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We apply recent work [9] on empirical estimates of quantum speedups to the practical
task of community detection in complex networks. We design several quantum variants of

a popular classical algorithm – the Louvain algorithm for community detection – and first

study their complexities in the usual way, before analysing their complexities empirically
across a variety of artificial and real inputs. We find that this analysis yields insights

not available to us via the asymptotic analysis, further emphasising the utility in such
an empirical approach. In particular, we observe that a complicated quantum algorithm

with a large asymptotic speedup might not be the fastest algorithm in practice, and

that a simple quantum algorithm with a modest speedup might in fact be the one that
performs best. Moreover, we repeatedly find that overheads such as those arising from

the need to amplify the success probabilities of quantum sub-routines such as Grover

search can nullify any speedup that might have been suggested by a theoretical worst-
or expected-case analysis.
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1 Introduction

Estimating the impact that a quantum computer could have for a given computational prob-

lem requires an honest assessment of the potential improvement in speedb that a quantum

algorithm might achieve over the state-of-the-art classical one. This is a tricky task made

harder by the current level of maturity of quantum hardware: quantum algorithms can only

be implemented for very small problem instances, and even then the output is so marred by

noise that it is often difficult to assess even the correctness of the computation. As such,

one often resorts to theoretical analyses of quantum algorithms and proves, rigorously, that

they are likely to achieve a speedup over an equivalent classical algorithm, assuming perhaps

that overheads such as those from error correction are suitably modest. Such analyses usually

yield upper bounds on the worst-case run-times of the quantum algorithms – very often for

artificially constructed, ‘difficult’ problem instances – and a speedup is concluded whenever

aPresent address: Fermioniq, Amsterdam, the Netherlands
bor, indeed, accuracy.
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these bounds scale better than those obtained via an analysis of the best-known classical

algorithm.

Whilst this approach offers valuable insight, it does not tell the entire story. For instance,

it can be the case that a provable run-time is not available, or that it is but ends up being

uninformative, as is commonly the case for heuristic algorithms that have large worst-case

run-times, but often perform well on instance of practical interest. Moreover, for a particular

computational problem it might be possible to design several variants of a quantum algorithm,

all with run-times that scale differently in different situations, and it can be difficult to decide

which one will be fastest in practice. Often the performance of such algorithms will depend

on the particular inputs on which they are run, something that can be somewhat difficult to

account for in a mathematical study. Moreover, it can be the case that a quantum version

of a classical algorithm only speeds-up part of the algorithm, and how much of an overall

speedup can be obtained is input dependent, and not clear from the asymptotic behaviour.

As such, it is likely that it will be necessary to study the performance of quantum algo-

rithms from a more empirical standpoint in order to assess their usefulness in the time before

large, fault tolerant quantum computers become widespread. In [9], we suggested a general

framework for doing so that was based on the combination of carefully derived upper bounds

on the complexities of quantum sub-routines with classical simulation of the entire algorithm,

in a way that allowed for the estimation of the quantum run-time. We gave evidence for

the utility of this approach by studying the potential quantum speed-ups that might arise

from quantum versions of classical heuristic algorithms for solving maxsat, an optimisation

problem that generalises the sat problem.

In this paper, we apply the methodology developed in [9] to a problem of more practical

interest. We consider quantum speedups of a popular heuristic algorithm that goes by the

name of the Louvain algorithmc which forms one of the main tools for tackling a problem

ubiquitous in the study of complex networks: that of community detection. Together with its

descendants, the Louvain algorithm has successfully been used to study large sparse networks

with millions of vertices [6, 11, 26, 30]. Taking this as a use-case, we demonstrate further the

usefulness of such a ‘semi-empirical’ approach in both estimating the potential for quantum

speedups, as well as in the design of quantum algorithms for a particular problem. In partic-

ular, we show how a numerical study can unveil significant performance differences between

various quantum algorithms for the same problem, that were not obvious a priori from an

asymptotic analysis alone.

Community detection One of the main topics in the study of complex networks is whether

the nodes in the network form densely connected clusters, called communities. Uncovering

the community structure of a network allows for a better understanding of the network as

a whole. The task of partitioning the network into communities is known as community

detection. Community detection plays an important role in a variety of topics, such as (but

by no means limited to) social networks [25], recommendation systems [1], E-commerce [29],

scientometrics [19], biological systems and healthcare [31], and economics [15].

cThe algorithm takes the name of the city in which it was developed. The original paper describing the method
has been cited over 15,000 times, and the algorithm itself can be found in all popular graph/network analysis
software packages.
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Community detection falls under the broader category of graph partitioning: formally,

community detection is the task of partitioning the vertex set of a graph by maximizing a

particular function that expresses the quality of the partition. The most commonly used

metric is the modularity, which assigns a value between -1 and 1 to each partition of the

vertex set of the graph [14] by assigning an effective weightd to each edge and then summing

the effective weights of all edges connecting vertices that are in the same community. The

number of communities is not fixed ahead of time, and hence finding how many partitions are

needed to maximise the modularity is included as a part of the problem.

Complexity-wise, the problem of finding the partition that exactly maximises the modu-

larity is an NP-hard problem [8], and therefore it is common (indeed, necessary) to resort to

heuristic methods for community detection. Commonly used heuristics are those based on

hierarchical agglomeration [10] extremal optimisation [12], simulated annealing [27, 16], spec-

tral algorithms [24], and the Louvain method [6]. The Louvain algorithm has been found to

be one of the fastest and best performing algorithms in various comparative analyses [20, 32],

and it is this algorithm that we choose as the basis for our quantum algorithms for community

detection.

1.1 Summary of results

We design several quantum algorithms for community detection on graphs by building quan-

tum versions of the Louvain algorithm, and analyse their complexities in the usual way,

finding, as is not uncommon for heuristic quantum algorithms, a per-step speedup. We then

apply the bounds and methodology from [9] to estimate the complexities of the algorithms on

practical inputs, and investigate whether the speedups promised by the asymptotic analyses

manifest in practice.

Our results are summarised in Table 1, in which we compare the expected complexities of

the classical Louvain algorithm, as well as three quantum variants of it: ‘QLouvain’ (a direct

speedup of the classical algorithm), ‘SimpleQLouvain’ (a simplification of the preceding

algorithm), and ‘EdgeQLouvain’ (a quantum version of a significant simplification of the

Louvain algorithm). We also consider ‘sparse graph’ versions of the algorithms (indicated

by a ‘SG’ suffix)), whose asymptotic run-times are worse than their original versions, but

whose run-times in practice are likely to be faster when the input graph is sparse. The two

right-most columns provide information about the empirically observed speedups obtained by

the algorithms when they were simulated, in the sense discussed above.

One source of overhead that we find contributed significantly to the overall complexities

were logarithmic overheads due to success probability amplification of subroutines – for the

algorithms to work correctly, we often require that all calls to quantum subroutines succeed

with high probability, which often yields quite large overheads in practice. Because of this,

we found that in general the more complicated quantum algorithms offered less of a speedup

(or none at all) in practice, despite indicating a generic square-root speedup per step over

the original classical algorithm. These observations suggest that ‘greedily’ favouring a larger

asymptotic speedup might actually lead to slower run-times in practice, and that a more

nuanced analysis is required if we are to maximise quantum speedups in practice.

dThe actual edge weight minus the expected weight in the so-called configuration model.
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Query complexity
per step k

Absolute
speed-up
observed?

Empirically observed
range of polynomial

speed-ups
Louvain O (δmaxτk) – –

QLouvain Õ(
√
δmaxτk) No 0.85 - 0.99

QLouvainSG Õ(δmax
√
τk) No 0.70 - 0.86

SimpleQLouvain Õ
(√

δmax

fk

)
No 1.04 - 1.25

SimpleQLouvainSG Õ( δmax√
fk

) No 1.13 - 1.55

VTAA QLouvain Õ(tqavg

√
τk) – –

EdgeQLouvain Õ
(

1√
hk

)
Yes 1.18 - 1.49

Table 1. Overview of the main results obtained by applying our techniques to the proposed

quantum versions of the Louvain algorithm. The second column shows upper bounds on the

expected number of queries when performing a single step. The third column indicates whether
we observed an absolute query count speed-up by the quantum algorithm over Louvain on our

artificially generated networks up to size n = 105, and the fourth column shows the estimated

range of polynomial speed-ups based on the same data. Here, δmax is the maximum number of
communities adjacent to any single vertex, fk is the fraction of vertices in the graph that are

‘good’ during step k, τk is the number of vertices inspected by the classical algorithm during step

k, hk is the fraction of edges and h̃k the fraction of node-neighbouring community pairs that yield
good moves for vertices during step k. tqavg is defined in Section 3.2.4. For a definition of all these

terms, we defer to Section 3 of the paper.

For us, these findings underscore the need to investigate and consider the actual quantum

speedup that might be achieved in practice on realistic data sets, rather than concluding that

a speedup will be obtained from an asymptotic analysis alone. As we show in this paper,

such an approach can also be quite useful for comparing different quantum versions of the

same algorithm, something that could facilitate the future design of quantum algorithms for

practical tasks.

1.2 Methodology

In [9], we introduced the necessary tools and methodology for obtaining accurate numerical

estimates of the complexities of quantum algorithms with a reasonably generic form that

is common to many quantum speedups of classical heuristic algorithms. In particular, we

considered algorithms with the form shown in Algorithm 1. Our approach was to run the

Algorithm 1 Generic quantum algorithm structure

1: Input X, Memory M
2: for k = 1, . . . , T do
3: Do some classical processing on X and M , resulting in some list Lk containing tk

marked items.
4: Perform either one or more (perhaps nested) Grover searches with an unknown number

of marked items on Lk, or run quantum maximum-finding on the list Lk, to obtain some
item xk.

5: Do some more classical processing given xk, update M .
6: end for

algorithm classically, by replacing Step 4 (the call to a quantum sub-routine) with a classical
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procedure that gives the same output behaviour whilst collecting the information required

to estimate what the quantum run-time complexity would have been if it had been used.

The quantum complexity estimates themselves were obtained via tight bounds, including all

constants, of two important sub-routines: Grover search with an unknown number of marked

items, and quantum maximum finding. In cases where the information required to calculate

the quantum complexities could not be computed exactly (e.g. because the input sizes were

too large to make a such a computation infeasible), we gave methods for estimating them

whilst retaining guarantees on the complexities produced.

In all cases, ‘complexity’ refers to a particular choice of measure, which for us was (and

will be) the number of times a particular function is called by the classical or quantum

algorithm. Of course, this does not represent the true run-time, and in particular does not

include overheads such as those from quantum error correction. Nevertheless, this choice of

complexity enables a clean comparison between classical and quantum algorithms, as well as

between different quantum algorithms for the same task. It might be that a quantum speedup

suggested by our (empirical) analysis does not manifest in practice due to such overheads,

but that is not our main focus – our goal is to study whether a quantum speedup could

manifest at all, even assuming zero overhead from the likes of error correction or noise. If the

algorithms fall short at this level of analysis, then a quantum speedup can already be ruled out

without taking the time and effort to compile the quantum algorithm for a particular piece

of hardware. In addition, this complexity measure is independent of the details of quantum

hardware, which is likely to change over the coming years.

Organization

In Section 2 we introduce the practical task of community detection, describe the popular

classical Louvain algorithm for it (Section 2.2), and analyse its asymptotic complexity (Sec-

tion 2.3). In Section 3 we proceed to construct several quantum variants of the Louvain

algorithm, with the aim of comparing the classical and quantum performances empirically. In

Section 4, we give tight bounds on the complexities of our main quantum sub-routines (Sec-

tion 4.1), and describe our approach to simulating these quantum algorithms (Section 4.2).

Finally, in Section 5 we analyse their complexities numerically, comparing their performances

to the original classical algorithm, and amongst each other.

Appendix 1 discusses the number of vertices moved by the Louvain algorithm, both from

a theoretical and an empirical perspective; Appendix B provides some numerical results com-

paring the performance of the original Louvain algorithm with our implementation thereof

that contains and additional data structure; Appendix C gives details of a slightly more ef-

ficient quantum algorithm for community detection based on the technique of variable time

amplitude amplification; and finally Appendix D describes the algorithm we use to generate

FCS-type random graphs.

2 Community detection

In this section, we formally introduce the problem of community detection in graphs and

describe the Louvain algorithm. We begin by introducing some notation, and then proceed

to define the modularity function, which serves as a measure of quality for community assign-

ments, before describing the Louvain algorithm itself.
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Notation In this manuscript, G = (V,E) is a graph with vertex set V and edge set E. We

write n = |V | for the number of vertices and denote the n×n (weighted) adjacency matrix of

the graph by A, which we assume to be symmetric, A = AT , real-valued with non-negative

entries, and without self-loops: Avv = 0 for all v ∈ V . We write du for the degree of a vertex

u ∈ V and su =
∑
v Auv for the strength of vertex u, defined as sum of the weights of all edges

incident to u. We denote the neighborhood of u by Nu := {v ∈ V : Auv > 0}. Furthermore,

write dmax = maxu∈V du for the maximum degree, and let W = 1
2

∑
uv Auv be the sum of all

weights. Finally, for any positive integer k, we write [k] for the set {1, . . . , k}.

Access to the input graph We assume we have adjacency list access to the graph G.

That is, for each u ∈ V , we have access to the list of neighbors of u through the function

nu : [du] → V . Specifically, given j ∈ [du], we can query the j-th neighbor nu(j) ∈ Nu ⊆ V

of u, as well as the weight Aunu(j) on the edge connecting u and nu(j). We assume that we

know the degrees of each vertex ahead of time, or otherwise that we compute them during

the pre-processing step (see below).

Finally, we assume that the vertices have some arbitrary but fixed ordering, and that the

adjacency lists are sorted according to this ordering, so that, given any vertex u ∈ V and a

neighbor v ∈ Nu, we can in O(log du) time find the index j ∈ [du] such that nu(j) = v using

binary search. If the adjacency lists are not sorted when they are given to use, then instead

we can sort them all in time Õ(ndmax) before continuing.

2.1 Modularity

Formally, a community partitioning of V is given by a label function ` : V → [n] that assigns

to every vertex v ∈ V a label `(v) ∈ [n]. All vertices with the same label are said to be in

the same community, and we denote the community of a given vertex v ∈ V by C`(v) ⊂ V .

Likewise, for any label α ∈ [n], Cα := `−1(α) denotes the set of all vertices contained in

the community labelled α. For clarity we will use Roman characters (e.g. u, v) to refer to

vertices, and Greek letters (e.g. α, β) for community labels.

Given a community assignment `, the modularity is defined as

Q :=
1

2W

∑
u,v∈V

(
Auv −

susv
2W

)
δ`(u, v) =

1

2

∑
u,v∈V

Quvδ
`(u, v), (1)

where

δ`(u, v) =

{
1 if `(u) = `(v)

0 otherwise

and we write

Quv :=
1

W

(
Auv −

susv
2W

)
.

