm−1 , we should now trans-

form each modular equation fLini
≡ h mod p, for i = 1, 2, . . . ,m− 1, into an equation over

integers:

(fLini − h) mod p− kip = 0, (11)

where ki ∈ Z and for every polynomial fLini , the operation fLini mod p is equivalent to

reducing all of the coefficients of the polynomial fLini
modulo p. It is important to note that

ki is bounded by the maximum number of monomials appearing in the polynomial (fLini
−h)

mod p.

When transforming the discrete logarithm problem into the BQM problem, it is necessary

to reduce 2-local terms while using approach 1 of obtaining the BQM problem, and 4-local

and 3-local terms (for any w ≥ 2, one can similarly reduce a (w + 1)-local term to a w-local

term) while using approach 2 of obtaining the BQM problem. We will now demonstrate how

the resulting 3-local terms may be reduced to 2-local ones. Note that each penalty monomial

of the form aiajal will be transformed, according to [7], in the following way:

aiajal → bkal + 2(aiaj − 2bk(ai + aj) + 3bk). (12)

This implies that

aiajal = bkal = bkal + 2(aiaj − 2bk(ai + aj) + 3bk), (13)

if aiaj = bk, and

aiajal < albk + 2(aiaj − 2bk(ai + aj) + 3bk), (14)

if aiaj ̸= bk.

As a result, the term aiajal can be transformed to quadratic form by replacing aiaj with

bk plus a constraint, given by a penalty term:

min(aiajal) = min (albk + 2(aiaj − 2bk(ai + aj) + 3bk)) . (15)

Micha l Wroński and Lukasz Dzierzkowski 547

3 Which Tree Shape Is the Best? An Analysis

We considered reducing the DLP problem to the QUBO problem in the previous section. To

make such a transformation, in each step, a single leaf was added (multiplied) to the inner

node, thus forming a binary tree of maximal height. This section will consider an alternative

approach to binary tree construction for efficiently transforming DLP to the QUBO problem.

3.1 Grouping Leaves Method

We pose the question: Is it possible to group leaves and multiply them directly? Let us denote

xi as in Equation (20). We will refer to the i-th leaf as

Xi = x(i−1)k+1 . . . xik, (16)

where xi = g2
i−1ui = 1+ ui(g

2i−1 − 1). Xi as a product of k leaves results in a polynomial of

degree k, consisting of 2k monomials. There are also 2k−k− 1 additional variables necessary

for the linearization of this product (similar to the brutal approach given in [12]). After

linearization, this product will consist of 2k − 1 monomials of degree 1. This is crucial when

Xi will be multiplied with an inner node vi−1, which consists of n monomials of degree 1.

After multiplying vi−1 and Xi, there will be necessary (2k − 1)n additional variables for

linearization. However, it is also noteworthy that the number of inner nodes decreases and

will be approximately m ≈ n
k . The task here is to find k for which the total number of

variables will be the smallest.

Let us estimate the number of variables. For each group of leaves, there are 2k−1 variables

necessary: k variables to define each single leaf and 2k − k − 1 additional variables for the

linearization of the product of the group of leaves.

There are also n additional variables necessary to represent each inner node vi, and there

are approximately n
k such nodes, so it gives n2

k . Finally, the linearization of a single product

of vi−1 and Xi requires (2
k−1)n variables, but as there are approximately n

k nodes, the total

number of additional variables in this context may be estimated as n2

k (2k − 1).

Other terms that influence the total number of additional variables have a less significant

impact because they will depend at most linearly on n. Therefore, the most significant part

of the total number of variables is

f(n, k) =
n2

k
+ (2k − 1)

n2

k
= 2k

n2

k
. (17)

Because we aim to find the optimal value of k for which the function f(n, k) = n2

k 2k is

minimized, we can treat this as a function of only the variable k.

However, as we are searching for k as an integer, for analysis, we expand the domain of

the function f to real positive numbers. In such a case, one can find the global minimum of

this function, which occurs at k = 1
ln 2 and is equal to e ln 2. As the function does not have

any other minima in the desired domain, it implies that the integer k for which the function f

obtains its minimum is either k = 1 or k = 2. Direct evaluation reveals that for both of these

values, the function f at these points is the same and equals f(n, 1) = f(n, 2) = 2n2. This

means that although there might be (and in reality, there is) some difference in the number

of variables in both cases because here, linear and degree zero monomials were not taken into

account, the total number of variables in both cases is asymptotically equal.

548 Base of exponent representation matters – more efficient reduction of ...

From an analytical perspective, the minimal amount of variables that can be obtained

using the presented method (there may be other, more efficient methods unknown to us)

should not be smaller than e ln 2n2 ≈ 1.88n2. The question arises: Is there any method to

obtain a smaller asymptotic number of variables?

3.2 Representation of the Exponent in Different Number Bases

Let m be the bitlength of Ord(g). We begin by making the following transformation. Note

that y can be written using m digits in a base d system, and if y = dm−1um + · · ·+ du2 + u1,

where u1, . . . , um are variables from {0, . . . , d− 1}, then

gy = gd
m−1um · · · gdu2gu1 . (18)

It is important to note that writing y = dm−1um+· · ·+du2+u1 allows us to obtain y > Ord(g),

but because we operate in a cyclic group, one can always get the result from {0, . . . , Ord(g)−1}
by computing y mod Ord(g).

Let us also observe that

gd
i−1ui =

1, if ui = 0,

gd
i−1

, if ui = 1,

g2d
i−1

, if ui = 2,
...

g(d−1)di−1

, if ui = d− 1.

(19)

The challenge here is that ui are not binary variables, making the transformation of

gd
i−1ui more complex than previously. However, it can be done using d − 1 binary variables

µi1, . . . , µi(d−1) as follows:

gd
i−1ui = 1 + µi1(g

di−1

− 1) + . . .+ µid−1
(g(d−1)di−1

− 1). (20)

Note that if all binary variables µi1 , . . . , µid−1
are equal to 0, then gd

i−1ui = 1, and if only

µil is equal to 1 and the other binary variables µi1 , . . . , µil−1
, µil+1

, . . . , µid−1
are equal to 0,

then

1 + µil(g
ldi−1

− 1) = gld
i−1

, (21)

as intended.

Let us denote

Xi = 1 + µi1(g
di−1

− 1) + . . .+ µid−1
(g(d−1)di−1

− 1), (22)

similar to what was done previously.

One might consider that if we operate in a base d system and there are only d different

values that gd
i−1ui can take, then perhaps ⌊log2(d − 1)⌋ + 1 binary variables should suffice,

as any integer number from the interval {0, . . . , d − 1} can be represented in binary system

using ⌊log2 (d− 1)⌋+ 1 bits. Unfortunately, we cannot use such a small number of variables

in this case. The reason is that the values gd
i−1ui take are not generally consecutive but are

distributed uniformly in the Fp field. Therefore, one has to use d− 1 binary variables in this

context.

