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In this paper, we consider two versions of the Text Assembling problem. We are given a

sequence of strings s1, . . . , sn of total length L that is a dictionary, and a string t of length
m that is a text. The first version of the problem is assembling t from the dictionary. The

second version is the “Shortest Superstring Problem”(SSP) or the “Shortest Common

Superstring Problem”(SCS). In this case, t is not given, and we should construct the
shortest string (we call it superstring) that contains each string from the given sequence

as a substring. These problems are connected with the sequence assembly method for

reconstructing a long DNA sequence from small fragments. For both problems, we
suggest new quantum algorithms that work better than their classical counterparts. In

the first case, we present a quantum algorithm with O(m+logm
√
nL) query complexity.

In the case of SSP, we present a quantum algorithm with Õ(n31.728n + L + n1.5
√
L)

query complexity. Here Õ hides not only constants but logarithms of L and n also.

Keywords: quantum algorithms, shortest superstring, strings, DNA assembly

1 Introduction

In this paper, we are interested in running-time-efficient solutions for two problems that

are The Shortest Common Superstring Problem and The Text Assembling Problem. In the

general case, the problem is as follows. For a positive integer n, a sequence of n strings

S = (s1, . . . , sn) is given. We call it a dictionary. We assume that the total length of the

dictionary strings is L = |s1| + · · · + |sn|. Additionally, a string t of length m = |t| is given.

We call it text. Our goal is to assemble t from the dictionary strings S. Here we have two

types of the problem:
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268 Quantum algorithms for SCS and text assembling problems

• The Shortest Common Superstring Problem (SCS). It is also known as the

“Shortest Superstring Problem”(SSP). In this case, the text t is not given. We should

construct the shortest string t (we also call it superstring) that contains each string from

the dictionary S as a substring.

• The Text Assembling Problem. The string t is given, and we should assemble t

only using strings from S. Here, we can use a string from dictionary S several times or

not use it at all. We allow overlapping of dictionary strings during the assembly process.

These problems are connected with the sequence assembly method for reconstructing a

long DNA sequence from small fragments [65] which is a well-known problem in bioinformatics.

The sequence assemble problem has two types. The first one is the Reference-guided genome

assembly method that constructs an existing long DNA string from the sequence S. For the

problem, we should know the string t apriori and check whether we can construct it from

S. This case is close to The Text Assembling Problem. The second type of the sequence

assemble problem is de-novo assembly; in this problem, we do not have the string t at all,

and we should construct it using all strings from S. The Shortest Superstring Problem is

used as one of the main tools for solving de-novo assembly problems [21]. The problem has

applications in other areas such as virology and immunology (the SCS models the compression

of viral genome); the SCS can be used to achieve data compression; in scheduling (solutions

can be used to schedule operations in machines with coordinated starting times), and others.

According to [60, 62, 63, 70], The Shortest Common Superstring Problem is NP-hard. So,

approximation algorithms are also explored, the best-known algorithm is [37]. At the same

time, researchers are interested in exact solutions also. The algorithm based on [20, 32]

has O∗(2n + nL) query complexity. Here O∗ notation hides polynomial factors. If we have

a restriction on the length of the strings si, then there are better algorithms. If a length

|si| ≤ 3, then there is an algorithm [28] with O∗(1.443n) query complexity. For a constant

c, if a length |si| ≤ c, then there is a randomized algorithm [29] with O∗(2(1−f(c))n) query

complexity where f(c) = 1/(1 + 2c2). We can see that 2(1−f(c))n ≥ 1.851n for any c ≥ 2.

The Text Assembling Problem is much easier. It was considered in [49]. The authors of

that paper presented a deterministic algorithm with Õ(m+L) and a lower bound is Ω(m+L).

Here Õ hides not only constants but logarithms of L and n also. The other version of the

problem that does not allow overlapping of string on assembling process [48] has a randomized

algorithm with Õ(m
√
L+ L) query complexity and a lower bound is also Ω(m+ L).

We refer to [66, 11, 41, 1] for a good introduction to quantum algorithms. There are

many problems where quantum algorithms outperform the best-known classical algorithms.

Some of them can be found here [24, 34]. Problems for strings are examples of such problems

[38, 46, 68, 54, 55, 10, 64, 5, 42, 50]. One of the most popular performance metrics for quantum

algorithms is query complexity. So, we explore problems from this point of view.

The best-known quantum algorithm for The Text Assembling Problem was presented in

[49] and has O
(
m+ logm · (log n+ log logm) ·

√
n · L

)
query complexity. Note, that in the

non-overlapping case [48], it is Õ(mL1/4 +
√
nL). The quantum lower bounds for both cases

[49, 48] are Ω(
√
m+

√
L). A quantum algorithm for SCS is not known at the moment.

In this paper, we present new quantum algorithms for these two problems:
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• Shortest Common Superstring Problem(SCS). We present a quantum algorithm

for the SCS problem with Õ
(
n31.728n + L+ n1.5

√
L
)

query complexity. The algorithm

is based on Grovers search algorithm [30, 22], Maximum search algorithm [25, 26] and

the Dynamic programming approach for a Boolean cube [16, 20, 32]. Additionally,

we used a quantum algorithm based on quantum string matching algorithm [68] for

searching duplicates in S, and checking whether a string is a substring of one another

string from S. We have this subproblem because strings in S can have different lengths.

As far as we know, our algorithm is the first quantum algorithm for the SCS problem.

• The Text Assembling Problem We present a quantum algorithm with O(m+logm ·√
nL) query complexity. The algorithm is a modification of the algorithm from [49] and

uses a technique from [52, 56]. The new idea is (log n+ log logm) times faster than the

known algorithm in the case the dictionary S has a big size. It achieves a quantum speed-

up if O(n) strings from S have length at least |si| = ω(log2m), and m = O(logm·
√
nL).

The condition is better than it was in [49] and allows us to obtain a quantum speed-up

in much more real-world cases.

The structure of this paper is the following. Section 2 contains preliminaries. We discuss

the SCS problem in Section 4, and the Text Assembling problem in Section 5. Section 6

concludes the paper.

The paper is the extended version of the paper [47] that was presented at the International

Conference on Micro- and Nano-Electronics 2021.