Note that, like A, Q is also symmetric: Quv = Qvu. Q = Q(`) in Eq. (1) should be thought

of as a function of `; however, we will suppress the ` dependence of Q unless it is ambiguous

as to which ` we are referring.

For our purposes it will be more convenient to express Q as

Q =
∑
u<v

Quvδ
`(u, v) +

1

2

∑
u∈V

Quu (2)
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where the second term is a constant independent of the label function `. Since our objective

is to find an ` that maximizes Q, we can safely ignore the second (constant) term in Eq. (2).

For a vertex u ∈ V , we call a community Cα a neighboring community of u if Cα ∩Nu 6= ∅.
The Louvain algorithm only moves vertices to neighboring communities. For a vertex u we

write

ζu := {α ∈ [n] : Cα ∩Nu 6= ∅}

for the set of labels of communities that neighbour u, and

δu = |ζu|

for the number of neighboring communities of u. In addition,let

Sαu :=
∑
v∈Cα

Auv, and Σα :=
∑
v∈Cα

sv,

i.e. Sαu is the sum of all weights on edges from vertex u to vertices in community Cα, and

Σα is the sum of all weights on edges incident to vertices contained in community Cα. (Note

that in the expression for Sαu we can actually restrict the sum over all Cα to Nu ∩ Cα, since

Auv = 0 for all v ∈ V not neighboring u.)

The Louvain algorithm attempts to move vertices from one community to the next in a

greedy way by only making moves that strictly increase the modularity. Suppose that a vertex

u currently in community C`(u) is moved to neighboring community Cα. Then the change in

the modularity ∆α
u resulting from this move is given by

∆α
u =

∑
w∈Cα

Quw −
∑

w∈C`(u)\{u}

Quw

=
1

W

∑
w∈Cα

Auw −
su

2W 2

∑
w∈Cα

sw −
1

W

∑
w∈C`(u)

Auw +
su

2W 2

∑
w∈C`(u)\{u}

sw

=
Sαu − S

`(u)
u

W
−
su
(
Σα − Σ`(u) + su

)
2W 2

, (3)

where we have used that Auu = 0. Finally, for a fixed vertex u, we define ∆̄u := maxα∈ζα ∆α
u .

Note that both ∆α
u = ∆α

u(`) and ∆̄u = ∆̄u(`) depend on `, but we will again suppress the

`-dependence unless it is relevant for the statement in question.

2.2 The Louvain algorithm

The Louvain algorithm alternates between two phases. The first phase consists of a number

of greedy moves that attempt to increase modularity. When there are no more moves left

to make, the second phase contracts communities into single vertices, and then the whole

process repeats itself at this new coarse-grained level. The two phases repeat until, at some

point, no new moves exist directly at the start of a phase 1.

Because we will introduce several (quantum) versions of the Louvain algorithm, we will

refer to the Louvain algorithm from [6] as the original Louvain algorithm (discussed below),

or OL for short. For a precise description of the algorithm, see Algorithm 2.
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Algorithm 2 The Louvain algorithm

1: function Louvain(Graph G, Community set C)
2: C ← SinglePartition(G) . assign each node its own community
3: done ← False
4: while not done do
5: C′ ← MoveNodes(G, C) . get new community assignment
6: done ← ‖C‖ = ‖V ‖ . end when every community consists of one node
7: if not done then
8: G ← AggregateGraph(G, C)
9: C ← SinglePartition(G)

10: end if
11: end while
12: return C
13: end function

1: function MoveNodes(Graph G, Community set C)
2: done ← False
3: while not done do
4: done ← True
5: for all u ∈ V do
6: ∆̄u ← maxv∈Nu ∆uv . calculate maximum increase of modularity
7: if ∆̄u > 0 then
8: v̄ ← arg maxv∈Nu ∆uv . get corresponding community
9: `(u)← `(v̄) . reassign u to community of v̄

10: done ← False . terminate when there is no modularity increase
11: end if
12: end for
13: end while
14: end function

1: function AggregateGraph(Graph G, Community set C)
2: V ′ ← {Ca‖Ca 6= ∅} . create new vertex for every nonempty set
3: A′ ← {A′ab|a, b ∈ V ′, A′ab =

∑
u∈Ca,v∈Cb Auv}

4: E′ ← {(a, b)|a, b ∈ V ′, A′ab > 0}
5: . create edges with weight equal to the sum of all weights between vertices in each

community
6: return Graph(V ′, E′, A′)
7: end function

1: function SinglePartition(Graph G)
2: return {{v}|v ∈ V }
3: end function

Initialization

Initially every vertex is assigned to its own community `(u) = u. Before beginning, for every

u ∈ V , loop over all neighbors j ∈ [du] in order to compute the vertex strengths su as well as

each Σ`(u) = su, and also the total edge weight sum W = 1
2

∑
uv Auv. If not already sorted,

we also sort all adjacency lists during initialization.
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First phase

During the first phase, the algorithm places all vertices in a randomly ordered list. This list

is traversed sequentially and, for each vertex encountered, we compute ∆̄u = maxα∈ζu ∆α
u . If

∆̄u > 0, u is moved to the community that realises arg maxα∈ζa ∆α
u . After completing a pass

through the list, it is reshuffled and the process is repeated. This phase ends when there are

no vertices that can be moved to increase the modularity any further, i.e. when ∆̄u ≤ 0 for

all u ∈ V .

In order to compute ∆̄u for a given a u ∈ V , the algorithm can first construct the list

of neighboring community labels ζu as well as a list Lu = {(α, Sαu ) : α ∈ ζu} of neighboring

communities and corresponding sums of edge weights from u to those communities. Now a

single loop over Lu is sufficient to compute ∆α
u for every (α, Sαu ) ∈ Lu and output ∆̄u and

ᾱ = arg maxα∈ζu ∆α
u . If ∆̄u > 0, then u is moved from its original community to the new

community Cᾱ.

As vertices move from one community to the next, the algorithm maintains a list of the

sums {Σα : α ∈ [n]}. In particular, after moving vertex u from its original community Cβ to

its new community Cᾱ, we subtract su from Σβ and add it to Σᾱ to ensure that the quantities

{Σα : α ∈ [n]} are kept up to date. The algorithm then also updates the label function `.

Second phase

After the first phase has finished and no vertex move can further increase the modularity, a new

coarse-grained graph G′ = (V ′, E′) with weighted adjacency matrix A′ is constructed. This

new coarse-grained graph has as its vertex set the set of (non-empty) communities constructed

in the first phase: V ′ = {Cα : α ∈ [n], Cα 6= ∅}. An edge is present in G′ between two vertices

Cα, Cβ ∈ V ′ if there is an edge between any two vertices in corresponding communities in

G, i.e. E′ = {(Cα, Cβ) : ∃u ∈ Cα, v ∈ Cβ such that (u, v) ∈ E}, and its weight is the sum

of all the edge weights of edges between Cα and Cβ in G, i.e. A′αβ =
∑
u∈Cα,v∈Cβ Auv.

Constructing V ′, E′ and A′ can be done in a single loop over all edges of G.

2.3 Complexity of the Louvain algorithm

As discussed, the goal of this paper is to compare the performance of the Louvain algorithm

to its quantum counterparts using the empirical method outlined in the introduction, and in

doing so to tackle some of the obstacles and considerations that one might face in taking such

an approach. As we discussed there, this means that we must choose a measure of complexity

for our algorithms to use to make our (empirical) comparisons. Concretely, we choose to

count the number of calls to the function that computes the change in modularity resulting

from moving a vertex from one community to another. In this section we first precisely define

our complexity measure, and then analyse the complexity of the classical Louvain algorithm.

2.3.1 Complexity measure

We consider how many calls are made to the function that computes the change in modularity

resulting from a particular vertex move. I.e. for a particular vertex u and community α that
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it might move to, we count calls to (an oracle that computes) the functione

g∆(su,Σα,Σ`(u), S
α
u , S

`(u)
u ) =

Sαu − S
`(u)
u

W
−
su
(
Σα − Σ`(u) − su

)
2W 2

. (4)

Note that this can be seen counting the number calls to (the gradient of) the modularity Q

that we are attempting to maximize, which is often the natural measure of complexity for

optimization algorithms.

Counting the number of function calls does not capture every part of the algorithms’

complexities. Recall that the classical Louvain algorithm consist of several phases, in which

the initialization phase does not require any function calls and the second (coarse-graining)

phase similarly does not, even though both require a single loop over all m edges. By taking

the number of function calls as a means of comparing the quantum and classical algorithms,

we are inherently not taking into account the initialization and second phases. However, in

practice the first phase takes up the vast majority of the computation time, and moreover the

initialization and second phases are identical for both the classical and quantum algorithms,

and hence ignoring them in our comparisons is sensible. Another aspect that is not measured

by the number of function calls is the time it takes to compute the list Lu for each vertex

u considered. In Section 2.3.2 below, we argue that the classical algorithm can be improved

upon slightly by keeping all of these lists in memory, and only updating those that change

after moving a vertex. The time it takes to update this list is also not captured in the

comparison between the quantum and classical algorithms, however, as with the initialization

and second phases, these updates involve the same operations for both the quantum and

classical algorithms.f

Instead of using the number of function calls to the modularity function, a common com-

plexity measure for graph algorithms is the number of queries to the graph. However, the

initialization and second phases of the algorithm already require us to query all edges of the

input graph. Beyond this no further queries need to be made, since we can simply query all

edges once and then store the results in memory, and thus all of our algorithms have ‘query

complexity’ |E|. Hence, to meaningfully compare the algorithms we consider in this work

empirically, we will simply count the number of calls to the function g∆.

In the sections that follow we will also consider the time/gate complexity of the algorithms,

in terms of how many additional elementary operations are required besides the calls to g∆.

This will be useful in order to compare the worst-case asymptotic run-times of the classical

and quantum algorithms, but for the purposes of numerical comparison it is much cleaner to

focus only on calls to g∆, since the precise number (i.e. including constants) of elementary

gates required for various operations quickly becomes architecture-dependent.

eWhen we perform our numerical study in Section 4, we will count calls to the function g∆, and each oracle
call will correspond to cq = 2 function calls.
fWe would have liked to include the time it takes to update the lists also in our analysis. However, working out
the precise complexity of doing so is impossible without assuming a particular quantum hardware architecture.
In particular, it necessitates the introduction of several new architecture-dependent variables that encompass
how read and write times compare between classical and quantum memories, and how these times compare
to the cost of computing the function g∆. Including these quantities as tune-able parameters in the analysis
would have made things less clear. By choosing to count only the number of function calls as a means of
comparison, we have chosen not to focus on the part of the algorithm that involves updating data structures.
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2.3.2 Complexity of Louvain

For every vertex u visited during the steps of the first phase, there are δu calls to g∆ (one

for each community α adjacent to u) required to compute ∆̄u and ᾱ, as well as O(du) other

operations needed to construct the list Lu. The total complexity then depends on how many

vertices are visited in the entire first phase of the algorithm. If we suppose the algorithm makes

T moves in total, and that on the kth move it must inspect tk vertices before finding one that

it can move, then the total number of function calls (queries) required by the algorithm will

be ∑
k∈[T ]

O (δmaxtk) ,

and the number of other operations∑
k∈[T ]

O ((δmax + dmax)tk) .

Since the algorithm is heuristic, it is difficult to accurately bound the total number of moves

T . In Appendix A.1 we show that, in general, T can be upper bounded by a polynomial

in n, and hence the Louvain algorithm is always a polynomial-time algorithm. In practice,

however, T often scales as O(n log n) [20] – as confirmed also by our numerical data presented

in Appendix A.2.

The run-time (but not the number of function calls) of the original classical algorithm can be

improved slightly at the expense of a constant overhead in space complexity, by making use of

an additional data structure. Recall that the classical algorithm computes, for each vertex u

that it visits, a list Lu = {(α, Sαu ) : α ∈ ζu}, and then uses these values (plus the Σα’s and su’s

also stored in memory) as input to the function g∆. This list takes Õ(du) time to construct

(since we must loop over all neighbours of u to compute the appropriate sums), leading to

Õ((δmax +dmax)tk) time required for the kth step. We can improve this complexity if we store

the information contained in Lu for every u separately, and update it as appropriate.

Data structure In particular, for each u ∈ V we introduce a ‘community adjacency list’

ηu : [δu] → [n] × R, which given an index j, returns the label α of the jth neighbouring

community to u, as well as the sum Sαu . As shorthand we will often write α = η(j), even

though η(j) actually returns the tuple (α, Sαu ). We will keep the list ηu sorted by community

label (according to some arbitrary but fixed ordering), allowing lookup of Sαu using label α

in O(log δu) time. Finally, we will reserve a special place in this list to store the quantity

S
`(u)
u , and assume that we can access this directly. We will refer to the sets {su : u ∈ V },
{Σα : α ∈ [n]} and {ηu : u ∈ V } collectively as the data structure.

The data structure therefore allows us to obtain the inputs to g∆ all in constant time.

Now we concern ourselves with the time required to update it. Suppose that we move vertex

u from community α to community β. In terms of the Σ· values, it is clear that only Σα and

Σβ change. These are easily updated by subtracting su from the former and adding it to the

latter, which requires O(log n) time. The only community adjacency lists ηv that will change

will be for vertices v that are neighbours of u: since each entry in any ηv stores only sums

of weights of edges incident to neighbouring communities of v, any sum that doesn’t include
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an edge to u will remain unchanged. Within each ηv (for v ∈ Nu), the only sums that will

change will be the ones corresponding to the communities that have changed: namely, Sαv
and Sβv . The list ηv is sorted by community label, and so we can identify the indices i and j

corresponding to communities α and β in O(log dmax) time each using binary search. Then

we update the tuple ηv(i) = (α, Sαv ) by subtracting Auv from Sαv , and we update the tuple

ηv(j) = (β, Sβv ) by adding Auv to Sβv , where each operation will take time O(log dmax). If we

find that the new value of Sαv is equal to zero, we remove that tuple from the list, and if the

tuple (β, Sβv ) does not already exist, then we create it and insert it into the list at its sorted

position. Note that we will only add a new tuple if the list is not already of length dv, and

hence the length of the list remains less than or equal to dv.

For each neighbour v of u, these updates therefore take time O(log dmax). Since we do this

for every neighbour of u, the total time for all updates is O(du logmax) ≤ O(dmax log dmax).

Complexity with the data structure By using the data structure described above, we

can eliminate the need to construct the list Lu for each vertex u, at the cost of having to

update the data structure after every move. In this case, the number of function calls remains

the same, but the classical algorithm now takes time

T∑
k=1

Õ (δmaxtk + dmax) .