Micha l Wroński and Lukasz Dzierzkowski 549

Now, let us estimate the total number of binary variables necessary to transform the

discrete logarithm problem into the QUBO problem.

As before, we use estimations, not exact computations, to simplify the analysis. The

binary tree will have approximately m = ⌈ n−1
log2 d

⌉ ≈ n
log2 d

inner nodes.

Each leaf is a polynomial of degree one, consisting of d terms, of which d−1 are degree one

monomials and one is a degree 0 monomial. To obtain the product vi of an inner node vi−1

and a leaf xi, there will be necessary (d− 1)n additional variables for linearization. However,

note that in this case, the number of inner nodes also decreases and will be approximately
n

log2 d
. So, the task here is to find a base d for which the total number of variables will be the

smallest.

As before, let us estimate the number of variables. For each leaf, d − 1 variables are

necessary to define each leaf.

There are also n additional variables required for each inner node vi, and as there are

approximately n
log2 d

such nodes, this gives n2

log2 d
additional variables. Finally, the linearization

of a single product of vi−1 and Xi requires (d− 1)n variables, but as there are approximately

m ≈ n
log2 d

nodes, the total number of additional variables in this context is n2(d−1)
log2 d

. Other

terms that influence the total number of additional variables have less significant impact

because they will depend at most linearly on n. Therefore, the most significant part of the

total number of variables is

f(n, d) =
n2

log2 d
+ (d− 1)

n2

log2 d
= d

n2

log2 d
. (23)

Since we aim to find the optimal value of d for which the function f(n, d) = n2d
log2 d

reaches

a minimum, we can treat this as a function of only the variable d.

The function f in this subsection is conceptually similar to the previous one.

As before, although we are searching for d as an integer, for analysis, we expand the

domain of function f to the real positive numbers. In such a case, one can find the global

minimum of the function, which occurs at d = e and is equal to e ln 2, the same value as

obtained in the previous section. Does this make the analysis worthwhile?

Yes, it does because it allows for a case not permissible in the previous scenario.

Since e is not an integer, we examine the nearest integers to determine for which of them

function f will take the smallest value. Taking d = 2, we obtain the binary representation of

the exponent and therefore f(n, 2) = 2n2, as before. So, the next integer to check is d = 3.

In such a case, f(n, 3) = 3n2

log2 3 ≈ 1.89n2, which is smaller than 2n2 and very close to the

analytically obtained minimal value e ln 2 ≈ 1.88 for d = e.

To conclude the discussion above, the total number of variables for arbitrarily chosen d

and m may be estimated as:

• For X1, . . . , Xm - d−1 binary variables are required for each, totaling (d−1)m variables.

• For v1, . . . , vm−2 - a total of (m− 2)n binary variables are required.

• For k1, . . . , km−1 - up to ⌊log2 (dn)⌋+ 1 binary variables are required for each, totaling

at most (m− 1)(⌊log2 (dn)⌋+ 1) binary variables.

550 Base of exponent representation matters – more efficient reduction of ...

• For auxiliary variables obtained during the linearization of each polynomial f1, . . . , fm−1,

(d− 1)n variables are required, totaling (m− 1)(d− 1)n variables.

The resulting BQM (and thus equivalent QUBO) problem requires (d − 1)m + (m − 2)n +

(m−1) (⌊log2 (dn)⌋+ 1)+(m−1)(d−1)n = dmn+dm−1− (d+1)n+(m−1) (⌊log2 (dn)⌋) .
Taking d = 3, one obtains that the total number of variables is limited by 3n2

log2 3 ≈ 1.89n2.

Note that the scenario analyzed in the previous section is essentially the same as here.

However, in the first scenario, only systems with base 2k were considered, excluding others

(grouping k leaves was equivalent to using a number system with base 2k).

3.3 Remark on Integer Representation Using Fibonacci Numbers

As presented in [9], representing the exponent using Fibonacci numbers offers a significant

improvement in the context of Regev’s factorization method. However, for the case presented

in this paper, there are more efficient methods than this method of integer representation. It is

well-known that each integer l can be represented as
∑j
i=0 uiFi, where uj ∈ {0, 1} and Fj is the

j-th Fibonacci number with Fi < l ≤ Fi+1. Given that the asymptotic behavior of Fibonacci

numbers can be estimated as Fj ∼ ϕj

√
5
, it can be estimated that j ∼ logϕ l

logϕ 2 , representing the

number of bits necessary to represent the integer l. Unfortunately, it is straightforward to

find that even the binary representation of integer l is more efficient because it requires only

⌊log2 l⌋+ 1 bits, which is generally less than logϕ l.

While it is well-known that base e representation is theoretically the most efficient in the

analyzed case, the requirement for operations in finite fields prevents using non-integer bases.

Alternatively, other methods of integer representation using Fibonacci-like sequences can be

analyzed. However, even in these cases, the ternary representation of integers proves to be

more efficient.

4 Methods of Transformation of the Elliptic Curve Discrete Logarithm Problem

to the QUBO Problem

The discrete logarithm problem is associated not only with multiplicative subgroups of prime

fields but also with subgroups of points on elliptic curves. Given the significance of elliptic

curve cryptography, analyzing the impact of quantum computing on current algorithms is

important. One possible approach was presented in [13].

The QUBO problem was described in Section 2; therefore, this section will begin by

describing the ECDLP.

Let E be an elliptic curve over the prime field Fp, and let P , Q be points on this curve.

The elliptic curve discrete logarithm problem (ECDLP) is defined as finding an integer y ∈
{1, . . . , Ord(P)−1} such that for the two given points P and Q, the following property holds:

[y]P = P + P + · · ·+ P︸ ︷︷ ︸
y addends

= Q. (24)

Number y can be represented as y = 2m−1um + · · · + 2u2 + u1, where m is the bitlength of

Ord(P) and ui are binary variables. It follows that:

Q = [y]P = [2m−1um+· · ·+2u2+u1]P = [2m−1um]P+· · ·+[2u2]P+[u1]P = Pm+· · ·+P2+P1.

(25)

Micha l Wroński and Lukasz Dzierzkowski 551

Every summand from the above equation may be presented as:

[ui]([2
i−1]P) =

{
O, if ui = 0,

[2i−1]P, if ui = 1,
(26)

which can be transformed to:

[ui]([2
i−1]P) = O + ui

(
[2i−1]P −O

)
. (27)

Therefore, every point Pi = [ui]([2
i−1]P) can be represented in affine coordinates as:{

Pi,x = Ox + ui
(
[2i−1]Px −Ox

)
,

Pi,y = Oy + ui
(
[2i−1]Py −Oy

)
.

(28)

Solving the problem given by Equation (25) is feasible with decomposition into a regular

binary tree, as shown in Fig. 1. The differences are:

• Nodes Xi should be substituted with elliptic curve points Pi.

• Operations □ should be replaced with elliptic curve point additions.