2 Preliminaries

Let us consider a string u = (u1, . . . , um). Let u[i, j] denote a substring (ui, . . . , uj) for

1 ≤ i ≤ j ≤ m. Let |u| = m be the length of a string u. We assume that ui ∈ Σ where Σ is

some finite size alphabet. For simplicity, we assume that Σ = {0, 1}, but all results are valid

for any finite-size alphabet.

Let us present some notes on big-O notations. We assume that O(f(n,L)) hides constants

factors; Õ(f(n,L)) hides logarithms of n and L; O∗(f(n,L)) hides polynomials of n and L.

2.1 Formal Definitions for Problems

Let us discuss formal definitions of the problems.

2.1.1 The Shortest Common Superstring Problem

For a positive integer n, a sequence of n strings S = (s1, . . . , sn) is given. We should construct

the shortest string t (we call it superstring), i.e. |t| is the minimal possible such that each si is

a substring of t for i ∈ {1, . . . , n}. In other words, for each i ∈ {1, . . . , n} there is 1 ≤ qi ≤ |t|
such that t[qi, qi + |si| − 1] = si.

Informally, we want to construct the shortest t that contains all strings from S as sub-

strings. Let us denote the problem as SCS(S).

2.1.2 The Text Assembling Problem.

For some positive integers n and m, a sequence of n strings S = (s1, . . . , sn) is given. We call

S a dictionary. Additionally, we have a string t of length m. We call t a text. We should
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present a sequence si1 , . . . , sir and positions q1, . . . , qr such that q1 = 1, qr = n − |sir | + 1,

qj ≤ qj−1 + |sij−1 | for j ∈ {2, . . . , r}. Additionally, t[qj , qj + |sij | − 1] = sij for j ∈ {1, . . . , r}.
Note that a sequence (i1, . . . , ir) can have duplicates.

Informally, we want to construct t from S with possible overlapping. Let us denote the

problem as TAO(t, S).

2.2 Connection with Real-World Problems

The considered problems have a strong relationship with the sequence assembly method for

reconstructing a long DNA sequence from small fragments [65]. Two types of the sequence

assemble problem exist. The first one is de novo assembly. In this problem, we do not have

the string t and should construct it using all strings from the dictionary. This problem is

NP-complete and typically is solved by heuristic algorithms. The SCS problem is one of the

possible interpretations of this problem.

The second type is Reference-guided genome assembly. This problem is similar to TAO(t, S)

problems but we should use a string from the dictionary only once. This differs from our

problem where we can use strings from the dictionary S several times. There are polynomial

algorithms for the Reference-guided genome assembly problem that are presented in [19, 67].

The current methods for DNA assembling belong to the “next-generation” [71] or “second-

generation” sequencing (NGS). They allow us to read many short substrings of DNA in a

parallel way. Typically, the length of a DNA sequence (that is t in our case) is about 108−109

and the length of each piece is about 102 − 104.

The difference between our TAO(t, S) and NGS problems is significant. At the same time,

the NGS allows us to have several duplicates of a string in S. It is like relaxing the “single

usage of a string from S” condition. It allows us to use a string from S the fixed number of

times. That is why our ideas can be used as a possible solution for the sequence assembly

method in real-world examples.

An additional difference between the problems (in both cases de novo assembly and

Reference-guided genome assembly) is the possibility of errors in the string t for the case

of DNA sequence assembling [69]. That is not allowed in our problems. That is why our

algorithm should have improvement if it is used for DNA sequence assembling.

At the same time, our problems and algorithms are interesting as is because they solve

fundamental problems and have applications in other areas like belonging a text to some

natural language and others.

2.3 Quantum Query Model

We use the standard form of the quantum query model. Let f : D → {0, 1}, D ⊆ {0, 1}N be

an N variable function. An input for the function is x = (x1, . . . , xN ) ∈ D where xi ∈ {0, 1}
for i ∈ {1, . . . , N}.

We are given oracle access to the input x, i.e. it is implemented by a specific unitary

transformation usually defined as |i〉|z〉|w〉 → |i〉|z + xi (mod 2)〉|w〉 where the |i〉 register

indicates the index of the variable we are querying, |z〉 is the output register, and |w〉 is

some auxiliary work-space. It can be interpreted as a sequence of control-not transformations

such that we apply inversion operation (X-gate) to the second register that contains |z〉 in

a case of the first register equals i and the variable xi = 1. We interpret the oracle access

transformation as N such controlled transformations for each i ∈ {1, . . . , N}.
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An algorithm in the query model consists of alternating applications of arbitrary unitaries

independent of the input and the query unitary, and a measurement in the end. The smallest

number of queries for an algorithm that outputs f(x) with a probability that is at least 2
3

on all x is called the quantum query complexity of the function f .We refer the readers to

[66, 11, 1, 41] for more details on quantum computing.

In this paper, we are interested in the query complexity of the quantum algorithms. We

use modifications of Grover’s search algorithm [30, 22] as quantum subroutines. For these

subroutines, time complexity is more than query complexity for additional log factor [17, 31].

3 Tools

Our algorithms use several data structures and algorithmic ideas like segment tree [53], suffix

array [61], rolling hash [36], and prefix sum [23]. Let us describe them in this section.

3.1 Rolling Hash for Strings Equality Checking

The rolling hash was presented in [36]. For a string u = (u1, . . . , u|u|), we define a rolling hash

function hp(u) =

(
|u|∑
i=1

ui · 2i−1
)

mod p, where p is a prime. The presented implementation

is for the binary alphabet but it can be easily extended for an arbitrary alphabet.

We can use the rolling hash and the fingerprinting method [27] for comparing two strings

u and v. The technique has many applications including quantum ones [8, 39, 45, 7, 6, 14,

13, 4, 2, 3, 44, 40]. Let us randomly choose p from the set of the first r primes, such that

r ≤ max(|u|,|v|)
ε for some ε > 0. Due to Chinese Remainder Theorem and [27], if we have

hp(u) = hp(v) and |u| = |v|, then u = v with error probability at most ε. If we compare δ

different pairs of numbers, then we should choose an integer p from the first δ·max(|u|,|v|)
ε primes

for getting the error probability ε for the whole algorithm. Due to Chebishev’s theorem,

the r-th prime number pr ≈ r ln r. So, if our data type for integers is enough for storing
δ·max(|u|,|v|)

ε · (ln(δ) + ln(max(|u|, |v|)) − ln(ε)), then it is enough for computing the rolling

hash.