We verify numerically in Appendix B that the addition of the data structure does indeed

improve the run-time of the algorithm.

3 Quantum algorithms for community detection

In this section we present a number of quantum variants of the original Louvain algorithm for

community detection. Our reason for introducing several quantum algorithms is to later study,

in Section 4, how much of the promised asymptotic (per-step) speedup actually manifests

in practice for different variants of the algorithm, and to demonstrate how an empirical

comparison between algorithms can reveal significant differences in their run-times that aren’t

made clear by an asymptotic analysis alone. However, in this section we will only concern

ourselves with the usual kind of asymptotic analysis of algorithm complexity.

We begin by introducing a quantum algorithm that mimics the classical algorithm exactly

(i.e. by searching for the first good vertex from a randomly ordered list of vertices), and

which makes use of a nested Grover search. We then construct a much-simplified variant

that forgoes the ordered list and directly applies a nested Grover search to the entire set of

vertices. Both of these algorithms also make use of quantum maximum finding to obtain the

best move available to a particular good vertex. In the end these algorithms are somewhat

sub-optimal: the nested Grover searches are performed over sets of varying sizes, but the

outer Grover search complexity is limited by the size of the largest set, something that does

not happen in the classical case. To overcome this drawback, in Section 3.2.4 we introduce

a slightly more sophisticated quantum algorithm that makes use of the technique of variable

time amplitude amplification, which allows the subroutine called by a Grover search to have

different stopping times. However, since we do not numerically study this algorithm, we defer

its details to Appendix C. Later in the section we consider dropping the nested Grover search
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format all together in favour of an asymptotically sub-optimal, but likely practically more

efficient, implementation that instead makes use of a classical subroutine, and which might

be much more efficient on sparse input graphs. Finally, we present a much-simplified quantum

algorithm that performs a single Grover search over the space of edges of the graph, in search

of one that suggests a good move.

3.1 Quantum preliminaries

We will find the following quantum subroutines useful. Later, in Section 4, we will consider

explicit implementations of them as given in [9], and take into account their full run-times

(i.e. including all constants). For QSearch (Lemma 1 below), this will in particular mean

including an extra argument (Nsamples) to the algorithm that determines how many classical

samples are drawn before Grover search is used, but which does not affect the asymptotic

runtime.

Lemma 1 (Grover’s search with an unknown number of marked items [7]) Let L be

a list of items, and t the (unknown) number of ‘marked items’. Let Og |xi〉 |0〉 = |xi〉 |g(xi)〉
be an oracle that provides access to the Boolean function g : [|L|]→ {0, 1} that labels the items

in the list. Then there exists a quantum algorithm QSearch(L, ε) that finds and returns an

index i such that g(xi) = 1 with probability at least 1− ε if one exists and requires an expected

number O(
√
N/t log(1/ε)) queries to Og and O(

√
N/t log(N/ε)) other elementary operations.

If no such xi exists, the algorithm confirms this and to do so requires O(
√
N log(1/ε)) queries

to Og and O(
√
N log(N/ε)) other elementary operations.

Lemma 2 (Exact Grover search [18]) Let L be a list of items, and t > 0 the known

number of ‘marked items’. Let Og |xi〉 |0〉 = |xi〉 |g(xi)〉 be an oracle that provides access to

the Boolean function g : [|L|] → {0, 1} that labels the items in the list. Then there exists a

quantum algorithm ExactQSearch(L, t) that finds and returns an index i such that g(xi) = 1

with certainty. To do so, the algorithm makes O(
√
N/t) queries to Og and O(

√
N log(N))

other elementary operations.

Lemma 3 (Quantum maximum-finding [13]) Let L be a list of items of length |L|, with

each item in the list taking a value in the interval [a, b], to which we have coherent access in

the form of a unitary that acts on basis states as

OL |x〉 |0〉 = |x〉 |L[x]〉 .

Then there exists a quantum algorithm QMax(L, ε) that will return arg maxx L[x] with prob-

ability at least 1 − ε using at most O(
√
|L| log(1/ε) queries to Of (i.e. to the list L) and

O(
√
|L| log |L| log(1/ε)) elementary operations.

We will also make use of the variable time amplitude amplification (VTAA) algorithm of

Ambainis [3]. The statement of this result is somewhat more involved, and so we will defer

to Appendix C for a more formal description of VTAA and its run time in the context of our

particular application of it, and discuss the technique informally here.

Consider a quantum algorithm A which may stop at one of several times t1, . . . , tm. To

indicate the outcome, A has an extra register O with 3 possible values 0, 1, and 2: 0 indicates

that the computation has stopped but did not reach the desired outcome; 1 indicates that

the computation has stopped and the desired outcome was reached; 2 indicates that the
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computation has not stopped yet. The idea behind VTAA is to run multiple branches of

computation in superposition, and to amplify those branches that have either stopped and

reached the desired outcome (1) (e.g. found a marked item), or are still running (2).

Let pi be the probability of the algorithm stopping at time ti (with either the outcome 0

or outcome 1). The average stopping time of A (the l2 average) is

Tavg :=

√∑
i

pit2i . (5)

Let Tmax = tm be the maximum possible running time of A,

αgood |1〉O |ψgood〉+ αbad |0〉O |ψbad〉

be the final state of the algorithm once all branches have stopped, and psucc = |αgood|2 be the

probability of obtaining the state |ψgood〉 using algorithm A. Then Ambainis [3] shows the

following.

Lemma 4 (Variable time amplitude amplification [3]) There exists a quantum algo-

rithm A′ invoking A several times, for total time

Õ

(
Tmax log(Tmax) +

Tavg√
psucc

log1.5 Tmax

)
that produces a state α |1〉 |ψgood〉+ β |0〉 |ψ′〉 such that |α|2 > 1/2. By repeating A′ O(log 1

ε )

times, we can obtain |ψgood〉 with probability at least 1− ε.
This is in contrast to the usual amplitude amplification routine, which would take time

O(Tmax/
√
psucc), and hence we see a speedup whenever Tavg is substantially smaller than

Tmax. However, the algorithm A must satisfy a number of constraints (in particular, it can-

not be adaptive), and so VTAA is not always applicable. This will become clear when we

describe our algorithm in Section 3.2.4.

Finally, we will assume that we have access to quantum read/classical write RAM (QRAM),

where a single QRAM operation is considered to be classically writing a bit to the QRAM or

making a quantum query (a read operation) to bits stored in QRAM, possibly in superposi-

tion. See [4] for a more detailed discussion.

3.2 Quantum community detection

In the sections that follow we describe our various quantum algorithms for community detec-

tion. These algorithms are (roughly in order of increasing simplicity):

• QLouvain – A quantum version of classical Louvain (Section 3.2.1).

• SimpleQLouvain – A much simplified version of QLouvain that deviates slightly

from the behaviour of the original Louvain algorithm (Section 3.2.2).

• QLouvainSG and SimpleQLouvainSG – Versions of both algorithms above that are

more efficient if the input graph is sparse (Section 3.2.3).
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• EdgeQLouvain and NodeComQLouvain – Two vastly simplified algorithms that

deviate substantially from the spirit of the original Louvain algorithm, but nevertheless

obtain similar results in practice (Section 3.2.5).

We also describe an approach based on variable time amplitude amplification in Section 3.2.4

that yields (asymptotically) more efficient versions of the first four algorithms above. However,

these algorithms are much more complicated than those described above, and therefore we

have chosen not to simulate these numerically in Section 5.

3.2.1 Quantum louvain

Our first quantum algorithm works by identifying the first vertex in a list for which there exists

a good move, and then moves it, just as the classical algorithm does. Using the quantum

algorithm FindFirst (introduced below) we obtain in this way a square-root improvement

over the per-step classical complexity.

We begin by describing a quantum algorithm that performs a quantum search over a list

of vertices in order to identify one for which a good move exists. The algorithm comes with

a bound on the expected run-time – which benefits from having more good moves and good

vertices available – and a bound on the worst-case run-time, which forgoes the aforementioned

benefits. We will use the latter bound in our analysis of the main algorithm, since it is

insensitive to the number of marked items, but in fact the run-time would be improved in

practice by taking into account the actual number of good vertices.

Lemma 5 There exists a quantum algorithm VertexFind(L, ζ), which, given a list L of

vertices u0, . . . , u|L|−1, returns the identity i of a vertex ui such that ∆̄ui > 0 (i.e. a good

vertex) with probability ≥ 1 − ζ if one exists, and otherwise returns ‘no vertex exists’. The

algorithm requires an expected number of function calls at most

O

(√
δmax

f
log

(
|L|
ζ

))
= Õ

(√
δmax

f
log

(
1

ζ

))
,

and

O

(√
δmax

f
log(|L|) log(δmax) log

(
|L|
ζ

))
= Õ

(√
δmax

f
log

(
1

ζ

))
elementary operations, where f is the fraction of vertices in L that are good (and the Õ

notation hides polylogarithmic factors in |L| and δmax). If we want to obtain a worst case

run-time, then there is a variant of the algorithm that behaves the same, but requires in the

worst case at most

O

(√
δmax|L| log

(
|L|
ζ

))
= Õ

(√
δmax|L| log

(
1

ζ

))
function calls and

O

(√
δmax|L| log(|L|) log(δmax) log

(
|L|
ζ

))
= Õ

(√
δmax|L| log

(
1

ζ

))
elementary operations.
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proof. We apply Grover search to find, for a particular vertex u, an integer j ∈ [δu] such that

∆
ηu(j)
u > 0 (a ‘good move’), if one exists. Using this as a subroutine, we apply Grover search

now to the list L to find any vertex for which there exists such a neighbouring community (a

‘good vertex’).

Using the data structure described in Section 2.3.2, we can obtain the inputs to g∆, which

computes the change in modularity resulting from moving a vertex u to a community α, in

constant time: we can recover from ηu the quantity Sαu (this is just the weight associated

to the entry ηu(j)), and also obtain S
`(u)
u , su, Σa, and Σ`(u) directly in O(1) time from the

appropriate lists. We will use Ag∆
to denote the unitary that implements the (classical) sub-

routine for computing g∆(su,Σα,Σ`(u), S
α
u , S

`(u)
u ) =: ∆

ηu(j)
u given u and j, and whose action

on basis states is

|u〉 |j〉 |0〉 7→ |u〉 |j〉
∣∣∣∆ηu(j)

u

〉
.

For a fixed vertex u, we can find a j such that ∆
ηu(j)
u > 0 if one exists using the algorithm

QSearch of Lemma 1, by providing Ag∆ as an oracle. The algorithm will require in the worst

case O(
√
δu log(1/ε)) uses of Ag∆

(and hence g∆) and its inverse, and O(
√
δu log |L| log(1/ε))

other operations to find one with probability at least 1−ε, or to signal that no such j exists as

appropriate. We will write A∆̄ to denote the unitary that implements this quantum algorithm

for a given vertex u, i.e. it maps

|u〉 |0〉 7→ |u〉
∣∣∆̄u > 0?

〉
where the last register on the right is 1 if ∆̄u = maxj ∆

ηu(j)
u > 0, and 0 otherwise.

We then use A∆̄ as a subroutine to search for a vertex u such that ∆̄u > 0, i.e. for

which there exists a j such that ∆
η(j)
u > 0 (a good vertex). This can be achieved via another

straightforward application of QSearch from Lemma 1, with A∆̄ provided as the oracle. If

the probability of a randomly chosen vertex u having a good move is 1
f , f > 0, then this will

require an expected O(
√

1/f) applications of A∆̄ and its inverse, and when f = 0, the worst

case, it will require at most O(
√
|L|) applications to signal that no there are no good vertices.

Assuming that the sub-routine A∆̄ works perfectly, we can boost the success probability of

the algorithm from 2/3 to 1 − ε′ by repeating O(log(1/ε′)) times. However, the subroutine

A∆̄ succeeds only with probability ≥ 1 − ε. Hence for the outer search algorithm to work

correctly we will need that every time the A∆̄ subroutine is run, it succeeds. Since A∆̄ (and

its inverse) will be called at most O(
√
|L| log(1/ε′)) times, the entire search algorithm will

therefore succeed with probability at least

(1− ε′) · (1− ε)O(
√
|L| log(1/ε′)).

To ensure that this probability is ≥ 1 − ζ, we can choose 1/ε′ = O(poly(1/ζ)) and 1/ε =

poly(|L|, 1/ε′). In particular, we can set ε′ = ζ/2 and ε = ζ/2√
|L| log(1/ε′)

.

Finally, since the algorithm A∆̄ is called in superposition for multiple vertices u, the

run-time of the outer QSearch routine will be limited by its slowest branchg, which requires

gNote that the routine will really be limited by a known upper bound on the time taken by any particular
branch. For us, this will be O(

√
δmax log(1/ε)), but this does require us to know δmax. Luckily, we can keep

track of this over time by adding to our data structure, and the overheads for updating it will all at worst be
logarithmic in n and linear in dmax, similarly to the other updates.
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at most O(
√
δmax log(1/ε)) queries to g∆, plus O(

√
δmax log(δmax) log(1/ε)) other operations,

meaning that the total expected number of function calls made by the entire algorithm is at

most

O

(√
δmax

f
log

(
|L|
ζ

))
,

and the total expected number of other operations is

O

(√
δmax

f
log(|L|) log(δmax) log

(
|L|
ζ

))
.

Using the worst-case upper bound of QSearch from Lemma 1, we can bound the total worst-

case number of function calls by

O

(√
δmax|L| log

(
|L|
ζ

))
and the total number of other operations by

O

(√
δmax|L| log(|L|) log(δmax) log

(
|L|
ζ

))
.

�
We will use the algorithm VertexFind as a subroutine to implement the quantum algo-

rithm that searches an ordered list of vertices for the first vertex with a good move available.

We can now describe this algorithm in detail.

Lemma 6 Given an ordered list L of vertices u0, . . . , u|L|−1, there exists a quantum algorithm

FindFirst(L, ε), which, with probability ≥ (1 − ε), returns i = minj{j : ∆̄uj > 0}, i.e. the

index of the first good vertex in the list if such a vertex exists, and otherwise returns ‘no good

vertex exists’. The algorithm requires at most

O

(√
δmaxi log

(
|L|
ε

))
function calls and Õ

(√
δmaxi log (|L|/ε)

)
other elementary operations in the case that there

does exist a good vertex, and otherwise requires at most

O

(√
δmax|L| log

(
|L|
ε

))
function calls and Õ

(√
δmax|L| log (|L|/ε)

)
other elementary operations.

proof. Let i be the index of the first good vertex in L, and let q be such that 2q is the smallest

power of 2 larger than i, and for clarity assume that the length of L is a power of 2 (this is

without loss of generality – we can always pad L and incur at most a constant overhead in

the run-time). The algorithm will proceed in two stages: first, we identify the segment of L in

which i lies; then once we have identified the segment, we perform a binary search to identify

the precise location of i in that segment.