It is important to note that if E is an elliptic curve with complete arithmetic and if every point,

being a multiple of the point P , can be presented in affine coordinates, then for any three

points Q = (Qx, Qy), Pi = (Pi,x, Pi,y), Pj = (Pj,x, Pj,y) from the curve E, where Q = Pi+Pj ,

it holds that: {
Qx =

ϕ(Pi,Pj)
ψ(Pi,Pj)

=
ϕ(Pi,x,Pi,y,Pj,x,Pj,y)
ψ(Pi,x,Pi,y,Pj,x,Pj,y)

,

Qy =
ξ(Pi,Pj)
ψ(Pi,Pj)

=
ξ(Pi,x,Pi,y,Pj,x,Pj,y)
ψ(Pi,x,Pi,y,Pj,x,Pj,y)

,
(29)

where ϕ, ψ, and ξ are polynomials.

4.1 Edwards Curves

In this subsection, Edwards curves, an elliptic curve model described in [1], will be discussed.

Definition 1 An Edwards curve EEd over a field Fp is given by the equation

EEd/Fp : x2 + y2 = 1 + dx2y2, (30)

where the coefficient d /∈ {0, 1}.
The addition of points P,Q ∈ EEd(Fp) on this model is given by:

P +Q = (x1, y1) + (x2, y2) = (x3, y3) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
. (31)

If d is not a square in the field Fp, then the above formula is complete.

The neutral element is O = (0, 1), so for Edwards curves, the formulas corresponding to

System (28) are {
Pi,x = ui

(
[2i−1]Px

)
,

Pi,y = 1 + ui
(
[2i−1]Py − 1

)
.

(32)

Consider a case where the Edwards curve is defined over a prime field Fp and let:

552 Base of exponent representation matters – more efficient reduction of ...

• n be the bitlength of the field characteristic p,

• m be the bitlength of the order of ⟨P ⟩ - a group generated by P .

Then, using formulas for point addition (31) and the idea to convert ECDLP into the QUBO

with a system of equations (15) from [13], we obtain a system of equations (19) in [13], which

allows transforming ECDLP on Edwards curves into the QUBO problem. However, for small

finite fields, and thus a small number of required binary variables, it may be unnecessary to

decompose the two equations for x3, y3 from Eq. (31) into nine equations from System (33)

for every point addition.

f1,1 = (A1 − P1,yP2,y)mod p− k1,1p = 0,

f1,2 = (B1 − P1,xP2,x)mod p− k1,2p = 0,

f1,3 = (C1 − P1,xP2,y)mod p− k1,3p = 0,

f1,4 = (D1 − P1,yP2,x)mod p− k1,4p = 0,

f1,5 = (E1 − dC1D1)mod p− k1,5p = 0,

f1,6 = (F1 − R1,xE1)mod p− k1,6p = 0,

f1,7 = (G1 − R1,yE1)mod p− k1,7p = 0,

f1,8 = (C1 +D1 − R1,x − F1)mod p− k1,8p = 0,

f1,9 = (A1 − B1 − R1,y +G1)mod p− k1,9p = 0,

. . .

fi,1 = (Ai − Pi+1,yRi−1,y)mod p− ki,1p = 0,

fi,2 = (Bi − Pi+1,xRi−1,x)mod p− ki,2p = 0,

fi,3 = (Ci − Pi+1,xRi−1,y)mod p− ki,3p = 0,

fi,4 = (Di − Pi+1,yRi−1,x)mod p− ki,4p = 0,

fi,5 = (Ei − CiDi)mod p− ki,5p = 0,

fi,6 = (Fi − Ri,xEi)mod p− ki,6p = 0,

fi,7 = (Gi − Ri,yEi)mod p− ki,7p = 0,

fi,8 = (Ci +Di − Ri,x − Fi)mod p− ki,8p = 0,

fi,9 = (Ai − Bi − Ri,y +Gi)mod p− ki,9p = 0,

. . .

fm−2,1 = (Am−2 − Pm,yRm−2,y)mod p− km−2,1p = 0,

fm−2,2 = (Bm−2 − Pm,xRm−2,x)mod p− km−2,2p = 0,

fm−2,3 = (Cm−2 − Pm,xRm−2,y)mod p− km−2,3p = 0,

fm−2,4 = (Dm−2 − Pm,yRm−2,x)mod p− km−2,4p = 0,

fm−2,5 = (Em−2 − Cm−2Dm−2)mod p− km−2,5p = 0,

fm−2,6 = (Fm−2 −QxEm−2)mod p− km−2,6p = 0,

fm−2,7 = (Gm−2 −QyEm−2)mod p− km−2,7p = 0,

fm−2,8 = (Cm−2 +Dm−2 −Qx − Fm−2)mod p− km−2,8p = 0,

fm−2,9 = (Am−2 − Bm−2 −Qy +Gm−2)mod p− km−2,9p = 0.

(33)

4.2 A Case with Edwards Curves and Bases of Exponent Representation

In [13], the number of variables necessary for transforming the ECDLP to the QUBO problem

for Edwards curves and binary representation of the point decomposition was calculated to

be approximately 3n3, with n being the bitlength of the field characteristic p. Now, we can

consider options with other number systems.

Assuming that we use a number system with base d and m = ⌊logdOrd(P)⌋ + 1, the

variable y can be expressed as y = dm−1um+ · · ·+du2+u1, where um, . . . , u1 ∈ {0, . . . , d−1}.
We can adapt Equation (25) to the case with the new base:

Q = [y]P = [dm−1um + · · ·+ du2 + u1]P = [dm−1um]P + · · ·+ [du2]P + [u1]P

= [um]([dm−1]P) + · · ·+ [u2]([d]P) + [u1]P = Pm + · · ·+ P2 + P1.
(34)

Micha l Wroński and Lukasz Dzierzkowski 553

Each term from the above equation can be expressed as:

[ui]([d
i−1]P) =

O, ui = 0,

[di−1]P, ui = 1,

[2 · di−1]P, ui = 2,
...

...

[(d− 1) · di−1]P, ui = d− 1,

(35)

which can be converted into:

[ui]([d
i−1]P) = O+µi1([d

i−1]P−O)+µi2([2d
i−1]P−O)+. . .+µid−1

([(d−1)di−1]P−O). (36)

Therefore, every point Pi = [ui]([d
i−1]P) can be represented in affine coordinates as:

Pi,x = Ox +
d−1∑
j=1

µij
(
[j · di−1]Px −Ox

)
,

Pi,y = Oy +
d−1∑
j=1

µij
(
[j · di−1]Py −Oy

)
,

(37)

which, for Edwards curves where O = (0, 1), simplifies to:
Pi,x =

d−1∑
j=1

µij
(
[j · di−1]P

)
x
,

Pi,y = 1 +
d−1∑
j=1

µij

((
[j · di−1]P

)
y
− 1

)
.