For a string u, we can compute a prefix rolling hash, that is hp(u[1, i]) for i ∈ {1, . . . , |u|}.
It can be computed with O(|u|) query and time complexity using the formula

hp(u[1, i]) =
(
hp(u[1, i− 1]) + (2i−1 mod p) · ui

)
mod p and hp(u[1, 0]) = 0 by definition.

Assume that we store Ki = 2i−1 mod p. We can compute all Ki with no queries and O(|u|)
time complexity using formula Ki = (Ki−1 · 2) mod p.

Similarly to prefix hashes we can define and compute suffix hashes hp(u[j, |u|]) for each

suffix u[j, |u|].

3.2 Segment Tree with Range Updates

We consider a standard segment tree data structure [53] for an array b = (b1, . . . , bl) for some

integer l. Assume that each element bi is a pair (gi, di), where gi is a target value, that is

used in the segment tree, and di is some additional value, that is used for another part of

the algorithm. The segment tree is a full binary tree such that each node corresponds to

a segment of the array b. If a node v corresponds to a segment (bleft, . . . , bright), then we
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store max(gleft, . . . , gright) in the node. A segment of a node is the union of segments that

correspond to their two children. Leaves correspond to single elements of the array b.

A segment tree for an array b can be constructed with O(l) query and time complexity.

The data structure allows us to invoke the following requests with O(log l) query and time

complexity.

• Range update. It has four integer parameters i, j, x, y (1 ≤ i ≤ j ≤ l). The procedure

should assign gq ← x and dq ← y if gq < x for i ≤ q ≤ j. For this purpose, it goes

down from the root and searches for nodes covered by the segment [i, j]. Then, the

procedure updates these nodes by the new maximum. Let Update(st, i, j, x, y) be a

procedure that performs this operation for the segment tree st with O(log l) query and

time complexity. The detailed implementation is in Appendix A.

• Push. The procedure pushes all updates that were done by Update procedure before

from nodes down to leaves and updates leaves with actual values. Note that updating

leaves implies updating corresponding elements of the b array. Let Push(st) be a pro-

cedure that implements the operation for the segment tree st with O(l) query and time

complexity. The detailed implementation is in Appendix A.

• Request. For an integer i (1 ≤ i ≤ l), we check the leaf that corresponds to bi and

return its value. Let Request(st, i) be a function that returns bi from the segment tree

st with constant query and time complexity.

Let ConstructSegmentTree(b) be a function that constructs and returns a segment

tree for an array b with O(l) query and time complexity. We refer the readers to [53] for more

details on the segment tree with range updates.

3.3 Suffix Array

A suffix array [61] is an array suf = (suf1, . . . , sufl) for a string u where l = |u| is the length

of the string. The suffix array is the lexicographical order for all suffixes of u. Formally,

u[sufi, l] < u[sufi+1, l] for any i ∈ {1, . . . , l − 1}. Let ConstructSuffixArray(u) be a

procedure that constructs the suffix array for the string u. The query and time complexity of

the procedure is as follows:

Lemma 1 ([57]) A suffix array for a string u can be constructed with O(|u|) query and time

complexity.

4 Shortest Common Superstring Problem

We discuss our algorithm for the SCS problem in this section. Assume that we have a pair

i and j such that si is a substring of sj . In that case, if a superstring t contains the string

sj as a substring, then t contains the string si too. Therefore, we can exclude si from the

sequence S, and it does not affect the solution. Excluding such strings is the first step of the

algorithm. In the rest part of the section, we assume that no string si is a substring of any

string sj for i, j ∈ {1, . . . , n}.
Secondly, let us reformulate the problem in a graph form. Let us construct a complete

directed weighted graph G = (V,E) by the sequence S. A node vi corresponds to the string
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si for i ∈ {1, . . . , n}. The set of nodes (vertexes) is V = (v1, . . . , vn). The weight of an edge

between two nodes vi and vj is the length of the maximal overlap for si and sj . Formally,

w(i, j) = max
1≤r≤min{|si|,|sj |}

{r : si[|si| − r + 1, |si|] = sj [1, r]}.

We can see that any path that visits all nodes exactly once represents a superstring. Note that

no string is a substring of another one. That is why, we cannot exclude any node from the path

that corresponds to a superstring. Let P = (vi1 , . . . , vi`) be a path. Let the weight of the path

P be w(P ) = w(vi1 , vi2)+ · · ·+w(vi`−1 , vi`) that is the sum of weights of all edges from P ; let

|P | = `. The path that visits all nodes exactly once and has maximal weight represents the

shortest superstring. We formulate the above discussion as the following lemma and present

its proof in Appendix D for completeness:

Lemma 2 The path P that visits all nodes of G exactly once and has the maximal possible

weight corresponds to the shortest common superstring t for the sequence S. (See Appendix

D for the proof).

In fact, the mentioned problem on the graph G is the Travelling Salesman Problem on a

complete graph. The quantum algorithm for the TSP was developed in [16]. At the same

time, the algorithm in [16] skips some details. Here we present the algorithm with all details

to have detailed complexity (in this paper we are interested even in log factors) and for

completeness of presentation. At the same time, before TSP we have several subproblems

that should be solved for SCS and have not quantum algorithms yet. These subproblems are

removing substrings and constructing the graph. They are discussed in the remaining part of

the section.

Let us present three procedures:

• RemovingDublicatesAndSubstrings(S) is the first step of the algorithm that re-

moves any duplicates from S and strings that are substrings of any other strings from

S. The implementation of the procedure is presented in Algorithm 1. The algorithm is

following. Firstly, we sort all strings of S by the length in ascending order. Secondly,

for each string si we check whether it is a substring of s̃i. Here

s̃i = si+1$ . . . $sn,

that is the concatenation of all strings from S with indexes bigger than i using $ symbol

as a separator, and $ is a symbol that cannot be in any string. If si is a substring of

s̃i, then there is j > i such that si is a substring of sj or si = sj because all strings are

separated by “non-alphabetical” symbol.

The implementation uses IsSubstring(si, s̃i) subroutine that returns True if si is a

substring of s̃i and False otherwise. We use quantum algorithm for the strings matching

problem [68] with O∗
(√
|si|+

√
|s̃i|
)

query complexity. So, if the procedure returns

true, we can exclude the string from the final sequence S.