Using the algorithm VertexFind from Lemma 5, we search over regions of L that double

in size each time, in order to identify an upper bound j on i satisfying i ≤ j ≤ 2q. In particular

we repeat the following routine, initialising l = 0 and r = 1



378 Quantum algorithms for community detection and their empirical run-times

1. Let J = ul, . . . , ur be the sub-list of vertices in L between l and r. Run VertexFind(J, ζ)

to find a good vertex in J , or to determine (with probability ≥ 1 − ζ) that none ex-

ists. This requires at most Õ(
√
δmax|J | log(1/ζ)) function calls and other elementary

operations.

2. If a good vertex was found at index j, then return l and j and stop.

3. Otherwise set l← r+ 1 and r ← 2r. If l > |L|, return ‘no good vertex exists’ and stop;

otherwise go to step 1.

If the above routine fails to find a good vertex, then we can simply output ‘no good vertex

exists’ and stop. If instead there is a good vertex at position i, then with high probability

(specifically ≥ (1 − ζ)q) we will detect this, and output an index j that we know to be an

upper bound to i. It is only an upper bound since one segment of L might contain multiple

good vertices and VertexFind will return any one of these, and so all we learn is that the

vertex we’re looking for is either at that position or before it. Similarly, since VertexFind

will have failed to find any good vertex in any preceding segment that doesn’t include i, we

know a lower bound on the position of i, namely l.

From Lemma 5, the number of function calls made by VertexFind on a list of size a with

failure probability ζ is O
(√

δmaxa log
(
a
ζ

))
, and hence the run-time of the above procedure

to find the segment of L containing i is

q∑
k=0

O

(√
δmax2k log

(
2k

ζ

))
≤

q∑
k=0

O

(√
δmax2k log

(
i

ζ

))
= O

(√
δmax2q log

(
i

ζ

))
≤ O(

√
δmaxi log(i/ζ)) ,

where the first and last inequalities follow since q = dlog2 ie (and hence 2q ≤ 2i).

Once we have lower and upper bounds on the value of i, we can perform a binary search

to find i precisely. The procedure is the following, initialising r = j:

1. Set c = d l+r2 e, and let J = ul, . . . , uc be the sub-list of L containing the left half of

the vertices indexed between l and r. If |J | = 1, classically check whether the vertex it

contains is good or not. If it is, return l, otherwise return l + 1.

2. Run VertexFind(J, ζ ′) to attempt to find a vertex in J , which requires at most

O
(√

δmax(c− l) log
(

(c−l)
ζ′

))
function calls and other elementary operations.

3. If a marked vertex is found at position l ≤ j ≤ c, then set r ← j. Otherwise, set l← c.

Repeat from step 1 above.

This procedure (which is just binary search on L with a quantum subroutine) will return the

index of the left-most good vertex with probability ≥ (1− ζ ′)dlog(a)e where a is the size of the

segment of L identified by the preceding routine.
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Once again, we are running VertexFind (with failure probability now ζ ′) on lists that

halve in size each time, starting with one that is of size a/2. Hence, the total run-time of this

part of the algorithm is at most

dlog(a/2)e∑
k=0

O

(√
δmax2k log

(
2k

ζ ′

))
≤

dlog(a/2)e∑
k=0

O

(√
δmax2k log

(
a

ζ ′

))
= O

(√
δmaxa log

(
a

ζ ′

))
.

Finally, we note that the segment containing i is of size at most i, and hence we find that the

run-time of this part of the algorithm is also at most

O

(√
δmaxi log

(
i

ζ ′

))
.

It remains to choose the failure probabilities ζ and ζ ′. We require that both parts of the

algorithm succeed with probability ≥
√

(1− ε) each. In order to achieve this, we require for

the first part that (1−ζ)q ≥
√

(1− ε), and for the second part that (1−ζ ′)dlog(i)e = (1−ζ ′)q ≥√
(1− ε). Both conditions can be satisfied by choosing ζ = ζ ′ = Ω(ε/q) = Ω(ε/ log(|L|)),

yielding our final run-time. �
Note that we made use of the worst-case complexities for VertexFind in the above anal-

ysis, in particular using the variant of the algorithm that is not faster even when there are

more good vertices available, and hence it is likely that in practice the algorithm will be much

faster.

Finally, we can use the algorithm FindFirst to construct a quantum version of the Louvain

algorithm. Recall that the classical algorithm constructs a randomly ordered list of all vertices,

locates the first good vertex in this list, and then moves it. Then it chooses the next good

vertex, and so on, repeating this process until no good vertices are found in the remainder of

the list. The corresponding quantum algorithm is precisely the same as the classical Louvain

algorithm, except that the step in which the classical algorithm looks for the next good vertex

in the list of vertices is replaced by a single call to the FindFirst algorithm of Lemma 6.

To see how long this algorithm takes, suppose the classical algorithm makes T moves, and

that the kth move necessitated inspecting tk vertices before finding one that could be moved.

Then as we saw in Section 2.3.2 the classical algorithm will make at most∑
k∈[T ]

O(δmaxtk) ,

calls to g∆, and use ∑
k∈[T ]

Õ(δmaxtk + dmax)

other operations.hWe will also use this data structure in the quantum version of the algorithm.

Finally, note that this run-time is somewhat pessimistic – the δmax could be replaced with

hHere we assumed that the algorithm makes use of the additional data structure described in Section 2.3.2,
which in particular allows us to obtain the inputs to g∆ in constant time, in exchange for a O(dmax)-time
update step after moving a vertex.
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the average number of neighbouring communities amongst all vertices inspected during the

kth step, which in general should be smaller. The quantum algorithm cannot take advantage

of this fact, however, and is really limited by δmax.

Theorem 1 There exists a quantum algorithm QLouvain that, with probability ≥ 2/3,

behaves identically to the Louvain algorithm and requires at most∑
k∈[T ]

Õ(
√
δmaxtk)

calls to g∆ and ∑
k∈[T ]

Õ(
√
δmaxtk + dmax)

other elementary operations.

proof. We replace the part of the classical algorithm that searches for the next good vertex

with a single call to FindFirst. Once we identify a good vertex, we can use the QMax

algorithm of Lemma 3 to obtain the best move available for that vertex, with probability at

least 1 − ε, using at most O(
√
δmax log(1/ε)) function calls and O(

√
δmax log(δmax) log(1/ε))

other operations. After making the move, we have to update the data structure used by the

VertexFind subroutine, which incurs a time-cost of O(dmax).

To obtain the quantum run-time, we first need to choose settings for the failure proba-

bilities of the FindFirst and maximum-finding subroutines. In particular, we require that

all calls to both routines succeed with probability ≥
√

2/3 each, and so we can choose the

failure probability of both to be ε = O(1/T ) = O(1/ poly(n)). Hence, the quantum version of

Louvain will require at most ∑
k∈[T ]

O(
√
δmaxtk log(n))

calls to g∆ and ∑
k∈[T ]

Õ(
√
δmaxtk + dmax)

other elementary operations, yielding a square-root worst-case improvement over the classical

algorithm. Since the quantum algorithm mimics (with constant probability) the behaviour of

the classical one, it will produce exactly the same output. �

3.2.2 Simple quantum louvain

Rather than finding the first marked item in a list, which requires repeated Grover searches

using a bisection method, for a quantum computer it is more natural to simply find any

marked item, which requires only a single application of Grover search. Motivated by this

observation, in this section we describe a slightly different version of the Louvain algorithm

that has a much simpler quantum analogue.

Concretely, the simpler algorithm (i) searches over the list of all vertices until it finds a

good vertex by sampling vertices at (uniformly) random with replacement ; (ii) once a good

vertex is found, we move it and go back to (i). This process is repeated until no good vertices

can be found. The quantum version of this algorithm, which we call SimpleQLouvain, is as

follows:
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1. Call VertexFind(L, δ) with L the list of all vertices in the graph, and δ to be deter-

mined. If there are any vertices in the graph for which a good move is available, this

will return one at random. Otherwise, it will signal that none exist and we can end this

phase of the algorithm.

2. Assuming that VertexFind(L, δ) returned a vertex, we use the QMax algorithm of

Lemma 3 to obtain the best move available to that vertex.

3. We move the vertex, update the data structure, and then repeat from Step 1.

We note that this algorithm is subtly different to the original Louvain algorithm: here we

search with replacement over the vertices of the graph, whereas the original algorithm searchers

without replacement by fixing a randomly ordered list of vertices and sequentially searching

through it. We verify numerically in Section 5 that this difference does not qualitatively

change the behaviour of the algorithm in any significant way.

For a T -step run, in order for SimpleQLouvain to succeed (i.e. find a good vertex

whenever one exists) with probability ≥ 2/3, we require that (1 − δ)T ≥ 2/3, which can be

achieved by setting δ = 1/O(T ) = 1/O(poly(n)). In that case, if there are an fk fraction of

good vertices in the graph after having already made k − 1 moves, the expected number of

function calls (and other operations) of VertexFind will be at most Õ(
√
δmax/fk) as per

Lemma 5. Finally, we can choose the failure probability δ′ of the quantum maximum-finding

routine to be δ′ = δ. Hence, the overall algorithm will require an expected number of at most

∑
k∈[T ]

Õ

(√
δmax

fk

)

calls to g∆ and ∑
k∈[T ]

Õ

(√
δmax

fk
+ dmax

)

other operations.

In contrast, the expected number of function calls made by the equivalent classical algo-

rithm (the one that also searches with replacement) is

∑
k∈[T ]

O

(
δmax

fk

)
, (6)

and so the quantum algorithm is asymptotically more efficient for any step of that algorithm

(both in terms of calls to g∆ and in terms of other operations). In general, the final stages of

the algorithm will have 1/fk = O(n), and in these steps the quantum speedup is quite large.

Finally, we note that if we do not make use of the data structure for the quantum algorithm,

then the number of function calls remains the same, but the number of other operations

becomes
∑
k∈[T ] Õ

(√
δmax+dmax√

fk
+ dmax

)
.



382 Quantum algorithms for community detection and their empirical run-times

In practice, the δmax appearing in the classical run-time in Eq. (6) is overly pessimistic: it

will in fact be closer to the average numberiof adjacent communities, δavg, since the algorithm

visits vertices one by one, computing ∆̄u for each in time O(δu). On the other hand the

quantum algorithm really is limited by the maximum number of adjacent communities due to

our use of Grover search, and hence in practice could find itself being slower. We observe in

Section 5 that in fact this is indeed the case, and so the ‘worst-case’ quantum speedup that

we find via an asymptotic analysis often doesn’t materialise in practice. In Section 3.2.4 we

describe a more sophisticated quantum algorithm that makes use of the technique of variable

time amplitude amplification to remove the dependency on δmax, in an effort to overcome this

limitation.

3.2.3 Trading a square-Root for a log factor for sparse Graphs

In the quantum algorithms described above, the run-time contains a log factor that could

in practice be quite large. For example, the run-time of VertexFind(L,ζ), which finds a

good vertex in a list L (or confirms that there aren’t any) with probability at least 1 − ζ
is O

(√
δmax

f log
(
|L|
ζ

))
, where f is the fraction of vertices in L that are good. The log(|L|)

overhead arises because the quantum algorithm performs a Grover search over the vertices

in L, using another Grover search as a subroutine. In order for the outer search to succeed

with probability at least 1 − ζ, the inner Grover search has to succeed with a much larger

probability, namely ≈ 1 − ζ√
|L|

(since the outer search will make in the worst-case O(
√
|L|)

calls to the inner search routine). In practice this might be a substantial overhead, especially

if log(|L|) is large relative to δmax. In our algorithms, the list L will often be of size Θ(n),

and hence for very sparse graphs, for example when δmax ≤ dmax = O(log n), this overhead

will be large enough to negate the square-root speedup that we obtain in terms of δmax.

Hence, for such sparse graphs it will often make sense to replace the inner Grover search

with a purely classical routine that succeeds with certainty. We will use the suffix ‘SG’ to

signify that the inner loop over the neighbouring communities is classical. In this case we can

construct an alternative version of VertexFind, in which the time taken to find a good vertex

in L with probability ≥ 1 − ζ is now O
(
δmax√
f

log
(

1
ζ

))
. Using this variant of VertexFind

we can then construct different versions of the above quantum algorithms that might perform

better on sparse graphs. It is straightforward to check that the alternative run-times of these

new algorithms designed for sparse graphs will be the following.

• VertexFindSG(L,ζ):

– Expected number of function calls at most

O

(
δmax√
f

log

(
1

ζ

))
.

– Worst-case number of function calls

O

(
δmax

√
|L| log

(
1

ζ

))
.

i But not exactly: it is actually the average over subsets of vertices containing precisely one good vertex. If
the good vertices have many adjacent communities then this average will be biased towards this. We discuss
this in more detail in Section 3.2.4.
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• FindFirstSG(L,ε):

– Worst-case number of function calls

O

(
δmax

√
|L| log

(
log(|L|)

ε

))
.

• QLouvainSG:

– Worst-case number of function calls, if classical Louvain makes T moves, with tk
vertices inspected during move k:∑

k∈[T ]

O
(
δmax

√
tk log (T log(n))

)
.

• SimpleQLouvainSG:

– Expected number of function calls, if the algorithm makes T moves, with fk the

fraction of good vertices available during move k:∑
k∈[T ]

O

(
δmax√
fk

log (T )

)
.

Hence, the log(n) factor present in QLouvain becomes a log log(n) factor, although the

overhead of log(T ) is still present in the new versions of both that algorithm and of Simple-

QLouvain.

3.2.4 Quantum Louvain via variable time amplitude amplification

An unsatisfactory element of the algorithms from the previous sections is that the subroutine

that computes ∆̄u takes a different amount of time for each u, but the outer Grover search

of VertexFind is limited by its slowest branch and hence its run-time depends on δmax, in

contrast to the classical algorithm whose run-time depends on a value closer to δavg. For

many families of graphs (e.g. power-law graphs), this discrepancy could be significant – i.e.

it might not be unlikely that
√
δmax > δavg. In this section we describe a more sophisticated

quantum algorithm, VertexFindVTAA(L,ζ), that searches for good vertices from a list

L, and whose run-time is sensitive to the fact that most vertices will not have a number

of neighbouring communities close to the maximum. Similarly to the previous sections, we

can then use this quantum algorithm as a subroutine to construct quantum algorithms for

community detection.