(38)

We can now calculate the number of necessary variables for conducting computations from

Equation (33) for Edwards curves, as in [13], but now using a base d system.

Equations from System (38) show a representation of a point Pi’s coordinates. The first,

Pi,x, can be written as a sum of d− 1 monomials of degree 1. The second, Pi,y, is represented

as a sum of a monomial of degree 0 and d − 1 monomials of degree 1. Coordinates Ri,x
and Ri,y of the sum Ri, along with auxiliary variables Ai, Bi, etc., must belong to Fp,
meaning n binary variables are necessary to represent each of them. As every equation from

System (33) equals 0, the value of a product ki,jp must be the same as the value of the

polynomial, whose coefficients are reduced modulo p. Thus, the product ki,jp must be less

than or equal to the maximum value of this polynomial. From this, the bitlength of ki,j can be

calculated. Linearization is necessary as equations from System (33) involve multiplications.

An additional variable must be introduced for every monomial of degree greater than 1.

With the above information, we can calculate the variables required to transform the

ECDLP on Edwards curves to the QUBO problem using a number system with base d to

represent the desired multiplicity of a generator P .

Starting with equation fi,1, for variable Ai we need n bits. As a result of multiplying Pi+1,y

and Ri−1,y, dn monomials will appear, n of degree 1 and (d− 1)n of degree 2. The maximum

value of the polynomial occurs with the sum of 1 variable Ai from the set {0, . . . , p− 1} and

dn monomials with coefficients from the set {0, . . . , p−1}, so at most it can be (dn+1)(p−1).

This will impact the bitlength of ki,1, because ki,1p ≤ (dn+1)(p−1). We derive that ki,1 ≤ dn

and the bitlength of ki,1 equals ⌊log2(dn)⌋+ 1 at most. Summing up, equation fi,1 requires:

554 Base of exponent representation matters – more efficient reduction of ...

• n boolean variables for variable Ai,

• (d− 1)n variables for the linearization of (d− 1)n monomials,

• ⌊log2(dn)⌋+ 1 boolean variables for ki,1,

giving a total of dn+ ⌊log2(dn)⌋+ 1 additional variables.

Continuing with the equation fi,2, for variable Bi we need n bits. As a result of the mul-

tiplication of Pi+1,x and Ri−1,x, (d− 1)n monomials of degree 2 will appear. The polynomial

may achieve the maximum value with the sum of 1 variable Bi from the set {0, . . . , p−1} and

(d − 1)n monomials with coefficients from the set {0, . . . , p − 1}, so at most it can be equal

to ((d − 1)n + 1)(p − 1). Analogously to the previous case, we can calculate the maximum

bitlength of ki,2, which equals ⌊log2((d− 1)n)⌋+ 1 at most. To summarize, the equation fi,2
requires:

• n boolean variables for variable Bi,

• (d− 1)n variables for the linearization of (d− 1)n monomials of degree 2,

• ⌊log2((d− 1)n)⌋+ 1 boolean variables for ki,2,

which gives a total of dn+ ⌊log2((d− 1)n)⌋+ 1 additional variables.

The next part is the equation fi,3. Because the forms of Ri−1,x and Ri−1,y are similar,

the case of fi,3 is the same as fi,2. That means it requires dn+ ⌊log2((d−1)n)⌋+1 additional

variables.

The subsequent piece is the equation fi,4. Because the forms of Ri−1,x and Ri−1,y are

similar, the case of fi,4 is the same as fi,1, therefore it requires dn+ ⌊log2(dn)⌋+1 additional

variables.

The continuation will be an analysis of the equation fi,5. For variable Ei, we need n bits.

As a result of the multiplication of Ci and Di (both consisting of n boolean variables), n2

monomials of degree 2 will appear. The polynomial may achieve the maximum value with

the sum of 1 variable Ei from the set {0, . . . , p− 1} and n2 monomials with coefficients from

the set {0, . . . , p−1}, so it can be equal to (n2+1)(p−1). Analogously to the previous cases,

we can calculate the maximum bitlength of ki,5, which equals ⌊log2(n2)⌋ + 1 at most. The

constant d does not affect the number of monomials nor the maximum value of the polynomial

(as every coefficient is reduced mod p), so it can be omitted. To summarize, equation fi,5
requires:

• n boolean variables for variable Ei,

• n2 variables for the linearization of n2 monomials of degree 2,

• ⌊log2(n2)⌋+ 1 boolean variables for ki,5,

which gives a total of n2 + n+ ⌊log2(n2)⌋+ 1 additional variables.

The situation for the equation fi,6 is similar to the previous cases. The only difference

is that we need additional n binary variables to represent Ri,x. That means it requires

n2 + 2n+ ⌊log2(n2)⌋+ 1 extra variables.

Micha l Wroński and Lukasz Dzierzkowski 555

As the forms of Ri,x and Ri,y are similar, the case of the equation fi,7 is the same as fi,6
and requires n2 + 2n+ ⌊log2(n2)⌋+ 1 additional variables.

In the case of equation fi,8, we do not have any new variables, so we only need to count

the bitlength of ki,8. The result of (−Ri,x−Fi) mod p will consist of 2n monomials of degree

1. The maximum value of the polynomial occurs with the sum of 2 variables Ci and Di from

the set {0, . . . , p− 1} and 2n monomials with coefficients from the set {0, . . . , p− 1}, so it can

be equal to (2n+2)(p− 1). As with previous cases, we can calculate the maximum bitlength

of ki,8, which equals ⌊log2(2n+ 1)⌋+ 1 at most.

The last equation, fi,9, has a similar form to fi,8, requiring ⌊log2(2n+ 1)⌋+ 1 additional

variables.

To sum up, for one of the systems of equations, there are

2 · (dn+ ⌊log2(dn)⌋+ 1) + 2 · (dn+ ⌊log2((d− 1)n)⌋+ 1) + (n2 + n+ ⌊log2(n2)⌋+ 1)

+ 2 · (n2 + 2n+ ⌊log2(n2)⌋+ 1) + 2 · (⌊log2(2n+ 1)⌋+ 1)

≈ 3n2 + (4d+ 5)n+ 4 log2 d+ 12 log2 n+ 11 = 3n2 + (4d+ 5)n+O(log2 n)

necessary logical variables.

Eventually, the number of necessary boolean variables for the whole System (33) can be

calculated. As mentioned, using a number system with base d instead of 2 reduces the number

of nodes in the binary tree for m ≈ n, from m to approximately m
log2 d

≈ n
log2 d

. This makes

it n
log2 d

(3n2 + (4d + 5)n + O(log2 n)). The final number of required boolean variables is

approximately 3n3+(4d+5)n2

log2 d
.

Our goal is to find such d that the function f(n, d) = 3n3+(4d+5)n2

log2 d
= 3n3

log2 d
+ (4d+5)n2

log2 d

reaches a minimum. Given that for increasing variable d, the coefficient at n3 decreases and

the coefficient at n2 increases, the function f has a minimum for both terms being equal.