For access to s̃i, we do not need to concatenate these strings. It is enough to implement

GetSymbol(i, j) function that returns j-th symbol of s̃i. The index of the string i ∈
{1, . . . , n}, and the index of the symbol j ∈ {1, . . . , |si+1|+· · ·+|sn|+i−2}. The function

has O(1) query complexity. A detailed description of the implementation is presented in
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Appendix E. Complexity of the RemovingDublicatesAndSubstrings(S) procedure

is discussed in Lemma 3.

• ConstructTheGraph(S) constructs the graph G = (V,E) by S. The main idea is

the following one. We randomly choose a prime p among the first 20nL primes. Then,

we compute the rolling hash function with respect to p for each prefix and suffix of si,

where i ∈ {1, . . . , n}. Assume that we have ComputePrefixAndSuffixHashes(si, p)

subroutine for computing the prefix and suffix hashes and storing them in an array. After

that, we can take the result of the rolling hash for any prefix or suffix of si with constant

query complexity.

For each pair of strings si and sj we define a search function spi,j : {0, . . . ,min(|si|, |sj |)} →
{0, 1} such that spi,j(r) = 1 iff hp(s

i[r+1, |si|]) = hp(s
j [1, r]) that means si[r+1, |si|] =

sj [1, r] with high probability. We define spi,j(0) = 1. In fact, w(vi, vj) is the max-

imal 1-result argument of spi,j . We can find it using First One Search algorithm

[26, 52, 58, 59, 35] with O(
√
min(|si|, |sj |)) query complexity.

The implementation of the subroutine is presented in Algorithm 2. Here we assume that

we have FirstOneSearch(spi,j) subroutine. Complexity of the procedure is discussed

in Lemma 4

• ConstructSuperstringByPath(P ) constructs the target superstring by a path P in

the graph G = (V,E). Implementation of the procedure is presented in Algorithm 3.

Algorithm 1 Implementation of RemovingDublicatesAndSubstrings(S) for S =
(s1, . . . , sn).

setOfDeletingIndexes← {}
SortByLength(S)
for i ∈ {1, . . . , n} do

if IsSubstring(si, s̃i) = True then . si is a substring of s̃i

setOfDeletingIndexes← setOfDeletingIndexes ∪ {i}
end if

end for
for i ∈ setOfDeletingIndexes do . The query complexity of the for-loop is O(n)

Remove si from S
end for
n← n− |setOfDeletingIndexes| . We update n by the actual value that is the size of S.

Lemma 3 The RemovingDublicatesAndSubstrings(S) procedure removes duplicates with

O(n
√
L log2 L log n) = Õ(n

√
L) query complexity ans the error probability at most 0.1.

Proof: Firstly, we sort all strings by the length that has O(n) query complexity. Then, we

invoke IsSubstring(si, s̃i) procedure n times. Due to [68] , each invocation has the following

query complexity

O

(√
|s̃i| log

√
|s̃i|
|si|

log |si|+
√
|si| log2 |si|

)
.
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Algorithm 2 Implementation of ConstructTheGraph(S) for S = (s1, . . . , sn).

V = (v1, . . . , vn)
p ∈R {p1, . . . , p20nL} . We randomly choose a prime p among the first 20nL primes
for i ∈ {1, . . . , n} do

ComputePrefixAndSuffixHashes(si, p)
end for
for i ∈ {1, . . . , n} do

for j ∈ {1, . . . , n} do
if i 6= j then

maxOverlap← FirstOneSearch(spi,j)
E ← E ∪ {(vi, vj)}
w(vi, vj)← maxOverlap

end if
end for

end for
return (V,E)

Algorithm 3 Implementation of ConstructSuperstringByPath(P ) for P =
(vi1 , . . . , vi`).

t = si1

for j ∈ {2, . . . , `} do
t← t ◦ sij [w(vij−1 , vij−1) + 1, |sij |] . Here ◦ is the concatenation operation.

end for
return t
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Note that |s̃i| = O(|si+1|+· · ·+|sn|) ≤ O(|s1|+· · ·+|si−1|+|si+1|+· · ·+|sn|) = O(L−|si|).
Therefore, according to the Cauchy–Bunyakovsky–Schwarz inequality we have the following

complexity:

= O
(√

L− |si| logL log |si|+
√
|si| log2 |si|

)
= O

(
(
√
L− |si|+

√
|si|) logL log |si|

)
= O

(√
2 · (L− |si|+ |si|) logL log |si|

)
= O

(√
L logL log |si|

)
Each invocation of IsSubstring(si, s̃i) has constant error probability and it can be ac-

cumulated during n invocations. That is why we repeat each invocation O(log n) times to

obtain constant total error probability, for example at most 0.1 total error probability can be

achieved.

So, the total query complexity of the procedure is

O

(
n∑
i=1

√
L logL log |si| log n

)
= O

(
n
√
L logL log

(
max

i={1,...,n}
|si|
)

log n

)
=

O(n
√
L log2 L log n) = Õ(n

√
L).

Here Õ hides not only constants but logarithms of L and n also.

Lemma 4 The ConstructTheGraph(S) procedure constructs the graph with O(L+n1.5
√
L)

query complexity and the error probability at most 0.1.

Proof: Computing prefix and suffix hashes for a string si have O(|si|) query complexity. So,

computing them for all strings has O(|s1|+ · · ·+ |sn|) = O(L) query complexity.

Complexity of computing overlaps for a fixed si is at most O(n
√
|si|). Therefore, the total

complexity of computing all overlaps for all strings is

O(n
√
|s1|+· · ·+n

√
|sn|) = O(n(

√
|s1|+· · ·+

√
|sn|)) = O(n

√
n(|s1|+ · · ·+ |sn|)) = O(n1.5

√
L).

So the total complexity is O(L+ n1.5
√
L).

Each FirstOneSearch invocation has an error probability. Therefore, the total error

probability can be close to 1. At the same time, the algorithm is a sequence of First One

Search algorithms that can be converted to an algorithm with constant error probability at

most 0.05 without affecting query complexity using [52, 56] technique.

For a fixed si, the number of hash comparisons is at most O(n|si|) that is at most n

different suffixes for each prefix of si. Therefore, the total number of different pairs of num-

bers that are compared is O(n|s1| + · · · + n|sn|) = O(nL). Hence, if we randomly choose a

prime p among the first 20nL, then we can archive the error probability at most 0.05 of all

computations. So, the total error probability is at most 0.1.