Our main technical tool is the variable time amplitude amplification algorithm of Ambai-

nis [3]. Using this as a subroutine, we show

Theorem 2 Given a list L of vertices such that a fraction f > 0 of them are good, and

the unitaries Ac and As defined in Eqs. (C.1) and (C.2), we can use variable time ampli-

tude amplification to construct a quantum algorithm VertexFindVTAA(L, ζ) that makes an

expected

O

((
δmax log(δmax) +

tqavg√
f

log1.5 δmax

)
log(1/ζ)

)
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calls to g∆, where

tqavg =

√√√√δmax∑
i=1

pii2,

and that returns the identity of a good vertex and the best move available to it with probability

≥ 1− ζ. If there is no good vertex, the algorithm will signal this and requires at most

O
((
δmax log(δmax) + tqavg

√
|L| log1.5 δmax

)
log(1/ζ)

)
queries to do so.

We defer to Appendix C for details of the algorithm and the proof of the theorem.

Note that by using this version of the VertexFind algorithm, we lose the square-root improve-

ment of the dependence on δmax that we obtained with the simpler Grover-based quantum

algorithm. In exchange for the square-root speed up, the dependence on δmax is improved to

a dependence on something closer to δavg. The reason for losing this speed up is because we

exchanged a quantum search over the neighbours of each vertex with a classical, sequential

one. One might wonder whether we could retain the square-root speedup for this part of the

algorithm by replacing the classical algorithm A = Ac · · · AcAs with a quantum subroutine,

say, Q = Qq · · · Qq. However, this does not seem possible since existing quantum algorithms

for search with an unknown number of marked items, such as the Grover search of Lemma 1,

cannot be separated into fixed ‘steps’ Qq that satisfy the conditions from [2] (and described

in the proof of the theorem above) without assuming, for example, that every vertex has the

same number of good moves – that is, to use VTAA with a subroutine Q, the algorithm Q
cannot be adaptive, and must instead act identically on every branch of the superposition to

which it is applied (in our case, on each vertex u ∈ V ). It is an interesting open question

whether the techniques from [2] can be extended to such an adaptive setting, particularly in

the case where the subroutine used in VTAA is a quantum search over an unknown number

of marked items.

Finally, we remark that, due to its very complex nature, it was extremely difficult to

precisely pin down the exact number (including constants) of function calls required by the

VTAA-based quantum algorithm.jFor this reason we did not numerically simulate the algo-

rithm in order to compare it to our other quantum (and classical) algorithms for community

detection.

3.2.5 Quantum Louvain algorithms utilizing different search-spaces

In this section we consider a vastly simplified algorithm, called EdgeQLouvain which only

utilizes a single Grover search over a large search space, rather than searching over multiple

search spaces (vertices and their neighbours).kThe algorithm differs somewhat in spirit to the

original Louvain algorithm described in Section 2.3, however as we show in Section 5, tends

to yield similar results in terms of the modularity it obtains.

j In fact, we suspect that it is not possible to do so (without substantial work) from the description given in [2]
alone.
kWe also considered a similar algorithm that instead searches over (vertex, neighbouring-community) pairs.
This algorithm gave very similar results to EQL, and therefore we restrict our attention only on EQL.
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EdgeQLouvain, or EQL for short, searches over directed edges (u, v) of the graph for

one that gives an increase in modularity if u is moved to community `(v). Upon finding one,

it moves u greedily to a neighboring community (but not necessarily to `(v) itself). This

approach has the two advantages that, in the quantum case, the Grover search does not need

to make use of another nested Grover search over neighboring communities, and likewise there

will now be only an additive dependency on either one of δmax or δavg, nullifying the two issues

that we have encountered with our algorithms thus far.

Given the edge set E of the input graph for the Louvain algorithm, let Ed = {(u, v) :

{u, v} ∈ E} be the set of directed edges obtained by replacing every undirected edge {u, v} ∈ E
by both (u, v) and (v, u), making |Ed| = 2|E|. As usual, we assume that we have access to

the data structure described in Section 2.3.2. The three phases of the algorithm operate as

follows:

Initialization – Exactly the same initialization procedure as in OL (original Louvain), see

Section 2.2 for details.

First phase – Use QSearch to search over all edges (u, v) in search of one that yields a

good move. As an oracle we provide the unitary that, for a pair (u, v), computes whether

∆
`(v)
u is positive or not, which can be done using O(1) function calls to g∆ and O(log δu)

other operations (to obtain the inputs to g∆ we need to perform a binary search over the

community adjacency list of u to find the entry corresponding to the community of v, whilst

the other inputs can be obtained in constant time).

Instead of moving u to `(v), we find the best neighbouring community of u, ᾱ = arg maxα∈ζu ∆α
u ,

by using quantum maximum finding over all moves to neighbouring communities of u. We

then update the data structure as we do for OL in time
∑
v∈Nu O(log δv) (see Section 2.3).

Second phase – Again this is identical to the second phase of OL; see Section 2.2.

By using QSearch, we can find a pair (u, v) yielding a good move with an expected

O

(
1√
hk

log(1/δ)

)
number of calls to g∆, and

Õ

(
1√
hk

log(1/δ)

)
other operations, where hk is the fraction of edges that yield a good move during the kth step.

If no such pair exists then the algorithm will signal this after making at most O(
√
|E| log(1/δ))

queries to g∆.

Once we have found such a vertex, with probability ≥ 1−ε we can find the best move avail-

able using the QMax algorithm of Lemma 3, which will require at most O(
√
δmax log(1/ε))

calls to g∆ and O(
√
δmax log(δmax) log(1/ε)) other operations. If the algorithm makes T moves

in total, we will need to choose ε and δ such that all calls to either QSearch or quantum

maximum-finding will succeed with sufficiently high likelihood that the probability that any

one of them fails is at most 2/3, which can be satisfied by choosing ε = δ = 1/O(T ) =
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1/O(poly n). Hence, the algorithm will make an expected number of function calls at most∑
k∈[T ]

Õ

(
1√
hk

+
√
δmax

)
and ∑

k∈[T ]

Õ

(
1√
hk

+
√
δmax + dmax

)
other operations.

The complexity of this algorithm appears to be favourable compared to the algorithms

from the previous sections, and has the additional advantage of being very simple and therefore

incurring smaller logarithmic overheads. As we show in Section 5, it also behaves similarly

to the original Louvain algorithm in practice, whilst being the fastest amongst all quantum

algorithms that we evaluated.

4 Estimating the run-times of quantum algorithms for community detection

In this section and the next we use the tools and methodology of [9] to empirically estimate the

run-times (more precisely the number of queries to the (gradient of) the modularity function)

of our quantum algorithms for a variety of inputs, and use these estimates to compare their

performances, to each other and to their classical counterparts. This allows us to estimate

how much of the per-step speedup suggested by the asymptotic analyses in Section 3 manifests

in the final behaviour of the algorithms, for a range of inputs. We find for all algorithms that

some speedup does make it out, though to varying degrees. Moreover we observe that the

algorithms that promise the greatest speedups through an asymptotic analysis are not nec-

essarily the ones that achieve the best speedups ‘in practice’. In our view, this demonstrates

the usefulness of this sort of analysis over a purely asymptotic, worst-case one for designing

efficient quantum algorithms to use for practical tasks.

In the sections that follow we describe explicitly our approach to simulating our quantum

algorithms and estimating their expected run-times. We will focus on QLouvain, Simple-

QLouvain and EdgeQLouvain (including both their original and sparse-graph versions),

all of which fit into the framework of Algorithm 1 introduced in Section 1. We deliberately

chose to forgo simulating the algorithms that make use of variable time amplitude amplifi-

cation (VTAA) as a subroutine, not only because the nature of VTAA makes it difficult to

do so, but also because the expected speedup will only be a constant given that the Louvain

algorithm is predominantly applied to sparse graphs.

4.1 Complexity bounds

The first step is to obtain tight bounds (including all constants etc.) on the complexities of

the quantum sub-routines that we make use of. We begin by recalling the complexity bounds

obtained in [9] for the two quantum sub-routines that we use here: Grover search with an

unknown number of marked items (QSearch, Lemma 1), and quantum maximum-finding

(QMax, Lemma 3).

Expected complexity of Grover search As we mentioned in Section 2, when considering

the full run-time, including constants, of QSearch, there is an extra hyper-parameter Nsamples
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used to determine the number of classical samples that are drawn before Grover search is used.

Then the worst-case expected complexity of QSearch is as follows

Lemma 7 (Worst-case expected complexity of QSearch, [Lemma 4, [9]]) Let L be

a list, g : L→ {0, 1} a Boolean function, Nsamples a non-negative integer and ε > 0, and write

t = |g−1(1)| for the (unknown) number of marked items of L. Then, QSearch(L,Nsamples, ε)

finds and returns an item x ∈ L such that g(x) = 1 with probability at least 1− ε if one exists

using an expected number of queries to g that is given by

EQSearch(|L|, t, Nsamples, ε) =
|L|
t

(
1−

(
1− t

|L|

)Nsamples
)

+

(
1− t

|L|

)Nsamples

cqEGrover(|L|, t) ,

(7)

where

EGrover(|L|, t) ≤ F (|L|, t)

1 +
1

1− F (|L|,t)
α
√
|L|

 , (8)

with

F (|L|, t) =

 9
4

|L|√
(|L|−t)t

+

⌈
log 6

5

(
|L|

2
√

(|L|−t)t

)⌉
− 3 ≤ α

√
L|

3
√
t

for 1 ≤ t < |L|
4

2.0344 for |L|
4 ≤ t ≤ |L|.

(9)

If no marked item exists, then the expected number of queries to g equals the number of queries

needed in the worst case (denoted by WQSearch(|L|, Nsamples, ε)), which is given by

EQSearch(|L|, 0, Nsamples, ε) = WQSearch(|L|, Nsamples, ε) ≤ Nsamples + αcqdlog3(1/ε)e)
√
|L| .
(10)

In the formulas above, cq is the number of queries to g required to implement the oracle

Og |x〉 |0〉 = |x〉 |g(x)〉, and α = 9.2.

Worst-case complexity of Grover search Using a modified version of QSearch (which

we call QSearchZalka , described in [9] and based on the algorithm in [33]), we can obtain an

algorithm with better complexity in the case of no marked items.

Lemma 8 (worst-case complexity of QSearchZalka , [Lemma 5, [9]]) Let L be a list

of items, g : L→ {0, 1} a Boolean function and ε > 0, and write cq for the number of queries

to g required to implement the oracle Og |x〉 |0〉 = |x〉 |g(x)〉. Then, with probability of failure

at most ε, QSearchZalka requires at most

WQSearchZalka
(|L|, ε) := cq

(
5

⌈
ln(1/ε)

2 ln(4/3)

⌉
+ π

√
|L|

√⌈
ln(1/ε)

2 ln(4/3)

⌉)
(11)

queries to g to find a marked item of L, or otherwise to report that there is none.

Quantum maximum-finding For maximum finding, we have the following result from [9].
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Lemma 9 (Expected complexity of QMax, [Corollary 1, [9]]) Let L be a list of items

of length |L| and R : L→ R a function that assigns a value to each item. Let fi be the marking

function

fi(j) =

{
1 if R(j) > R(i)

0 otherwise .

Then the expected number of queries to fi (for any i) required for QMax to find the maximum

of L with success probability at least 1− ε is dlog3(1/ε)e3EQMax∞(|L|), where

EQMax∞(|L|) ≤ cq
|L|−1∑
t=1

F (|L|, t)
t+ 1

, (12)

with F (|L|, t) given by (9), and where cq is the number of queries to fi required to implement

oracle access to fi (which we assume to be the same for all i).

Using these bounds, we proceed to obtain bounds on the expected complexities of the main

quantum subroutines used by our quantum community detection algorithms – VertexFind

and FindFirst. Afterwards, in Section 4.2 we describe precisely how we simulate our quan-

tum community-detection algorithms, including what we implement classically and what in-

formation we gather along the way, as well as what accuracy and hyperparameter settings we

use.

4.1.1 Expected complexity of VertexFind

To start with, we bound the expected complexity of the VertexFind algorithm when it is

run on a list L containing |L| vertices, t of which are good vertices, and when it is required

to fail with probability at most ζ. Following the analysis in the proof of Lemma 5, we run

QSearch(L,Nsamples,ε), giving it access to a subroutine QSearchZalka (J ,ε′), where J will be

a list of length at most δmax, and ε and ε′ are parameters that are determined by ζ and (in the

case of ε′) the worst-case complexity of the outer QSearch(L,Nsamples,ε) routine. Note that,

in order to implement the oracle required for Grover search, the subroutine QSearchZalka

(J ,ε′) and its inverse will each be run once per query.

On a list L of size |L| and with failure probability at most ε, the outer QSearch routine

that we use requires in the worst case (i.e. when t = 0) at most WQSearch(|L|, Nsamples, ε)

queries to its oracle/subroutine (see Eq. (10)). When there are t > 0 marked items, it requires

an expected EQSearch(|L|, t, Nsamples, ε) queries (see Eq. (7)). The inner QSearchZalka rou-

tine is slightly different, and it requires in the worst case at most WQSearchZalka
(|J |, ε′) queries

on a list J of size |J | and with failure probability at most ε′ (see Eq. (11)).

Finally, we need to set the failure probabilities appropriately to align them with the overall

failure probability ζ for VertexFind. From Lemma 5 we find that to achieve a success

probability ≥ 1 − ζ, we can set ε = ζ/2 and ε′ = ζ
2WQSearch(|L|,Nsamples,ε)

. Putting everything
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together, the expected complexity of the entire VertexFind algorithm will be at most

EVertexFind(|L|, t, Nsamples, ζ)

= EQSearch(|L|, t, Nsamples, ζ/2) · 2WQSearchZalka

(
δmax,

ζ
2WQSearch(|L|,Nsamples,ζ/2)

)
≤ EQSearch(|L|, t, Nsamples, ζ/2) · 2cq

[
5
⌈
ln
(

2WQSearch(|L|,Nsamples,ζ/2)
ζ

)
/(2 ln(4/3))

⌉
+ π
√
δmax

√⌈
ln
(

2WQSearch(|L|,Nsamples,ζ/2)
ζ

)/
(2 ln(4/3))

⌉]
, (13)

where the expression for EQSearch can be found in Eq. (7) and the expression for WQSearch

in Eq. (10).