This leads to solving the equation:

3n3

log2 d
=

(4d+ 5)n2

log2 d
, (39)

and after omitting the constant 5, which is negligible in asymptotic comparison with term

4d, it gives us d ≈ 3n
4 . Finally, after substituting the calculated value into the formula for

counting the designated number of variables f(n, d), we obtain:

f

(
n,

3n

4

)
=

3n3

log2
(
3n
4

) +
3n2n

log2
(
3n
4

) =
6n3

log2
(
3n
4

) , (40)

which means that f(n, 3n4) = O
(

n3

log2 n

)
, thus f(n, d) = O(n3) as well. This result is asymp-

totically better than the 3n3 obtained for a binary number system.

5 Experiments

Our goal was to solve the discrete logarithm problem (DLP) and the elliptic curve discrete

logarithm problem (ECDLP) over prime fields using the D-Wave Advantage Quantum Pro-

cessing Unit (QPU).

556 Base of exponent representation matters – more efficient reduction of ...

In the case of the DLP, our choice of the field was determined by selecting the largest value

d that requires three trits (3 digits in base three representation) and for which p = 2d + 1

is a prime number. This method yielded our experiment’s prime field Fp. We also chose

generators with an order equal to d. The most notable result of solving the discrete logarithm

problem over the prime field using the D-Wave Advantage QPU was solving the problem over

the 6-bit prime field F47 using the new method.

For the ECDLP, our field choice was started with finding the largest prime value p that

requires 4 bits in binary representation, resulting in the prime field Fp for our experiment.

Given that the characteristic p of the field F13 is 4 bits long, we compared the binary point’s

multiplicity representation with the one obtained using the formula computed from Equation

(39). Let n be equal to the bitlength of p, then d should be equal to d = 3
4 ·4 = 3, meaning the

second representation was ternary. Knowing that the ECDLP is more complex than the DLP,

our primary goal was to demonstrate that our method could reduce the number of required

logical qubits.

5.1 Solving the Discrete Logarithm Problem Over F47 Using an Efficient Ap-

proach

In this experiment, we solved the discrete logarithm problem over the field F47, which is a

6-bit prime field. The given generator was 2, and the multiplicative order of 2 in F47 is 23.

We demonstrated how to transform the following discrete logarithm problem into the QUBO

problem:

2y ≡ 36 mod 47, (41)

using the classical binary representation of the exponent.

5.1.1 Transformation of the DLP problem to the QUBO problem for the field F47 using

binary exponent representation

Let’s consider a finite field F47. The order of the multiplicative subgroup in this field equals

46 = 2 ·23. The element 2 is a generator with a multiplicative order equal to the largest prime

divisor of 46, which is 23. We consider the DLP with h = 36 = 2y. We aim to solve this DLP

by finding the appropriate y. First, we demonstrate how to transform this problem into the

QUBO problem.

Using binary variables u1, u2, . . . , u5 ∈ {0, 1}, we can write y as y = u1+2u2+4u3+8u4+

16u5 and therefore:

2y = 2u1+2u2+4u3+8u4+16u5 = 2u1 · 22u2 · 24u3 · 28u4 · 216u5

= 2u1 ·
(
22
)u2 ·

(
24
)u3 ·

(
28
)u4 ·

(
216

)u5
= 2u1 · 4u2 · 16u3 · 21u4 · 18u5 .

(42)

Note that all values are elements from F47 and thus 28 = 21 and 216 = 18.

Next, according to Equation (22), we can represent x1 = 2u1 , x2 = 4u2 , x3 = 16u3 , x4 =

21u4 , x5 = 18u5 , x6 = u6 + 2u7 + 4u8 + 8u9 + 16u10 + 15u11 = x1 · x2, x7 = u17 + 2u18 +

4u19 + 8u20 + 16u21 + 15u22 = x6 · x3, x8 = u34 + 2u35 + 4u36 + 8u37 + 16u38 + 15u39 =

Micha l Wroński and Lukasz Dzierzkowski 557

x7 · x4, x9 = 36 = x8 · x5 and then

x1 = 2u1 = u1 + 1,

x2 = 4u2 = 3u2 + 1,

x3 = 16u3 = 15u3 + 1,

x4 = 21u4 = 20u4 + 1,

x5 = 18u5 = 17u5 + 1,

x6 = u6 + 2u7 + 4u8 + 8u9 + 16u10 + 15u11,

x7 = u17 + 2u18 + 4u19 + 8u20 + 16u21 + 15u22,

x8 = u34 + 2u35 + 4u36 + 8u37 + 16u38 + 15u39,

x5 = 36.

(43)

Let us note that variables which are necessary to transform in later steps equation from

finite field F47, to the pseudo-boolean function (functions with binary variables and integer

coefficients), are equal to k1 = u12+2u13+4u14+u15, k2 = u22+2u23+4u24+8u25+u26, k3 =

u38 + 2u39 + 4u40 + 8u41 + u42, k4 = u48 + 2u49 + 4u50 + 4u51.

Now one obtains that because x6 = x1 · x2, the following equation holds:

F1 = u6 + 2u7 + 4u8 + 8u9 + 16u10 + 15u11 − (u1 + 1) · (3u2 + 1) = 0. (44)

Similarly, because x7 = x6 · x3, then holds following equation

F2 = u17 + 2u18 + 4u19 + 8u20 + 16u21 + 15u22
− (u6 + 2u7 + 4u8 + 8u9 + 16u10 + 15u11) · (15u3 + 1) = 0,

(45)

because x8 = x7 · x4, then holds following equation

F3 = u34 + 2u35 + 4u36 + 8u37 + 16u38 + 15u39 + 15u23
− (u17 + 2u18 + 4u19 + 8u20 + 16u21 + 15u22) · (20u4 + 1) = 0,

(46)

and finally, because x9 = 36 = x8 · x5

F2 = 36− (u34 + 2u35 + 4u36 + 8u37 + 16u38 + 15u39) · (17u5 + 1) = 0. (47)

The equations above will then be equal to

F1 = 44u1u2 + 46u1 + 44u2 + u6 + 2u7 + 4u8 + 8u9 + 16u10 + 15u11 − 47u12 − 94u13

−188u14 − 47u15 + 46,

F2 = 32u3u6 + 17u3u7 + 34u3u8 + 21u3u9 + 42u3u10 + 10u3u11 + 46u6 + 45u7 + 43u8

+39u9 + 31u10 + 32u11 + u17 + 2u18 + 4u19 + 8u20 + 16u21 + 15u22 − 47u23 − 94u24

−188u25 − 376u26 − 47u27,

F3 = 27u4u17 + 7u4u18 + 14u4u19 + 28u4u20 + 9u4u21 + 29u4u22 + 46u17 + 45u18 + 43u19

+39u20 + 31u21 + 32u22 + u34 + 2u35 + 4u36 + 8u37 + 16u38 + 15u39 − 47u40 − 94u41

−188u42 − 376u43 − 47u44,

F4 = 30u5u34 + 13u5u35 + 26u5u36 + 5u5u37 + 10u5u38 + 27u5u39 + 46u34

+45u35 + 43u36 + 39u37 + 31u38 + 32u39 − 47u51 − 94u52 − 188u53 − 188u54 + 36.