Let us discuss the main part of the algorithm. We consider a function L : 2V ×V ×V → R
where 2V is the set of all subsets of V . The function L is such that L(Y, v, u) is the maximum

of all weights of paths that visit all nodes from Y exactly once, start from the node v, and

finish in the node u. If there is no such path, then we assume that L(Y, v, u) = −∞.
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Let the function F : 2V × V × V → V ∗ be such that F (Y, v, u) is the path that visits all

nodes of Y exactly once, starts from the node v, finishes in the node u and has the maximal

weight. In other words, for P = F (Y, u, v) we have w(P ) = L(Y, u, v). We assume, that

L({v}, v, v) = 0 and F ({v}, v, v) = (v) for any v ∈ V by definition.

Let us discuss properties of the function.

Property 1 Suppose Y ⊆ V, v, u ∈ Y , an integer k < |Y |. The function L is such that

L(Y, v, u) = max
Y ′∈{Y ′:Y ′⊂Y,|Y ′|=k,v∈Y ′,u 6∈Y ′}

{
max
y∈Y ′

{L(Y ′, v, y) + L((Y \Y ′) ∪ {y}, y, u)}
}

and F (Y, u, v) is the path that is concatenation of corresponding paths.

Proof: Let us fix a set Y ′ such that Y ′ ⊂ Y, |Y ′| = k. Let P 1(Y ′) = F (Y ′, v, ymax(Y ′)) and

P 2(Y ′) = F ((Y \Y ′)∪ {y}, ymax(Y ′), u), where ymax(Y ′) is the target argument for the inner

maximum.

The path P (Y ′) = P 1(Y ′) ◦P 2(Y ′) belongs to Y , starts from v and finishes in u, where ◦
means concatenation of paths excluding the duplication of common node ymax(Y ′).

Let us consider all paths such that they visit all elements from Y ′, then other elements of Y .

In other words, paths T = (vi1 , . . . , vi`) such that {vi1 , . . . , vik} = Y ′, and {vik+1 , . . . , vi`} =

Y \Y ′. So, vik ∈ Y ′, and {vik , . . . , vi`} = Y \Y ′ ∪ {vik}. Therefore, due to selecting ymax(Y ′)

as a target element for maximum, we can be sure that w(P (Y ′)) ≥ w(T ).

Let P = P (Y ′max) such that we reach the outer maximum on Y ′max. It belongs to Y , starts

from v, and finishes in u. Therefore, w(P ) ≤ L(Y, v, u).

Assume that there is a path T = (ui1 , . . . , ui`) such that w(T ) = L(Y, v, u) and w(T ) >

w(P ). Let us select Y ′′ = {ui1 , . . . , uik}. So, it is such that Y ′′ ⊂ Y and |Y ′′| = k. Due to the

above discussion T ′ = P (Y ′′). Therefore, w(P (Y ′′)) > w(P (Y ′max)) contradicts the definition

of P (Y ′max) as a path where we reach the outer maximum.

As a corollary, we obtain the following result. Note that each pair of edges is connected.

Corollary 1 Suppose Y ⊂ V, v, u ∈ Y . The function L is such that

L(Y, v, u) = max
y∈Y \{u}

(L(Y \{u}, v, y) + w(y, u)) .

and F (Y, u, v) is the corresponding path.

Using this idea, we construct the following algorithm.

Step 1. Let α = 0.055. We classically compute L(S, v, u) and F (S, v, u) for all Y ⊂ V

such that |Y | ≤ (1− α)n4 and v, u ∈ Y
Step 2. Let V4 ⊂ V be such that |V4| = n

4 . Then, we have

L(V4, u, v) = max
Vα∈{Vα:Vα⊂V4,|Vα|=(1−α)n4 },y∈Vα

(L(Vα, v, y) + L((V4\Vα) ∪ {y}, y, u)) .

Let V2 ⊂ V be such that |V2| = n
2 . Then, we have

L(V2, u, v) = max
V4∈{V4:V4⊂V2,|V4|=n

4 },y∈V4

(L(V4, v, y) + L((V2\V4) ∪ {y}, y, u)) .
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Finally,

L(V, u, v) = max
V2∈{V2:V2⊂V,|V2|=n

2 },y∈V2

(L(V2, v, y) + L((V \V2) ∪ {y}, y, u)) .

We can compute L(V, u, v) and corresponding F (V, u, v) using three nested procedures for

maximum finding. As such procedure, we use Dürr-Høyer [25, 26] quantum minimum finding

algorithm. The maximal weight of paths MaxWeight and the corresponding path can be

computed as a maximum of L(V, u, v) among all u, v ∈ V as presented in the next statement.

MaxWeight = max
u,v∈V

L(V, v, u).

Let us discuss the implementation of Step 1. It is presented as a recursive function

GetL(Y, v, u) for Y ⊂ V, u, v ∈ V with cashing that is Dynamic Programming approach in

fact. The function is based on Corollary 1.

Algorithm 4 GetL(Y, v, u).

if v = u and Y = {v} then . Initialization
L({v}, v, v)← 0
F ({v}, v, v)← (v)

end if
if L(Y, v, u) is not computed then

weight← −∞
path← ()
for y ∈ Y \{u, v} do

if GetL(Y \{u}, v, y) + w(y, u) > weight then
weight← L(Y \{u}, v, y) + w(y, u)
path← F (Y \{u}, v, y) ∪ u

end if
end for
L(Y, v, u)← weight
F (Y, v, u)← path

end if
return L(Y, v, u)

Algorithm 5 Step1.

for Y ∈ 2V such that |Y | ≤ (1− α)n4 do
for v ∈ Y do

for u ∈ Y do
GetL(Y, v, u) . We are computing L(Y, v, u) and F (Y, v, u) for Step 2.

end for
end for

end for

Let QMax((x1, . . . , xN )) be the implementation of the quantum maximum finding al-

gorithm [25, 26] for a sequence (x1, . . . , xN ). The most nested quantum maximum finding
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algorithm for some V4 ⊂ V, |V4| = n
4 and u, v ∈ V4 is

QMax((L(Vα, v, y) + L((V4\Vα) ∪ {y}, y, u) : Vα ⊂ V4, |Vα| = (1− α)
n

4
, y ∈ Vα)).