4.1.2 Expected complexity of VertexFindSG

Next, we bound the expected complexity of the sparse-graph version of VertexFind (de-

scribed in Section 3.2.3) when it is run on a list L containing |L| vertices, t of which are good,

and when it is required to fail with probability at most ζ. This time the inner QSearchZalka

routine is eliminated, and hence the complexity of this algorithm depends only on a single

application of QSearch, given access to a classical sub-routine that makes δmax queries per

call. Similarly to the above case, this classical algorithm must be run twice in order to im-

plement the oracle required for the QSearch routine. The expected complexity of the entire

VertexFind algorithm will now be at most

EVertexFindSG(|L|, t, Nsamples, ζ) = EQSearch(|L|, t, Nsamples, ζ) · 2δmax . (14)

4.1.3 Expected complexity of FindFirst and FindFirstSG

The FindFirst routine makes a number of repeated calls to VertexFind, whose expected

complexity on a list L with t marked items, and failure probability at most ζ, is given by

EVertexFind(|L|, t, Nsamples, ζ) from Eq. (13). In order to choose the correct setting of ζ

to ensure that FindFirst fails with probability at most µ, we need to know the maximum

number of times that VertexFind might be called by FindFirst. The worst case is when

there is a single marked item lying at the very end of the list L. In this case, FindFirst will

make dlog2 |L|e calls to VertexFind, on sets of increasing size, followed by a binary search

that will require another dlog2
|L|
2 e calls. In total FindFirst will call VertexFind at most

2dlog2 |L|e−1 times, and hence to ensure that it fails with probability ≤ µ we must ensure that

every call to VertexFind is made with failure probability at most ζ ≤ µ
2dlog2 |L|e

. Precisely

the same analysis holds for FindFirstSG, which will make calls instead to VertexFindSG,

again with failure probability at most ζ ≤ µ
2dlog2 |L|e

.

4.2 Simulation details

In order to simulate any of our quantum community detection algorithms, we run a corre-

sponding classical version of the algorithm of interest, and collect the information necessary

to estimate how long the quantum algorithm would have taken in expectation. The classical

algorithms we use are all based on an implementation of Louvain in Python by Aynaud [5].
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During Phase 1 of (any version of) the Louvain algorithm (the part that is most time con-

suming and also benefits from a quantum speedup), we obtain our estimates for the complex-

ities of our quantum algorithms by applying the upper bounds on the expected complexities

of the QSearch and VertexFind algorithms given in Section 4.1 above. Our upper bounds

depend on four parameters: the size |L| of the list L to which the subroutines are applied,

the desired failure probability ζ of the algorithm, the number t of marked vertices in the list,

and the choice of hyper-parameter Nsamples. In the sections below, we discuss how to obtain

values for these parameters. In particular:

• The sizes |L| of the lists will be available during the course of the simulation.

• The number t of marked vertices, however, is not immediately accessible – we discuss

below in Section 4.2.1 how to obtain this value during the execution of the classical

Louvain algorithm.

• The failure probabilities ζ for each sub-routine are determined by the overall acceptable

failure probability for the entire algorithm, which requires knowing how many times

each subroutine will be called. Of course, this information is not known ahead of time,

and we discuss this in Section 4.2.3.

• Nsamples is a hyper-parameter that changes the efficiency of the algorithms. Its optimal

setting is discussed in Section 4.2.4

Finally, in order to be able to estimate the number of queries used by the different quantum

algorithms introduced in Section 3, the corresponding implementations of the classical Louvain

algorithm differ in places to that of Aynaud’s. The differences in each case concern how

precisely we find a vertex to move to a new community, and we discuss our implementations

in Section 4.2.2.

4.2.1 Computing the number of marked items

Whenever we want to know how many queries a call to QSearch uses, we need to know the

number of marked items. Below we describe our methods for obtaining this value while we

simulate the quantum algorithm.

For the Louvain algorithm, the number of marked items can be kept track of exactly with

the help of an additional data structure in the form of a set. We call this set Vmarked =

{u ∈ V |∃α such that ∆α
u > 0}, the set of marked vertices, i.e. those that have a neighbouring

community they can move to in order to increase the modularity. With this set we can easily

compute t = |Vmarked|. The simplest way to obtain Vmarked is by performing an exhaustive

search over the entire list of vertices and explicitly checking for every vertex if it is marked

or not (i.e. has a good move). This exhaustive search should be repeated after every move,

since a move will change which vertices are marked and which are not. An exhaustive search

after every move is tractable for small graphs, but quickly becomes intractable as the number

of vertices increases.

Instead of recreating the list Vmarked from scratch after every move, it can be initialized

at the start and then updated after every move. This can be done by searching through the

set of vertices that a particular move could possibly affect. More precisely, let u be the vertex

that was moved from community α to community β in the previous step. The only vertices
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that can be flipped from marked to non-marked and vise versa are those that belong to either

community α or β or are neighbours of these communities. More specifically, the vertices

contained in Vchangeable = NCα ∪NCβ , where NCα = {w ∈ Nv|v ∈ Cα} and likewise for NCβ .

This set of vertices is relatively small compared to the set of all nodes |V | >> |Vchangeable|,
which gives a fast update procedure for Vmarked. After every move we construct the set

Vchangeable as described above. For all vertices in Vchangeable we calculate ∆u. If ∆u > 0, and

if u is not in Vmarked, we add u to Vmarked. Similarly, if ∆u ≤ 0, and u is in Vmarked, we remove

u from Vmarked.

The added benefit of creating and maintaining this list, besides explicitly knowing t, is

that we can directly sample from it to get a marked vertex. This in fact speeds up the search

process of Louvain tremendously.lAt every move we can now use t = |Vmarked| as an input to

the bounds for the number of queries that our quantum algorithms would have made. This

method is especially fast when the input graphs are sparse.

When searching over edges, as is done in EdgeQLouvain, we use the same procedure,

but for marked edges rather than vertices.

It should be noted that, as discussed in [9], there are also sampling methods to estimate

the number of marked items. We found that in the particular case of the Louvain algorithm,

the sampling methods actually were not more efficient that simply keeping track of the afore-

mentioned data structure, and therefore we have not included our results obtained through

sampling in this paper. We do find that the number of function calls obtained using either

the exact method described above or the sampling method described in [9] give total query

counts that are quantitatively the same.

4.2.2 Classical simulation of the various Louvain algorithms

The program that simulates QLouvain runs the original Louvain with the addition of a

subroutine to keep track of the number of queries. This subroutine is called whenever the

first marked vertex is found. It estimates the number of function calls that QLouvain would

have made to find this vertex. To do so, it simulates the behaviour of FindFirst ,as explained

in 4.2.2, by searching over lists with varying sizes. For every list L with length |L| smaller

than a certain |L|switch, a hyper parameter described in Section 4.2.4, FindFirst uses classical

search to find the marked item, else it uses VertexFind. The parameters that are needed

to calculate the number queries that VertexFind makes are set as follows: |L| is the size of

the respective list, ζ (the precision) is set as described in Section 4.2.3, and t is calculated

directly from the list by the use of an exhaustive search. Adding these estimates together

gives an estimate of the queries that FindFirst uses per move. The total number of queries

is the sum of queries made at every move. During a single run we calculate the number of

queries made by both VertexFind and VertexFindSG, using the same parameters, so that

we get an estimate for both QLouvain and QLouvainSG in one pass.

SimpleQLouvain uses the subroutine VertexFind on the set of all vertices to find a

random marked one. For this we can use our method described in Section 4.2.1 to obtain

a marked vertex and an explicit calculation of t. After every move we compute the num-

ber of function calls that VertexFind would have made by using the following parameters:

l One could think that this would be a faster method for classical Louvain as search is done in a constant
number of steps. It turns out that this is not the case, as updating the data structure still requires a lot of
steps.
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|L| = |V | the number of vertices in the graph, ζ (the precision) is set as described in Sec-

tion 4.2.3. In the same simulation we also calculate upper bounds for VertexFindSG, using

the same parameters, so that again we get an estimate of the number of function calls for

both SimpleQLouvain and SimpleQLouvainSG in a single pass.

EdgeQLouvain uses the subroutine Qsearch on the set of edges to find a marked edge.

Similar to SimpleQLouvain, this can be simulated by keeping a list of all marked edges,

as described in Section 4.2.1. After every move we estimate the number of queries Qsearch

would have made using the parameters: L = 2|E| (|L| = 2|V |δavg), because the search is over

directed edges as described in Section 3.2.5, ζ (the precision) is set as described in 4.2.3, and

t is obtained using the methods described in Section 4.2.1.

Finally, once we have identified a good vertex u found by either VertexFind, FindFirst

or QSearch (in case of EdgeQLouvain), we have to determine to what neighboring com-

munity u should be moved by computing arg maxα∈ζu(∆α
u). We can find the maximum either

classically, or with the quantum maximum-finding subroutine of Lemma 3. Since we keep

track of the neighbouring communities in our data-structure, we known δu, and therefore we

can decide beforehand whether, in expectation, it would be faster to either perform classical

maximum-finding, or quantum maximum-finding. For the sparse graphs simulated in the

results section, it turns out that classical maximum-finding always uses fewer queries, and

quantum maximum-finding is therefore never used.

4.2.3 Setting the failure probabilities of the subroutines

One piece of information that we will not be able to obtain without running the entire al-

gorithm first is the total number of moves that the algorithm will make, which determines

the maximum number of times each subroutine might be called, which in turn determines

the maximum acceptable failure probability for those subroutines. Of course, this is not a

problem unique to our use-case, but to any speedup of such a heuristic algorithm. One option

is to use the trivial upper bound from Appendix A.1 of O(poly(n)) total moves, however

this is almost certainly a huge over-estimate, and in fact in practice it is observed that the

Louvain algorithm makes only about O(n log n) moves before stopping [20]. In Appendix A.2

we present data that further justifies using such an estimated bound on the number of moves.

The only practical way to deal with this issue is to decide beforehand on an upper bound

M to the number of moves T , perhaps based on empirical observations, and then use this to

set the failure probabilities of the various subroutines. If the actual number of moves goes

beyond M , then we conclude that we can no longer guarantee that the algorithm ran success-

fully. However, since the algorithm is anyway a heuristic, and the success of the algorithm

is determined on more of a qualitative level than a quantitative one, some small number

of failures (say, in choosing the ‘wrong’ vertex to move, or not finding the true maximum

amongst all possible moves for a single vertex) may be entirely acceptable. In Section 5 we

give empirically determined estimates for M based on the size of the input graph, and then

use these to derive sensible failure probabilities for the main quantum subroutines used for

each algorithm. These then determine the failure probabilities for the other subroutines, as

described in Section 4.1.
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4.2.4 Hyper-parameter settings

Optimal number of Nsamples As discussed, the number of classical samples used in the

implementation of QSearch is a hyper-parameter that can be tuned to optimize the run-time

depending on the size of the list L, and what fraction f of the items in L are marked. Classical

sampling requires fewer queries than Grover search does when a large fraction of the items is

marked, whereas it is more efficient to not use classical sampling at all when a small number

of them is marked. In [9], it was found that (with f0 being the value of the fraction for which

the expected number of queries for Grover search and classical sampling are equal)

• For |L| ≤ 260, classical sampling always requires fewer queries.

• For |L| ≥ 260, the point 1/f0 for which Grover search becomes more efficient than

classical sampling is plotted as a function of |L| in Fig. 1.
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|L|
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Fig. 1. The value of 1/f0 as a function of the list length |L| that marks the point beyond which,
in expectation, Grover search requires fewer queries than sampling classically does. In the limit

|L| → ∞, there is a horizontal asymptote at 1/f0 → 131.665.

For (any variant of) the Louvain algorithm, we know from numerical results that the number

of good vertices roughly decreases monotonically during a single iteration of the first phase of

the algorithm. We can use this knowledge to set a criterion for 1/f beyond which it becomes

more efficient to skip the classical sampling step all together and set Nsamples = 0. Since

the number of marked items decreases monotonically only approximately, we allow ourselves

some wiggle room. As a consequence, in our simulations, we have chosen to use the following

settingsm

• We set Nsamples = 130 at the start of phase 1. (An extra analyses of [9] suggests setting

Nsamples slightly lower than 1
f0

)

• The moment we draw 130 consecutive samples without finding a marked item (implying

1/f ' 130), we set Nsamples = 0 and use only Grover search from this point on.

mThe plots in the results section are insensitive to fine-tuning Nsamples beyond the point that we have done.
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Optimizing the number of classical samples in FindFirst FindFirst searches through

sets of varying sizes to detect if they contain a marked element. If the size of the set is suf-

ficiently small it is more efficient to classically search through the set (from start to finish)

than to use the quantum VertexFind subroutine. This introduces another hyper-parameter

|L|switch that determines when to switch from using classical search to VertexFind, depend-

ing on the list size. In our numerical results we found that classical search was in fact always

faster than using VertexFind for the graph sizes we studied. This made it impossible to

choose a good setting for this hyper-parameter.

To allow for a comparison to be made between classically traversing the list and using

VertexFind within FindFirst, we choose to set |L|switch to a finite number: |L|switch = 512.

I.e., sets with less than 512 vertices were searched through classically and for sets with more

items than 512 vertices we used VertexFind. The inner loop of QLouvain, searching

through the neighbouring communities of a node, was always performed using Qsearch even

when we searched through the set classically.

5 Numerical results

For all numerical results in this section we assume that we require the failure probability of

the entire quantum algorithm to be a small constant (10−5). We assume that the algorithms

make no more than n log(n) =: M moves (see Section 4.2.3 and Appendix A.2 for justifications

for choosing this number of moves), and that the algorithm fails if any subroutine fails within

any of these moves. Hence, we set the failure probabilities ε of the main (i.e. outermost)

quantum subroutines for each algorithm to

(
10−5

) 1
M ≥ 10−5

M
=

10−5

n log(n)
=: ε. (15)

Finally, we always use the additional data-structure introduced in Sec. 4.2.1 to keep track of

the number of good vertices exactly.

5.1 Artificial data-sets

Since we are interested in the run0time scaling as well as the absolute query counts of the

classical and quantum Louvain algorithms, we introduce in this section two methods for

generating benchmark networks of arbitrary size. One method relies on the well-known LFR

method [22], in which node degrees and community sizes are sampled according to power law

distributionsnwith exponents τ1 and τ2, respectively. The other input parameters are the total

number of nodes n, the average degree 〈d〉 (or alternatively one can set the minimum degree

dmin), the maximum degree dmax (by default set to n), minimum and maximum community

sizes Smin and Smax (by default set to dmin and dmax, respectively) and a mixing parameter

µ which specifies the fraction of neighbours of a node that do not belong to the node’s own

community. We will refer to graphs of this type as ‘LFR-type graphs’ and use the NetworkX

implementation [17] as a network generator.

In the second graph generation method, which we will call ‘FCS-type graphs’, we fix the

community size S and adopt an algorithm similar to that described in Ref. [30]. The graph

parameters are now n, 〈d〉 and S, and the edges are drawn uniformly at random from all

nDistributions not uncommon for real-world networks.
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possible edges. A description of our algorithmic implementation (which runs in time O(|E|))
for FCS-type graph generation is given in Appendix D.