(48)

558 Base of exponent representation matters – more efficient reduction of ...

The process begins with reducing squares using properties of binary variables; specifically,

for any binary variable u, it holds that uk = u, for integer k ≥ 1. Next, each equation from the

pseudo-boolean function over F47 must be transformed into a pseudo-boolean function over

integers. For more details on this transformation process, see, for example, [12]. Following

this, the square of each equation is computed, and then the sum of all squared equations.

After this step, quadratization is performed followed by the addition of penalties.

An alternative method is first to linearize each of the equations and then square each,

compute their sum, and add penalties. This approach is detailed in, for example, [4]. The

second method allows for easier computation of the necessary number of variables, which is

why it was used to analyze the number of necessary variables in Section 2.

5.1.2 Transformation of the DLP problem to the QUBO problem for the field F47 using

ternary exponent representation

Consider the same discrete logarithm problem, as given in Subsection 5.1, given by the Equa-

tion (41). The difference here is that a ternary representation of the exponent will be used.

Using ternary variables u1, u2, u3 ∈ {0, 1, 2} we can write y as y = u1 + 3u2 + 9u3 and

therefore:

2y = 2u1+3u2+9u3 = 2u1 · 23u2 · 29u3 = 2u1 ·
(
23
)u2 ·

(
29
)u3

= 2u1 · 8u2 · 42u3 . (49)

Let us note that all values are elements from F47 and therefore 29 = 42.

Now let’s note, that according to Equation (22) we can write x1 = 2u1 , x2 = 8u2 , x3 =

42u3 , x4 = 2u1 · 8u2 = x1 · x2, x5 = 36 = x3 · x4 and then

x1 = 2u1 = µ1 + 3µ2 + 1,

x2 = 8u2 = 7µ3 + 16µ4 + 1,

x3 = 42u3 = 41µ5 + 24µ6 + 1,

x4 = µ7 + 2µ8 + 4µ9 + 8µ10 + 16µ11 + 15µ12,

x5 = 36.

(50)

Let us note that the operations above are still performed in the F47 field.

Now one obtains that because x4 = x1 · x2, the following equation holds:

F1 = µ7 + 2µ8 + 4µ9 + 8µ10 + 16µ11 + 15µ12 − (µ1 + 3µ2 + 1) · (7µ3 + 16µ4 + 1) = 0. (51)

Similarly, because x5 = x3 · x4, then holds following equation

F2 = 36− (41µ5 + 24µ6 + 1) · (µ7 + 2µ8 + 4µ9 + 8µ10 + 16µ11 + 15µ12) = 0. (52)

The equations above will then be equal to
F1 = 40µ1µ3 + 31µ1µ4 + 26µ2µ3 + 46µ2µ4 + 46µ1 + 44µ2 + 40µ3 + 31µ4 + µ7 + 2µ8

+4µ9 + 8µ10 + 16µ11 + 15µ12 + 46,

F2 = 6µ5µ7 + 12µ5µ8 + 24µ5µ9 + µ5µ10 + 2µ5µ11 + 43µ5µ12 + 23µ6µ7 + 46µ6µ8 + 45µ6µ9

+43µ6µ10 + 39µ6µ11 + 16µ6µ12 + 46µ7 + 45µ8 + 43µ9 + 39µ10 + 31µ11 + 32µ12 + 36.

(53)

Micha l Wroński and Lukasz Dzierzkowski 559

The method of obtaining the final problem is then the same as presented in Subsection

5.1.1.

Contrary to the example from Subsection 5.1.1, we solved the problem using the D-Wave

Advantage2 prototype this time.

5.2 Solving elliptic curve discrete logarithm problem over F13 using efficient

approach

This experiment considers the elliptic curve discrete logarithm problem over a field F13, a

4-bit prime field. The given elliptic curve was EEd : x2 + y2 = 1 + 7x2y2, the generator was

a point P = (4, 2), and the order of P on the chosen curve and in the chosen field is 20. We

show how to transform to the QUBO problem the following elliptic curve discrete logarithm

problem on EEd/F13:

Q = [y]P = [y](4, 2) = (5, 7), (54)

using the classical binary representation of the multiplicity of a point.

5.2.1 Transformation of the ECDLP problem to the QUBO problem for the field F13 using

binary multiplicity representation

Consider a finite field F13. The order of the additive subgroup in this field is equal to 20.

Point P = (4, 2) is the generator with additive order equal to 20. Consider ECDLP with

Q = (5, 7) = [y](4, 2). Our target is to break this ECDLP by finding proper y. We will first

show how to transform this problem into the QUBO problem.

Using binary variables u1, . . . , u5 ∈ {0, 1} we can write y = u1 + 2u2 + 4u3 + 8u4 + 16u5
and thus:

[y](4, 2) = [u1 + 2u2 + 4u3 + 8u4 + 16u5](4, 2)

= [u1](4, 2) + [2u2](4, 2) + [4u3](4, 2) + [8u4](4, 2) + [16u5](4, 2)

= [u1](4, 2) + [u2]([2](4, 2)) + [u3]([4](4, 2)) + [u4]([8](4, 2)) + [u5]([16](4, 2))

= [u1](4, 2) + [u2](6, 5) + [u3](11, 9) + [u4](6, 8) + [u5](2, 9).

(55)

what gives us P1 = [1]P = (4, 2), P2 = [2]P = (6, 5), P3 = [4]P = (11, 9), P4 = [8]P =

(6, 8), P5 = [16]P = (2, 9) and Q = [y]P = [u1]P1 + [u2]P2 + [u3]P3 + [u4]P4 + [u5]P5.

Now, we can use the idea of a problem decomposition from Figure 1. We obtain

(x1, y1) = [u1]P1,

(x2, y2) = [u2]P2,

(x3, y3) = R1 = [u1]P1 + [u2]P2,

(x4, y4) = [u3]P3,

(x5, y5) = R2 = R1 + [u3]P3,

(x6, y6) = [u4]P4,

(x7, y7) = R3 = R2 + [u4]P4,

(x8, y8) = [u5]P5,

(x9, y9) = R3 + [u5]P5 = Q,

(56)

560 Base of exponent representation matters – more efficient reduction of ...

what, according to the System (32), is equal to

(x1, y1) = (4u1, 1 + u1)

(x2, y2) = (6u2, 1 + 4u2),

(x3, y3) = (u6 + 2u7 + 4u8 + 8u9, u10 + 2u11 + 4u12 + 8u13),

(x4, y4) = (11u3, 1 + 8u3),

(x5, y5) = (u14 + 2u15 + 4u16 + 8u17, u18 + 2u19 + 4u20 + 8u21),

(x6, y6) = (6u4, 1 + 7u4),

(x7, y7) = (u22 + 2u23 + 4u24 + 8u25, u26 + 2u27 + 4u28 + 8u29),

(x8, y8) = (2u5, 1 + 8u5),

(x9, y9) = (5, 7).