The second quantum maximum finding algorithm for some V2 ⊂ V, |V2| = n
2 and u, v ∈ V2

is

QMax((L(V4, v, y) + L((V2\V4) ∪ {y}, y, u) : V4 ⊂ V2, |V4| = n/4, y ∈ V4)).

Note that |V4| = n/4 and |V2\V4| = n/4. We use the invocation of QMax (the most nested

quantum maximum finding algorithm) instead of L(V4, v, y) and L(V2\V4, y, u).

The third quantum maximum finding algorithm for some u, v ∈ V is

QMax((L(V2, v, y) + L((V \V2) ∪ {y}, y, u) : V2 ⊂ V, |V2| = n/2, y ∈ V2))

Note that |V2| = n/2 and |V \V2| = n/2. We use the invocation of QMax (the second

quantum maximum finding algorithm) instead of L(V2, v, y) and L((V \V2) ∪ {y}, y, u).

The fourth quantum maximum finding algorithm among all u, v ∈ V is

QMax(L(V, v, u) : v, u ∈ V )

The procedure QMax returns not only the maximal value but the index of the target

element. Therefore, by the “index” we can obtain the target paths using the F function. So,

the resulting path is P = P 1 ◦ P 2, where P 1 is the result path for L(V2, v, y) and P 2 is the

result path for L((V \V2) ∪ {y}, y, u).

P 1 = P 1,1 ◦ P 1,2, where P 1,1 is the result path for L(V4, v, y) and P 1,2 is the result path

for L((V2\V4) ∪ {y}, y, u). In the same way, we can construct P 2 = P 2,1 ◦ P 2,2.

P 1,1 = P 1,1,1 ◦P 1,1,2, where P 1,1,1 is the result path for L(Vα, v, y) and P 1,1,2 is the result

path for L((V4\Vα) ∪ {y}, y, u). Note, that these values were precomputed classically in Step

1, and were stored in F (Vα, v, y) and F ((V4\Vα) ∪ {y}, y, u) respectively.

In the same way, we can construct

P 1,2 = P 1,2,1 ◦ P 1,2,2, P 2,1 = P 2,1,1 ◦ P 2,1,2, P 2,2 = P 2,2,1 ◦ P 2,2,2.

The final path is

P = P 1 ◦ P 2 = (P 1,1 ◦ P 1,2) ◦ (P 2,1 ◦ P 2,2) =(
(P 1,1,1 ◦ P 1,1,2) ◦ (P 1,2,1 ◦ P 1,2,2)

)
◦
(

(P 2,1,1 ◦ P 2,1,2) ◦ (P 2,2,1 ◦ P 2,2,2)
)

Note the Durr-Hoyer algorithm QMax has an error probability at most 0.1 and is based

on the Grover search algorithm. So, because of several nested QMax procedures, we should

use the bounded-error input version of the Grover search algorithm that was discussed in

[33, 12, 15].

Let us present the final algorithm as Algorithm 6. The complexity of the algorithm is

presented in Theorem 4.

Theorem 1 Algorithm 6 solves SCS(S) with query complexity

O
(
n31.728n + L+ n1.5

√
L+ n

√
L log2 L log n

)
= Õ

(
n31.728n + L+ n1.5

√
L
)

and the error probability at most 1/3.
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Algorithm 6 Algorithm for SCS(S).

RemovingDublicatesAndSubstrings(S)
(V,E)← ConstructTheGraph(S)
Step1()
weight, path← QMax(L(V, v, u) : v, u ∈ V )
t← ConstructSuperstringByPath(path)
return t

Proof: The correctness of the algorithm follows from the above discussion. Let us present an

analysis of query complexity. The complexity of removing all duplicates and substrings in S

by the procedure RemovingDublicatesAndSubstrings(S) is O(n
√
L log2 L log n) and the

error probability is at most 0.1 due to Lemma 3. The complexity of constructing the graph

is O(L+ n1.5
√
L) and the error probability is at most 0.1 due to Lemma 4.

We continue with complexity of Step 1 (Classical preprocessing). Here we check all subsets

of size at most (1−α)n4 , starting and ending nodes, and neighbor nodes. The query complexity

is
(1−α)n4∑
i=1

O

((
n

i

)
n3
)

= O(n31.728n).

Complexity of Step 2 (Quantum part) is the complexity of four nested Durr-Hoyer maximum

finding algorithms. Due to [25, 30, 26], the complexity for the most nested QMax is

Q1 = O

(√(
n/4

αn/4

)
·
√
n

)

because the searching space size is
(
n/4
αn/4

)
·n and the query complexity of extracting the subset

form its number is O(n). These two operations are invoked sequentially. The complexity for

the second QMax is

Q2 =

(√(
n/2

n/4

)
·
√
n ·Q1

)
= O

(√(
n/2

n/4

)(
n/4

αn/4

)
· n

)
because of the similar reasons. The complexity for the third QMax is

Q3 = O

(√(
n

n/2

)
·
√
n ·Q2

)
= O

(√(
n

n/2

)(
n/2

n/4

)(
n/4

αn/4

)
· n1.5

)
.

The complexity for the fourth (that is the final) QMax is

O
(√

n2 ·Q3

)
= O

(√(
n

n/2

)(
n/2

n/4

)(
n/4

αn/4

)
· n2.5

)
because the searching space size is n2.

So, the total complexity of Step 2 is

O

(√(
n

n/2

)(
n/2

n/4

)(
n/4

αn/4

)
· n2.5

)
= O(n2.51.728n).
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The complexity of ConstructSuperstringByPath is O(L).

We invoke RemovingDublicatesAndSubstrings, ConstructTheGraph, Step 1, Step

2 and ConstructSuperstringByPath sequentially. Therefore, the total complexity is the

sum of complexities for these steps. So, the total complexity is

O
(
n
√
L log2 L log n+ L+ n1.5

√
L+ n31.728n + n2.51.728n + L

)
= O

(
n31.728n + L+ n1.5

√
L+ n

√
L log2 L log n

)
= Õ

(
n31.728n + L+ n1.5

√
L
)
.

Step 2, RemovingDublicatesAndSubstrings and ConstructTheGraph have error

probability. Each of them has at most constant error probability. Using repetition, we can

achieve at most 0.1 error probability for each of the procedures and at most 0.3 for the whole

algorithm.