Fig. 2. Numerical results for the query counts of the classical and quantum Louvain algorithms

from Section 3 on FCS-type graphs with a fixed community size S = 50. The average degree

is either 〈d〉 = 5 (top) or 〈d〉 = 25 (bottom). The horizontal axis indicates the total number of
nodes n and the vertical axis the number of queries made to the function g∆. Each data point

corresponds to the average across 10 randomly generated graphs and the shaded area represents

one standard deviation. In every sub-figure the bottom-right box plots the modularity relative
to the one obtained with original Louvain (indicated with the dashed blue line) as function of n

(logarithmic vertical axis). For the modularity, the limits of the y-axis are set at ±10% relative

difference to Louvain.

5.1.1 Absolute query counts

Figs. 2 and 3 show the estimated average number of queries made and the modularities

obtained by the classical and all of our quantum Louvain algorithms on FCS- and LFR-

type networks with up to 105 nodes. In terms of absolute number of queries, we find that

the sparse variants of QLouvain and SimpleQLouvain generally outperform their non-

sparse counterparts and that all four are outperformed by the much simpler EdgeQLouvain

algorithm. In fact, only EdgeQLouvain was able to achieve an observable speed-up over

classical Louvain within the limits of our data sets – for n > 2000 it achieves this for all

studied graph types and parameter combinations.

We also find that the quantum algorithms perform better relative to their classical counter-
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Fig. 3. Numerical results for the query counts of the proposed classical and quantum Louvain
algorithms on LFR-type graphs with parameters τ1 = 3, τ2 = 2, 〈d〉 = 10, dmax = 100 and

Smax = 100. See the caption of Fig. 2 for a detailed description of the contents of individual plots

and figures.

part when µ is large, which corresponds to graphs with relatively little community structure.

An explanation for this is that for those graphs the fraction of good vertices could in general be

smaller compared to graphs with high community structure, which corresponds to the regime

where QSearch outperforms classical sampling. For the obtained modularities we found that

for FCS-type graphs the relative difference in behaviour to the original Louvain algorithm

is very small. The differences are more profound for the LFR-type graphs, in particular for

EdgeQLouvain.

5.1.2 Estimating average case polynomial speed-ups

In Section 3 we showed analytically that, for a large collection of graph configurations, quan-

tum algorithms for community-detection can achieve a polynomial speed-up over the classical

Louvain algorithm on which they are based. In this section we use the data of Section 5.1.1

to estimate this polynomial speed-up, in expectation, for different graph configurations. Ta-

ble 2 shows the coefficients corresponding to the linear fits of log-log plots of the data for the

different algorithms as shown in Figs. 2 and 3. Recall that the ratio of the obtained coefficient

as compared to Louvain is upper bounded by 2 – achieving this value would correspond to

the full quadratic speed-up. For all studied graph configurations, SimpleQLouvain (both

sparse and non-sparse) and EdgeQLouvain show (varying) polynomial speed-ups over Lou-

vain. For FCS-type graphs, SimpleLouvainSG achieves the overall best scaling and for

LFR-type graphs the best scaling is achieved by EdgeQLouvain. QLouvain almost always

has a scaling that is at most comparable to Louvain, but this is mostly an artefact of the

algorithm itself: for relatively small instances it predominantly uses classical routines; as n

increases it begins to use more Grover steps – however, these Grover steps are still performed

on relatively small lists. We expect that for much larger n one will also observe an asymptotic

speed-up for QLouvain and QLouvainSG, though of course these sizes of n might not occur

in practice.



Chris Cade, Marten Folkertsma, Ido Niesen, and Jordi Weggemans 397

Degree weighted poly-fit (Estimated polynomial speed-up)

Configuration OL QLSG QL SQLSG SQL EQL

〈d〉 = 5, µ = 0.3 1.23 1.76 (0.70) 1.45 (0.85) 0.86 (1.43) 1.07 (1.15) 0.96 (1.28)

〈d〉 = 5, µ = 0.5 1.5 2.07 (0.72) 1.69 (0.89) 1.07 (1.40) 1.23 (1.22) 1.03 (1.46)

〈d〉 = 5, µ = 0.7 1.71 2.17 (0.79) 1.89 (0.90) 1.12 (1.53) 1.37 (1.25) 1.15 (1.49)

〈d〉 = 25, µ = 0.3 1.24 1.44 (0.86) 1.34 (0.93) 0.80 (1.55) 1.06 (1.17) 0.98 (1.27)

〈d〉 = 25, µ = 0.5 1.21 1.42 (0.85) 1.29 (0.94) 0.85 (1.42) 1.08 (1.12) 1.01 (1.20)

F
C

S

〈d〉 = 25, µ = 0.7 1.13 1.37 (0.82) 1.14 (0.99) 0.87 (1.30) 0.92 (1.23) 0.95 (1.19)

〈d〉 = 10, µ = 0.3 1.43 1.81 (0.79) 1.62 (0.88) 1.27 (1.13) 1.38 (1.04) 1.21 (1.18)

〈d〉 = 10, µ = 0.5 1.75 2.31 (0.76) 1.95 (0.90) 1.48 (1.18) 1.47 (1.19) 1.27 (1.38)

L
F

R

〈d〉 = 10, µ = 0.7 1.63 2.03 (0.80) 1.81 (0.90) 1.42 (1.15) 1.44 (1.13) 1.19 (1.37)

Speed-up
factor
< 0.71

0.71 - 0.83
0.83 - 0.95
0.95 - 1.05
1.05 - 1.20
1.20 - 1.40
> 1.40

Table 2. Estimated polynomial degrees of the expected number of queries for the quantum al-

gorithms and original Louvain on the FSC and LFR-type graphs. The central number in each

cell corresponds the estimated polynomial degree obtained from a weighted fit of the form an+ b,
with the weights set at logn, using the log-log data from Figures 2 and 3. The number in the

top-right corner (in parentheses) estimates the polynomial speed-up, and is defined as the ratio of
the estimated polynomial degree of Louvain and the respective quantum algorithm.

5.2 Real-world data-sets

Since analysis based on artificial networks only has limited value in predicting performance

on actual real-world networks, we have also performed runs on large data-sets available at [23]

and [28]. Table 3 shows the obtained modularities and total query count for a selection of

our quantum algorithms. Both QLouvain and QLouvainSG are not considered here, as we

found they were always outperformed by SimpleQLouvain and SimpleQLouvainSG on

the artificial data sets. We find that for these instances EdgeQLouvain is able to achieve

a modest speedup over OL, as well as obtaining slightly better modularities on average.

Similar to the results obtained for artificial networks in Section 5.1, SimpleQLouvainSG is

not able to achieve a speed-up on graphs with sizes of the orders of magnitude considered.

Interestingly, in all but one case SimpleQLouvain outperformed SimpleQLouvainSG even

though the real data sets have a very low average degree and hence are relatively sparse. This

is due to the fact that the considered networks have in fact sometimes a very large maximum

degree dmax, which is the relevant graph parameter that determines the query complexity:

both SimpleQLouvain and SimpleQLouvainSG scale with δmax, however with the former

having a quadratic improvement over the latter. The fact that the average degree is much

lower than dmax in these data sets suggests that Variable time amplitude amplification might

give a significant improvement (see Appendix C). Also, we found that all simulations of our

quantum algorithms were not able to finish running within 5 days for the largest considered

data set (IMDB). Therefore, further improvements need to be made to our simulation process

to be able to study even larger problem instances.
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kk

Fig. 4. (a) Fraction of marked items h vs step k of a run of the EdgeQLouvain algorithm. The
gray dashed line represents the fraction (for a fixed list length, which changes after each phase of

the algorithm) for which one obtains an absolute quantum speedup. The dashed red line represents

the worst-case (i.e. when the quantum speedup is maximal) (b) Cumulative number of queries n
vs step k for a run of EdgeQLouvain and Louvain. The dashed lines show the number of queries

that would be made by each algorithm if every step represented the worst-case. The solid lines

show the actual cumulative query count.

Modularity Total queries (×107)
Nodes Edges dmax OL SQL(SG) EQL OL SQL SQLSG EQL

Academia [23] 200k 1M 10693 0.6447 0.6456 0.6353 3.31 267 1180 1.08
DBLP [23] 317k 1M 343 0.8206 0.8210 0.8223 3.81 234 309 1.34
Amazon [23] 335k 925k 549 0.9262 0.9263 0.9264 2.09 195 118 1.21
Youtube [23] 496k 2M 25409 0.6825 0.678 − 3.35 743 6487 −
IMDB [28] 896K 4M 1590 0.6872 − − 13.1 − − −

Table 3. Numerical results for the total amount of queries the classical and selected quantum

Louvain algorithms make on real-world data-sets, averaged over five different runs. Entries with

‘−’ timed out as they took longer than 5 days to compute.

5.2.1 Why is achieving a speedup difficult?

The quantum algorithms rarely (if at all) achieved a significant speedup over their classical

counterparts. One explanation for this can be seen in Figure 4. In Figure 4(a), we see the

fraction of marked items present in the search space (here, the number of directed edges

m = n〈d〉 in the graph) during a single run of the EdgeQLouvain algorithm. Only when the

fraction is relatively small (dashed gray line) do we expect to achieve any advantage by using

a quantum search in place of a classical one. As can be seen, there are relatively few steps

during the run for which this is the case – for the remainder we in fact see a slowdown from

using the quantum search subroutine. This behaviour is further demonstrated in Figure 4(b):

we can see that for much of the run, the quantum algorithm is making more cumulative queries

than the classical one, until it reaches a point at which a quantum speedup is achieved (i.e.

when there are few marked items in the search space). This suggests that perhaps a better

design for such algorithms could be to combine classical and quantum subroutines, and to

switch to the quantum ones only when one expects to achieve some advantage.
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5.3 Conclusion and discussion

In this paper we considered the framework of [9] for estimating the run-times of quantum

algorithms that achieve modest polynomial speedups over their classical counterparts. As

suggested there, in many cases, a traditional asymptotic analysis of the quantum algorithm

is not informative enough to make decisions about whether, or for what input sizes, they

might achieve a speedup over the best classical algorithm. In some cases, this is because a

representative run-time cannot be obtained via such an analysis – something that is particu-

larly true for (classical and quantum) heuristic algorithms. In others, it may be because the

quantum algorithm is particularly sensitive to the input on which it is run, or just that the

run-time obtained via an ordinary complexity analysis is not representative of the algorithm’s

true run-time.

To evaluate the usefulness of the approach we outlined in [9], we applied it here to a particular

use-case of practical interest: community detection in large networks. Taking as a starting

point a popular classical algorithm (the Louvain algorithm), we designed several quantum

algorithms, each promising to give some speedup over the original. Using the bounds derived

in [9], we obtained bounds for the quantum subroutines used by these algorithms, and then

estimated the complexities of each algorithm for a number of randomly generated graphs, as

well as some large real-world ones. We found that the algorithms whose analytically-derived

asymptotic complexities were favourable were not the algorithms that obtained the lowest

complexities in practice, nor the ones that scaled most favourably as a function of input

size. This was perhaps not unsurprising, but does demonstrate that an analysis that goes

beyond the usual asymptotic complexity one is necessary if one wishes to know whether a

particular quantum algorithm could give a speedup for a task of practical interest, on an input

representative of the ones it will receive in practice.

Our main observation when estimating the run-times of our quantum algorithms was that

there is a large overhead associated with success probability amplification of quantum sub-

routines that is not present in the classical case, and that this can negate the speedup for

even very large problem instances. This overhead is made more pronounced by the behaviour

of Grover search when there are no marked items in the list: to verify that this is indeed the

case, the quantum algorithm must perform a reasonably large number of repetitions of this

Grover search sub-routine. Hence, in algorithms where we expect many of lists being searched

over to in fact be empty (which was the case for one of our quantum algorithms, QLouvain),

the quantum algorithm is often very slow in practice. Interestingly, this behaviour is not

made apparent by the usual asymptotic run-time analysis of the algorithm.

Finally, we note that this kind of empirical run-time analysis is particularly useful for evalu-

ation of quantum speedups of classical heuristics, such as those we consider in this work. In

these cases, even if we know that the quantum algorithm achieves a per-step speedup over the

classical algorithm, we will not know how much of this speedup survives when the algorithm

is run to convergence, suggesting the need for an empirical approach to run-time estimation.

In the context of evaluating the potential of quantum algorithms in real-world settings, we

argue that it would be useful to make the sorts of analyses that we perform in this work more

commonplace. One way to do this would be to include the option of simulating certain quan-
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tum algorithms, in the sense of this paper, within any of the existing quantum programming

languages. Most of the work to do this would lie in proving good bounds on the run-times of

various quantum primitives. Already for a couple of simple primitive we found this to be an

extensive endeavour, but the upshot is that this work would only need to be performed once.

With such tools at their disposal, we imagine that it would be easier for quantum algorithms

designers to tailor their algorithms to particular tasks and datasets, and to more rapidly

prototype ideas for quantum speedups without first undertaking an in-depth mathematical

study.
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Appendix A The number of moves made by the Louvain algorithm

In this section we investigate the number of moves performed by the variants of the

Louvain algorithm discussed in this paper as a function of the number of nodes n of the input

graph. To start with, we provide a loose upper bound on the number of moves in Section A.1.

Next, we numerically investigate the number of moves performed by the Louvain algorithm

on actual datasets in Section A.2.

Appendix A.1. A bound on the total number of moves
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First, we point out that there is a trivial upper bound on how long the Louvain algorithm

takes to finish. Write T for the maximum possible number of moves that can be made before

the (first phase of the) algorithm terminates. Since modularity is trivially bounded between

two constants:

|Q| ≤ 1

2W

∑
u,v∈V

Auv +
1

4W 2

∑
u∈V

su
∑
v∈V

sv ≤ 2,

and each move must strictly increase the modularity, it suffices to bound the smallest amount

by which Q can increase after a single move.

Recall that the change of modularity when moving a vertex u from community C`(u) to

community Ca is

∆a
u =

Sau − S
`(u)
u

W
−
su
(
Σa − Σ`(u) + su

)
2W 2

.

The values in the numerators of the terms are sums over weights of edges, and W is the sum

of all weights in the graph. Recall that we have n = |V | vertices. If the weights on the edges

are integers with O(log n)-bit representations, then it is clear that the smallest non-zero value

of ∆a
u for u ∈ V and a ∈ [n] is ∆min = 1/W 2 = 1

|E|2·O(poly(n)) . For an unweighted graph, this

is just 1
|E|2 . Hence, the maximum number of moves T that can be made before there are no

more moves that can increase modularity is 2/∆min = |E|2 · O(poly(n)) = O(poly(n)). For

an unweighted graph, we have in particular T = O(|E|2).

Since 1
pk
≤ n (for every k), we can upper bound the time complexity of the Louvain

algorithm by

• O(nd|E|2) for unweighted graphs, and

• O(poly(n)) for weighted graphs with weights expressed with log(n) bits.