(57)

With the knowledge about a points addition arithmetic from the Equation (31) and that

−1 ≡ 12 mod 13, we can transform the above equations for R1, R2, R3, Q to the form

F1 = (1 + dx1x2y1y2)x3 + 12(x1y2 + y1x2) = 0,

F2 = (1− dx1x2y1y2)y3 + 12(y1y2 − x1x2) = 0,

F3 = (1 + dx3x4y3y4)x5 + 12(x3y4 + y3x4) = 0,

F4 = (1− dx3x4y3y4)y5 + 12(y3y4 − x3x4) = 0,

F5 = (1 + dx5x6y5y6)x7 + 12(x5y6 + y5x6) = 0,

F6 = (1− dx5x6y5y6)y7 + 12(y5y6 − x5x6) = 0,

F7 = (1 + dx7x8y7y8)x9 + 12(x7y8 + y7x8) = 0,

F8 = (1− dx7x8y7y8)y9 + 12(y7y8 − x7x8) = 0.

(58)

As mentioned in the subsection 4.1, for small finite fields, one may use the whole formula

for a point coordinate instead of decomposing each of them into nine shorter ones as in the

System (33). Thanks to this, we have here eight equations instead of 36, and because we use

the field F13, conducting the above multiplications should not cause any trouble.

Replacing variables xi, yi with the proper values from the System (57), and taking d = 2,

ends with

F1 = 9u20u
2
1u5 + 5u20u

2
1u6 + 10u20u

2
1u7 + . . .+ 2u6 + 4u7 + 8u8,

F2 = 4u20u
2
1u9 + 8u20u

2
1u10 + 3u20u

2
1u11 + . . .+ 4u11 + 8u12 + 12,

F3 = 5u22u5u9u13 + 10u22u6u9u13 + 7u22u7u9u13 + . . .+ 2u14 + 4u15 + 8u16,

F4 = 8u22u5u9u17 + 3u22u6u9u17 + 6u22u7u9u17 + . . .+ 2u18 + 4u19 + 8u20,

F5 = 8u23u13u17u21 + 3u23u14u17u21 + 6u23u15u17u21 + . . .+ 2u22 + 4u23 + 8u24,

F6 = 5u23u13u17u25 + 10u23u14u17u25 + 7u23u15u17u25 + . . .+ 2u26 + 4u27 + 8u28,

F7 = u24u21u25 + 2u24u22u25 + 4u24u23u25 + . . .+ 9u23 + 5u24 + 5,

F8 = 9u24u21u25 + 5u24u22u25 + 10u24u23u25 + . . .+ 9u27 + 5u28 + 7.

(59)

The method of obtaining the final problem is then the same as presented in Subsection

5.1.1. The only difference is that in this experiment, we transform each equation from the

pseudo-boolean function over F13 to the pseudo-boolean function over integers.

The obtained QUBO problem consists of 435 logical qubits. We were unable to solve this

problem quantumly using the D-Wave Advantage prototype.

Micha l Wroński and Lukasz Dzierzkowski 561

5.2.2 Transformation of the ECDLP problem to the QUBO problem for the field F13 using

ternary multiplicity representation

Consider the same elliptic curve discrete logarithm problem, as given in Subsection 5.2, given

by the Equation (54). The difference here is that a ternary representation of the multiplicity

of point P will be used.

Using ternary variables u1, u2, u3 ∈ {0, 1, 2} we can write y as y = u1 + 3u2 + 9u3 and

therefore:
[y](4, 2) = [u1 + 3u2 + 9u3](4, 2)

= [u1](4, 2) + [3u2](4, 2) + [9u3](4, 2)

= [u1](4, 2) + [u2]([3](4, 2)) + [u3]([9](4, 2))

= [u1](4, 2) + [u2](8, 7) + [u3](4, 11).

(60)

what gives us P1 = [1]P = (4, 2), P2 = [3]P = (8, 7), P3 = [9]P = (4, 11) and Q = [y]P =

[u1]P1 + [u2]P2 + [u3]P3.

Now, we can use the idea of a problem decomposition from Figure 1. We obtain

(x1, y1) = [u1]P1,

(x2, y2) = [u2]P2,

(x3, y3) = R1 = [u1]P1 + [u2]P2,

(x4, y4) = [u3]P3,

(x5, y5) = R1 + [u3]P3 = Q.

(61)

what, according to the System (38), is equal to

(x1, y1) = (4µ1 + 6µ2, 1 + µ1 + 4µ2),

(x2, y2) = (8µ3 + 11µ4, 1 + 6µ3 + 3µ4),

(x3, y3) = (µ5 + 2µ6 + 4µ7 + 8µ8, µ9 + 2µ10 + 4µ11 + 8µ12),

(x4, y4) = (4µ13 + 7µ14, 1 + 10µ13 + 4µ14),

(x5, y5) = (5, 7).

(62)

With the knowledge about a points addition arithmetic from the Equation (31) and that

−1 ≡ 12 mod 13, we can transform the above equations for R1, Q to the form
F1 = (1 + dx1x2y1y2)x3 + 12(x1y2 + y1x2) = 0,

F2 = (1− dx1x2y1y2)y3 + 12(y1y2 − x1x2) = 0,

F3 = (1 + dx3x4y3y4)x5 + 12(x3y4 + y3x4) = 0,

F4 = (1− dx3x4y3y4)y5 + 12(y3y4 − x3x4) = 0.

(63)

Because we need to conduct only 2 points additions, we use the shorter path, as in the

Experiment 5.2.1.

Replacing variables xi, yi and d with the proper values from the System (62) ends with
F1 = 5u20u

2
2u4 + 8u0u1u

2
2u4 + 4u21u

2
2u4 + . . .+ 2u5 + 4u6 + 8u7

F2 = 8u20u
2
2u8 + 5u0u1u

2
2u8 + 9u21u

2
2u8 + . . .+ 4u10 + 8u11 + 12,

F3 = 9u4u8u
2
12 + 5u5u8u

2
12 + 10u6u8u

2
12 + . . .+ 9u6 + 5u7 + 5,

F4 = 3u4u8u
2
12 + 6u5u8u

2
12 + 12u6u8u

2
12 + . . .+ 9u10 + 5u11 + 7.

(64)

562 Base of exponent representation matters – more efficient reduction of ...

The method of obtaining the final problem is then the same as presented in Subsection

5.2.1.

The obtained QUBO problem consists of 218 logical qubits. We were unable to solve this

problem quantumly using the D-Wave Advantage prototype.