Constructing Graph in the Case of Random Strings

In this Section, we discuss an alternative implementation of ConstructTheGraph proce-

dure that is ConstructTheGraph2(S) that constructs the graph G = (V,E) by S. For

the algorithm we need a quantum procedure AllOnesSearch(i, I, r) that

• accepts an index of a string i ∈ {1, . . . , n}, a set of indexes of strings I ⊂ {1, . . . , n},
and an index of a symbol from a string r ∈ {1, . . . , |si|}.

• returns a set of indexes I ′ ⊂ I such that for any j ∈ I ′ we have si[n− r + 1] = sj [r].

The function is based on Grover’s search algorithm [30, 22] and has O
(√
|I| · |I ′|

)
complexity.

The procedure and analysis are presented in [52].

The main idea of the algorithm is the following.

• Step 1. Initially, we assign w(vi, vj)← 0 for each i, j ∈ {1, . . . , n}.

• Step 2. We consider all strings si, for i ∈ {1, . . . , n}. For each string si we start from

I ← {1, . . . , n}\{i}, and r ← 1. We do Step 3. until I = ∅.

• Step 3. For i ∈ {1, . . . , n}, I ⊂ {1, . . . , n}, and r ∈ {1, . . . , |si|} we invoke I ′ ←
AllOnesSearch(i, I, r). Then, we update w(vi, vj) ← w(vi, vj) + 1 for each j ∈ I ′.
After that, if I ′ 6= ∅ we repeat Step 3 for I ← I ′, and r ← r+ 1. If I ′ = ∅ then we stop

the process for the current si.

The implementation of the procedure is presented in Algorithm 7. The complexity of the

procedure is discussed in Lemma 5.

The procedure has good complexity in the case of si are random.

Lemma 5 Assume that the alphabet Σ has order |Σ| = C and all strings si are random. The

ConstructTheGraph2(S) procedure constructs the graph with O(n2·C
1/2

C−1 ) query complexity

on average and the error probability at most 0.1.
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Algorithm 7 Implementation of ConstructTheGraph2(S) for S = (s1, . . . , sn).

V = (v1, . . . , vn)
for i ∈ {1, . . . , n} do

for j ∈ {1, . . . , n} do
if i 6= j then

w(vi, vj)← 0
end if

end for
end for
for i ∈ {1, . . . , n} do
I ← {1, . . . , n}\{i}
r ← 1
I ← AllOnesSearch(i, I, r)
while I ′ 6= ∅ do

for j ∈ I do
w(vi, vj)← w(vi, vj) + 1

end for
I ← AllOnesSearch(i, I, r)
r ← r + 1

end while
end for
return (V,E)

Proof: We use the All Ones Search Problem to search all k ∈ I such that si[n−r+1] = sk[r]

and the complexity of it is O
(√
|I| · |I ′|

)
, where |I|, |I ′| ≤ n − 1. In this case, we have

m = |I| with. Since the alphabet Σ has order C and all strings si are random, the output

of AllOnesSearch(i, I, r) has order 1
C · |I| on average. Therefore, the total complexity of

constructing the graph is

n ·
L∑
k=1

O

(√
1

C
· n− 1

Ck−1
· n− 1

Ck−1

)
= O

(
n2 · C

1/2

C − 1

)

The complexity of the whole algorithm in that case is presented in the next Corollary

Corollary 2 Assume that the alphabet Σ has order |Σ| = C and all strings si are random.

Algorithm 6 with this assumption solves SCS(S) with

O

(
n31.728n + n2 · C

1/2

C − 1
+ L+ n

√
L log2 L log n

)
= Õ

(
n31.728n + n2 · C

1/2

C − 1
+ L+ n

√
L

)
query complexity in avarage and error probability at most 1/3, where C. In the case of

C = const, the query complexity is

O
(
n31.728n + n

√
L log2 L log n+ L

)
= Õ

(
n31.728n + L+ n

√
L
)
.

Proof: Due to Lemma 5, the complexity of graph constructing is O(n2 · C
1/2

C−1 ). The rest part

is the same as in Theorem 4. So, we obtain the required complexity. The second claim follows
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from O(n2 · C
1/2

C−1 ) = O(n2) = O(n31.728n) if C = const.

5 The Text Assembling Problem

The algorithm is a modification of the algorithm from [49]. Our algorithm has better complex-

ity compared to the existing one. Here we present an almost full description of the algorithm

for completeness of the presentation.

In this section, we use a quantum subroutine for comparing two strings u and v in the

lexicographical order. Let us denote it QCompare(u, v). It is based on the First One search

algorithm [26, 52, 58, 59, 35] that is a modification of Grover’s search algorithm [30, 22]. The

procedure in different forms was discussed in several papers [18, 38, 9, 43, 35, 51, 54]. The

main property of the subroutine is presented in the following lemma.

Lemma 6 ([43]) The quantum algorithm QCompare(u, v) compares strings u and v in the

lexicographical order with O(
√

min (|u|, |v|)) query complexity and the error probability is at

most 0.1.

Let us present a quantum algorithm for the TAO(t, S) problem. Let longi be an index of the

longest string from S that starts in the position i of the string t, where 1 ≤ i ≤ m. Formally,

longi = j if sj is the longest string from S such that t[i, i + |sj | − 1] = sj . Let longi = −1

if there is no such string sj . If we construct the array long = (long1, . . . , longm), then we

can construct Q = (q1, . . . , qr) and I = (i1, . . . , ir) with O(m) query complexity. Note that Q

and I arrays are a solution to the problem TAO(t, S). A procedure ConstructQI(long) that

constructs Q and I by long is presented in Appendix B. If there is no a (Q, I) decomposition

of t, then the procedure returns NULL. Let us discuss how to construct the array long.

Step 1. We start from constructing a suffix array suf by the string t. After that, we

present an array a = (a1, . . . , am) such that ai = (leni, indi), and ai corresponds to sufi. We

compute values leni and indi on the next steps. Here leni is the length of the longest string

sj that is a prefix of the suffix t[sufi, n] and indi is its index. Before processing all strings we

initialize the values ai by (0,−1) that are neutral values for our future operations.

Step 2. We construct a segment tree st for the array a such that a node of the tree stores

the maximum of leni for i belonging to the node’s segment.