We conclude that the Louvain algorithm is at worst a polynomial-time algorithm, although its

run-time in practice will depend on the particular problem instance. In practice, the Louvain

algorithm is mostly used for large n, small (constant) d sparse graphs.o

Appendix A.2. The number of moves for actual datasets

Next, we numerically investigate the number of moves performed by the variants of the

Louvain algorithm discussed in this paper as a function of the number of nodes n of the input

graph. Our results can be found in Fig. A.1.

Based on Fig. A.1 we find that for all quantum algorithms the amount of moves scale

similarly in graph size n as compared to the Louvain algorithm, with the biggest differences

occurring for graphs with a lower average degree 〈d〉. In agreement with [20], the data backs

up the claim that the number of moves is O(n log(n)).

Appendix B Numerical results on the data structure

In Section 2.3.2 we mentioned that adding an extra data structure allows for a run time

speedup of OL (original Louvain). In this section we show numerical results supporting this

claim.

oSee references in the Introduction.
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Fig. A.1. The average number of moves of all considered algorithms as a function of the graph
size n.

We compare the run time between OL and OL with extra data structure using a python

implementation of Louvain given by [5]. For OL we use exactly this implementation of louvain.

For OL with extra data structure we changed the code to incorporate the data structure as

described in Section 2.3.2. Run time tests are done in real time by tracking how long the

algorithm takes to converge. The algorithms should in principle converge to a similar solutions

since they differ only in their internal randomness. We also do a memory test, to see how much

extra memory is used by introducing the extra data structure. This memory test registers

the peak usage of memory.

The algorithms are tested on FCS- and LFR-type graphs as generated by the algorithm

in Appendix D and the NetworkX implementation [17]. Every instance is run on 10 graphs,

averaged and shown in Figure B.1. As predicted, OL with data structure slightly outperforms

OL in run time when the average degree is low (〈d〉 = 5). This run time advantage is lost

when the average degree increases (〈d〉 = 25). There is an extra constant overhead in memory

when the extra data structure is introduced, as expected.

Appendix C Quantum Louvain with variable time amplitude amplification

In this appendix we describe in detail our quantum algorithm for community detection

based on the technique of variable time amplitude amplification, and give a proof of its

correctness and run-time. In [3], Ambainis describes a version of amplitude amplification for
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Fig. B.1. Numerical results for run time comparison between original Louvain and original Louvain
with extra data structure. The algorithms were tested on FCS-type graphs with fixed community

size S = 50, and average degrees 〈d〉 = 5 (top) and 〈d〉 = 25 (bottom). From left to right

community structure is increased by decreasing µ. The horizontal axis indicates the amount of
nodes n and the vertical axis the total run time (top). Each point corresponds to an average over

10 randomly generated graphs and the shaded area represents the standard deviation. The box in
the bottom right shows peak memory usage (the number of bits).
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the situation where the subroutine used by the quantum algorithm takes a different time to

finish for each branch. This algorithm goes by the name variable time amplitude amplification

(VTAA). Intuitively, VTAA executes amplitude amplification with a subroutine that can have

different stopping times, with a final run-time that depends on some average of the individual

stopping times, rather than being limited by the slowest branch as is the case in the algorithm

presented in the previous section. We note that it is also possible to use variable time Grover

searchp[2] to obtain this behaviour, but here the algorithm assumes that there is only a

single marked item and the run-time does not improve when there are multiple marked items,

and hence the run-time of the algorithm will generally be quite poor, taking a time that is

roughly Õ(
√
δavg|L|) per move compared to the classical O(δavg/f), with k the fraction of

good vertices present in L.

Here we use VTAA with a classical subroutine A that checks the neighbouring communities

of a vertex one by one, requiring δu calls to the unitary for g∆ and other operations for

each vertex u. Let L be a list of vertices, and let n ≥ |L| be an upper bound on its size.

The algorithm A acts on four registers, a log(n)-sized vertex register, two log(δmax)-sized

neighbor-index registers, and 2-qubit flag register that can take the values 0, 1 and 2. The

flag states correspond to: 0 found no neighbor to move to, 1 found a neighbor to move to, and

2 still searching. A consists of the sequence of unitaries: A = Ac · · · Ac︸ ︷︷ ︸
δmax times

As, where

As |0〉 |0〉 |0〉 |0〉 =
1√
|L|

∑
u∈L
|u〉 |1〉 |0〉 |2〉 (C.1)

sets up the initial state, and then each of the remainingAc’s sequentially check the neighboring

communities of all vertices in superposition. The third register, which is initially set to 0,

keeps track of the neighboring community index that currently maximises ∆
ηu(j)
u . Here we

use the convention that ∆
ηu(0)
u = 0. Now, Ac acts on basis states as

Ac |u〉 |j〉 |jmax〉 |f〉 :=



|u〉 |j〉 |j〉 |2〉 if f = 2, j < δu and ∆
ηu(j)
u > ∆

ηu(jmax)
u

|u〉 |j + 1〉 |jmax〉 |2〉 if f = 2, j < δu and ∆
ηu(j)
u ≤ ∆

ηu(jmax)
u

|u〉 |j〉 |j〉 |1〉 if f = 2, j = δu and ∆
ηu(j)
u > ∆

ηu(jmax)
u

|u〉 |j〉 |jmax〉 |1〉 if f = 2, j = δu, ∆
ηu(j)
u ≤ ∆

ηu(jmax)
u

and ∆
ηu(jmax)
u > 0

|u〉 |j〉 |jmax〉 |0〉 if f = 2, j = δu, ∆
ηu(j)
u ≤ ∆

ηu(jmax)
u

and ∆
ηu(jmax)
u = 0

|u〉 |j〉 |jmax〉 |f〉 if f = 0 or f = 1,

(C.2)

where ηu(j) ∈ ζu is the j-th neighboring community of u.

The algorithm Ac is just a coherent implementation of a classical algorithm that, given a

vertex u, computes ∆α
u for the neighboring communities α ∈ ζu of u one by one. After visiting

pHere, we have a collection of n items x1, . . . , xn and we would like to find an i : xi = 1. Let ti be the
number of time steps required to evaluate each xi. Then variable time Grover search can find an i in time
Õ(
√
t1 + t2 + · · ·+ tn). If there are multiple i’s satisfying xi = 1, then the algorithm actually becomes slower

(by a constant factor).
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all neighboring communities, Ac stops and puts in the fourth register either a 0, signifying

that no neighbouring communities of u offer a good move, or otherwise puts a 1. Because

different vertices will have a different number of neighboring communities, Ac has several

different stopping times.

If we were to run A on the all zeros state, we would obtain the final state

A |0〉 |0〉 |0〉 |0〉 =
1√
|L|

∑
u∈L
|u〉 |δu〉 |ju〉

∣∣∆̄u > 0?
〉

(C.3)

= α0 |ψ0〉 |0〉+ α1 |ψ1〉 |1〉 =: |ψfinal〉 , (C.4)

where |ψb〉 is the state on the first three registers corresponding to the branch of the super-

position in which the flag register is in state |b〉. The goal of amplitude amplification is to

amplify the part of the state in which the flag register is in state |1〉, i.e. to amplify the

amplitude |α1| to ≥ 1/
√

2, since this part of the superposition contains the indices of vertices

for which a good move is available. The goal of variable time amplitude amplification is to

achieve this amplification using a number of applications of the constituent unitaries Ac that

takes into account the different stopping times for A on different branches.

Hence, our approach is to use the algorithm of Lemma 4, in which case the set of dif-

ferent stopping times {t1, . . . , tm} appearing in Eq. (5) for Ac will be the set of numbers

of neighboring communities {δu : u ∈ L}, and Tmax = δmax (this requires us to know δmax

before applying the algorithm, but we note that this can easily be kept track of and up-

dated after every vertex move). In order to be able to use VTAA, we need to check that

Ac meets the necessary requirements outlined in [2]. To this end, for i ∈ [δmax] define

Hi := Span ({|u〉 |j〉 |∗〉 : u ∈ L, 1 ≤ j ≤ i}), where |∗〉 means there is no condition on the jmax

register. Note that the subspaces Hi do not involve the flag register. Then we can prove

Theorem 2, which is restated below for convenience.

Theorem 2 Given a list L of vertices such that a fraction f > 0 of them are good, and

the unitaries Ac and As defined in Eqs. (C.1) and (C.2), we can use variable time ampli-

tude amplification to construct a quantum algorithm VertexFindVTAA(L, ζ) that makes an

expected

O

((
δmax log(δmax) +

tqavg√
f

log1.5 δmax

)
log(1/ζ)

)
calls to g∆, where

tqavg =

√√√√δmax∑
i=1

pii2,

and that returns the identity of a good vertex and the best move available to it with probability

≥ 1− ζ. If there is no good vertex, the algorithm will signal this and requires at most

O
((
δmax log(δmax) + tqavg

√
|L| log1.5 δmax

)
log(1/ζ)

)
queries to do so.

proof. We will use the unitaries Ac and As defined above to construct the algorithm. In

order to be able to apply Lemma 4, we first must check that Ac and As satisfy the various

conditions described in [3]. In particular, we need to check that the following hold:
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1. For i ∈ [δmax − 1], Hi ⊆ Hi+1.

2. For i ∈ [δmax], we should have that the state |ψi〉 obtained after i applications of Ac
can be expressed as

|ψi〉 = Ac · · · Ac︸ ︷︷ ︸
i times

As |0〉 |0〉 |0〉 = αi,0 |ψi,0〉 |0〉+ αi,1 |ψi,1〉 |1〉+ αi,2 |ψi,2〉 |2〉 ,

where |ψi,0〉 ∈ Hi, |ψi,1〉 ∈ Hi, and |ψi,2〉 ∈ (Hi)⊥.

3. For i ∈ [δmax] and PHi the projector onto space Hi, we have

PHi |ψi+1,0〉 = |ψi,0〉 and PHi |ψi+1,1〉 = |ψi,1〉 . (C.5)

These conditions clearly hold for As, and so we will focus on the unitary Ac. Condition

1 holds by definition of the subspaces {Hi}i∈[δmax]. In order to verify that condition 2 holds,

given i ∈ [δmax], we observe the following.

• |ψi,0〉 is a superposition over vertices u for which δu ≤ i and ∆
ηu(jmax)
u = 0. In particular,

for every u in the superposition, its neighboring community index is set to δu ≤ i, and

hence |ψi,0〉 ∈ Hi.

• |ψi,1〉 is a superposition over vertices for which δu ≤ i such that ∆̄u = ∆
ηu(jmax)
u > 0.

In particular, for every vertex u in the superposition, its neighbor index is set to δu ≤ i
and hence |ψi,1〉 ∈ Hi.

• |ψi,2〉 is a superposition over vertices u for which δu > i (otherwise the flag would have

been set to 0 or 1). In particular, all vertices u in the superposition have their neighbor

index set to i+ 1, and therefore|ψi,2〉 ∈ (Hi)⊥.

For condition 3, we notice that when we apply Ac to |ψi〉, Ac only acts on |ψi,2〉, and then

sets some flags for vertices u in the superposition |ψi,2〉 to 0 or 1. The vertices for which the

flag was set to 0 or 1 all have their neighbor index set to i + 1. Thus, when we apply the

projection opertor PHi to |ψi+1,0〉 or |ψi+1,1〉, these newly added vertices project to 0, and

therefore Eq. (C.5) is satisfied.

Having verified that our subroutines Ac and As can be used inside VTAA, we turn our

attention to the complexity of the resulting algorithm. Recall that f is the fraction of vertices

in L that have a good move available (i.e. ∆̄ > 0), and also let pi be the probability that, for

a randomly chosen vertex u, the number of neighbouring communities of u is i. Then the l2
average over stopping times of Ac is

tqavg =

√√√√δmax∑
i=1

pii2

and hence, using Lemma 4, we can apply VTAA directly to Ac and As to obtain an algorithm

that produces the state

|ψδmax
〉 = αδmax,0 |ψδmax,0〉 |0〉+ αδmax,1 |ψδmax,1〉 |1〉
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with |αδmax,1|2 ≥ 1
2 , by invoking Ac and its inverse at most

O

(
δmax log(δmax) +

tqavg√
fk

log1.5 δmax

)

times. By measuring the second register, we will project the first register onto |ψδmax,0〉 with

probability ≥ 1/2, at which point we can measure it to obtain the identity of a good vertex,

and the best move available to it, selected at random from the set of all good vertices. By

repeating this process O(log(1/ε)) times, we will obtain a good vertex with probability ≥ 1−ε.

Finally, we note that every application of Ac requires O(1) function calls to g∆ (whilst As
doesn’t require any), and hence the number of function calls made by the algorithm is the

same (up to constant multiplicative overhead) as the number of uses of Ac and its inverse. �

Using VertexFindVTAA, we can proceed to construct new VTAA-based versions of the

algorithms for community detection described above. As an example, we can construct an

analogue to SimpleQLouvain, whose run-time will now become

∑
k∈[T ]

Õ

(
δmax +

tqavg√
fk

)
,

where the tqavg is as in Theorem 2, and we choose ζ ≤ 1/(3T ) as the failure probability of

VertexFindVTAA, to ensure that every step of the algorithm succeeds with high probability.

In contrast, a classical algorithm that searches for good vertices with replacement will

make

tcavg =

δmax∑
i=1

pii

function calls per move on average, leading to a classical run-time of

∑
k∈[T ]

O

(
δavg

fk

)
. (C.6)

The tqavg appearing in the quantum complexity is the ‘2-norm average’ of the stopping

times, rather than the 1-norm average of Eq. (C) that appears in the classical complexity. If

the number of neighbouring communities is constant, then tqavg = δavg.

Appendix D Generation of FCS-type graphs

Algorithm 3 describes the algorithm we use to generate FCS-type random graphs.
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Algorithm 3 FCS-type graph generation

1: function GraphGenerationFCS(n, S, µ, 〈d〉)
2: Initialize a graph G = (V,E) where V = {1, . . . , n} and E = ∅. Define community

labels L = {1, . . . , dn/Se}.
3: Set lu = u mod S for all u ∈ {1, . . . , bn/Sc}, and set lu = dn/Se for all u /∈
{1, . . . , bn/Sc}. Let Vl ⊂ V be the set of nodes in community l.

4: Set k = 〈d〉n as the counter of the remaining edges to be added.
5: while k > 0 do
6: pick l ∈ L randomly uniform
7: pick u ∈ Vl randomly uniform, with probability 1− µ pick v from Vl uniformly at

random , and with probability µ pick v from V \ Vl uniformly at random.
8: if (u, v) /∈ E then
9: E ← E ∪ {(u, v)}

10: k ← k − 1
11: end if
12: end while
13: return G = (V,E)
14: end function
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