5.3 Experiments summary

Unfortunately, we could not solve discrete logarithm problems over prime fields with a bitlength

greater than 6 using a quantum solver and the D-Wave Advantage QPU.

Solving elliptic curve discrete logarithm problems was also beyond our capabilities due

to the number of variables required. However, utilizing different points’ multiplicity repre-

sentations provided fewer source variables, allowing us to embed the problem in the D-Wave

Advantage system. This would have been impossible using a binary representation.

Parameter
DLP over F47

(base 2)
DLP over F47

(base 3)
ECDLP over
F13 (base 2)

ECDLP over
F13 (base 3)

Name (chip ID)
Advantage2
prototype1.1

Advantage2
prototype1.1

Advantage
system6.3

Advantage
system6.3

Qubits 576 576 5760 5760
Topology Zephyr Zephyr Pegasus Pegasus
Number of source variables 57 36 435 218
Number of target variables 189 117 none 2654
Max chain length 6 5 none 35
Chain strength 32,848.03 37,256.21 none 1,398,369.72
QPU access time (µs) 491,197 555,092 none 672,923
QPU programming
time (µs)

6,846.81 6,842 none 15,923.57

QPU sampling time (µs) 484,350 548,250 none 657,000
Total post
processing time (µs)

2,948 3,464 none 18,214

Post processing
overhead time (µs)

2,948 3,464 none 3706

Solved No Yes No No
Table 1. Parameters used in solving QUBO problem equivalent to the DLP over F47 and ECDLP

over F13 with exponents/multiplicities represented in different bases.

Figure 3 shows how different QUBO problems were embedded on the D-Wave Advantage

computer.

Micha l Wroński and Lukasz Dzierzkowski 563

(a) (b) (c)

Fig. 3. Embedding of QUBO problems equivalent to discrete logarithm problems over the prime

field F47 using binary exponent representation in (a) and ternary representation in (b), as well

as elliptic curve discrete logarithm problem over the prime field F13 using ternary multiplicity
representation in (c). 2c.

6 Conclusion

This paper presents a novel method for transforming the discrete logarithm problem and

the elliptic curve discrete logarithm problem over prime fields. The method leverages a

representation system for the exponent. Using the presented method, we were able to achieve

a reduction of the DLP over prime field Fp to the QUBO problem, asymptotically equal to

1.89n2 logical variables, where n is the bitlength of the prime number p. Similarly, for the

ECDLP, the reduction of this problem defined over a prime field Fp to the QUBO problem

requires asymptotically 6n3

log2(
3
4n)

logical variables. Both of these results are an improvement

over previously known methods for reducing these problems. For the DLP, such a reduction

previously required 2n2 logical variables, and for the ECDLP, it required 3n3 logical variables.

It is also noteworthy that using the presented method of reduction of the DLP to the

QUBO problem, we were able to solve an example of the DLP defined over F47, using a

ternary representation of the exponent. As shown, this reduction requires significantly fewer

variables than the reduction using a binary representation of the exponent.

References

1. Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on elliptic curves. In Kaoru
Kurosawa, editor, Advances in Cryptology – ASIACRYPT 2007, pages 29–50, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

2. Elżbieta Burek, Krzysztof Mańk, and Micha l Wroński. Searching for an Efficient System of Equa-
tions Defining the AES Sbox for the QUBO Problem. Journal of Telecommunications and Infor-
mation Technology, 4:30–37, 2023.

3. Elżbieta Burek and Micha l Wroński. Quantum Annealing and Algebraic Attack on Speck Cipher.
In International Conference on Computational Science, pages 143–149. Springer, 2022.

4. Elżbieta Burek, Micha l Wroński, Krzysztof Mańk, and Micha l Misztal. Algebraic attacks on
block ciphers using quantum annealing. IEEE Transactions on Emerging Topics in Computing,
10(2):678–689, 2022.

5. The Quantum Computing Company D-WAVE. Getting started with the d-wave system. User
manual, 2020.

564 Base of exponent representation matters – more efficient reduction of ...

6. Martin Eker̊a and Joel Gärtner. Extending regev’s factoring algorithm to compute discrete log-
arithms. In International Conference on Post-Quantum Cryptography, pages 211–242. Springer,
2024.

7. Shuxian Jiang, Keith A Britt, Alexander J McCaskey, Travis S Humble, and Sabre Kais. Quantum
annealing for prime factorization. Scientific reports, 8(1):1–9, 2018.

8. John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm for elliptic curves.
arXiv preprint quant-ph/0301141, 2003.

9. Seyoon Ragavan and Vinod Vaikuntanathan. Optimizing space in regev’s factoring algorithm.
arXiv preprint arXiv:2310.00899, 2023.

10. Oded Regev. An efficient quantum factoring algorithm. arXiv preprint arXiv:2308.06572, 2023.
11. Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In

Proceedings 35th annual symposium on foundations of computer science, pages 124–134. Ieee,
1994.

12. Micha l Wroński. Practical solving of discrete logarithm problem over prime fields using quantum
annealing. In Derek Groen, Clélia de Mulatier, Maciej Paszyński, Valeria V. Krzhizhanovskaya,
Jack J. Dongarra, and Peter M. A. Sloot, editors, Computational Science – ICCS 2022, pages
93–106, Cham, 2022. Springer International Publishing.

13. Micha l Wroński, Elżbieta Burek, Lukasz Dzierzkowski, and Olgierd Żo lnierczyk. Transformation of
Elliptic Curve Discrete Logarithm Problem to QUBO Using Direct Method in Quantum Annealing
Applications. Journal of Telecommunications and Information Technology, (1):75–82, 2024.

14. Micha l Wroński, Elżbieta Burek, and Mateusz Leśniak. (In)security of stream ciphers against
quantum annealing attacks on the example of the Grain 128 and Grain 128a ciphers. Cryptology
ePrint Archive, 2023.

	Introduction
	Methods of Transformation of the Discrete Logarithm Problem to the QUBO Problem
	Which Tree Shape Is the Best? An Analysis
	Grouping Leaves Method
	Representation of the Exponent in Different Number Bases
	Remark on Integer Representation Using Fibonacci Numbers

	Methods of Transformation of the Elliptic Curve Discrete Logarithm Problem to the QUBO Problem
	Edwards Curves
	A Case with Edwards Curves and Bases of Exponent Representation

	Experiments
	Solving the Discrete Logarithm Problem Over F47 Using an Efficient Approach
	Transformation of the DLP problem to the QUBO problem for the field F47 using binary exponent representation
	Transformation of the DLP problem to the QUBO problem for the field F47 using ternary exponent representation

	Solving elliptic curve discrete logarithm problem over F13 using efficient approach
	Transformation of the ECDLP problem to the QUBO problem for the field F13 using binary multiplicity representation
	Transformation of the ECDLP problem to the QUBO problem for the field F13 using ternary multiplicity representation

	Experiments summary

	Conclusion