Step 3. We process sj , for each j ∈ {1, . . . , n}. We compute the minimal index low and

the maximal index high such that each suffix t[sufi, n] has sj as a prefix for low ≤ i ≤ high.

Suffixes in the suffix array are sorted, therefore, all target suffixes are situated sequentially.

Hence, we can use the Binary search algorithm for computing low and high. The QCompare

subroutine from Lemma 6 is used as a string comparator. We present the implementation of

the step in Appendix C as SearchSegment(sj) subroutine. It returns the pair (low, high),

or (NULL,NULL) if no suffix of t contains sj as a prefix.

Step 4. We update nodes of the segment tree that correspond to elements of a in range

[low, high] by a pair (|sj |, j).
We repeat Steps 3 and 4 for each string from S. After that, we finish the construction of

a by application of push operation for the segment tree.

Step 5. We can construct long by a and suf . If ai = (leni, indi), then we assign

longsufi ← indi. We can do it because of the definitions of long, sufi, leni, and indi.
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The whole algorithm is presented as Algorithm 8, and its complexity is discussed in The-

orem 2.

Algorithm 8 The quantum algorithm for the text t constructing from a dictionary S problem

suf ← ConstructSuffixArray(t)
a← [(0,−1), . . . , (0,−1)] . Initialization by 0-array
st← ConstructSegmentTree(a)
for j ∈ {1, . . . ,m} do

(low, high)← SearchSegment(sj)
Update(st, low, high, (|sj |, j))

end for
Push(st)
for i ∈ {1, . . . , n} do

(len, ind)← Request(st, i)
longsufi ← ind

end for
(Q, I)← ConstructQI(long)
return (Q, I)

Theorem 2 Algorithm 8 solves TAO(t, S) problem with O
(
m+ logm ·

√
nL
)

query com-

plexity and the error probability at most 1/3.

Proof: The correctness of the algorithm follows from the construction. Due to results

from Section 3, the query complexity for each of procedures ConstructSuffixArray,

ConstructSegmentTree, and Push are O(m). Construction of the array long, and con-

struction of ConstructQI have O(m) query complexity because each of them contains just

one linear loop.

Due to Lemma 6, the query complexity of QCompare for sj is O(
√
|sj |). The procedure

QSearchSegment invokes QCompare procedure O(logm) times for each string s1, . . . , sn.

So, the complexity of processing all strings from S is O
(

logm ·
∑n
j=1

√
|sj |
)

.

Let us use the Cauchy-Bunyakovsky-Schwarz inequality and L =
∑n
j=1 |sj | equality for

simplifying the statement.

≤ O

logm ·

√√√√n

n∑
j=1

|sj |

 = O
(

logm ·
√
n · L

)
.

The total query complexity is

O
(
m+m+m+m+m+ logm ·

√
nL
)

= O
(
m+ logm ·

√
nL
)

Let us discuss the error probability. Only the QCompare subroutine can have an error.

We invoke it several times. The subroutine’s error probability is at most 0.1. The error can

accumulate and reach a probability close to 1. At the same time, QCompare is the First One

Search algorithm for a specific search function. Due to [52, 56], we can modify the sequential

invocations of the First One Search algorithm to an algorithm that has the error probability

at most 1/3 without complexity changing.
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6 Conclusion

We present a quantum algorithm for the SSP or SCS problem. It works faster than existing

classical algorithms. At the same time, there are faster classical algorithms in the case of

restricted length of strings [28, 29]. It is interesting to explore quantum algorithms for such

a restriction. Can quantum algorithms be better than classical counterparts in this case?

Another open question is approximating algorithms for the problem. As we mentioned before,

such algorithms are more useful in practice. So, it is interesting to investigate quantum

algorithms that can be applied to practical cases.

In the case of the Text Assemble problem, upper and lower bounds are far apart. It is

interesting to find a better quantum lower bound or improve the upper bound.

For both problems, an open question is developing a quantum algorithm for the case with

possible typos.
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25. C. Dürr and P. Høyer. A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014,
1996.
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Appendix A An Implementation of Segment Tree’s Operations

Assume that the following elements are associated with each node v of the segment tree:

• g(v) is the target value for a segment tree. If it is not assigned, then g(v) = −∞

• d(v) is an additional value.

• l(v) is the left border of the segment that is associated with the node v.

• r(v) is the right border of the segment that is associated with the node v.

• LeftC(v) is the left child of the node.

• RightC(v) is the right child of the node

If a node v is a leaf, then LeftC(v) = RightC(v) = NULL. Let st be associated with the

root of the tree.

Let us present Algorithm 9 for the Update operation. It is a recursive procedure.

Algorithm 9 Update(v, i, j, x, y). Update [i, j] segment by (x, y) for a segment tree with a
root v
if l(v) = i and r(v) = j and g(v) < x then

g(v)← x, d(v)← y
else

m← r(LeftC(v))
if m ≥ j then

Update(LeftC(v), i, j, x, y)
else

if m < i then
Update(RightC(v), i, j, x, y)

else
Update(LeftC(v), i,m, x, y)
Update(RightC(v),m+ 1, j, x, y)

end if
end if

end if

Let us present the implementation for the Push operation in Algorithm 10 and 11. It is a

recursive procedure.

Algorithm 10 Push(v). Push operation a segment tree with a root v

Push Base(v,−1,−1)

Appendix B The Implementation of ConstructQI(long) Procedure for TAO(S, t)

Problem

Algorithm 12 contains the implementation.
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Algorithm 11 Push Base(v, g, d). Push operation for a segment tree with a root v and
assigning a values g and d

if v 6= NULL then
if g(v) > g then

g ← g(v), d← d(v)
end if
Push Base(LeftC(v), g, d)
Push Base(RightC(v), g, d)

end if

Appendix C The Implementation of SearchSegment(u) Procedure for TAO(S) Prob-

lem

Algorithm 13 contains the implementation.

Appendix D The Proof of Lemma 2

Lemma 2 The path P that visits all the nodes of G exactly once and has the maximal

possible weight corresponds to the shortest common superstring t for the sequence S.

Proof: Firstly, let us show that a path that visits all nodes of G corresponds to a superstring.

Assume that we have a path P . We collect a string t by P according to ConstructSuper-

stringByPath procedure. So, we add a string corresponding to each node at least once.

Therefore, t contains all strings at least once.

Secondly, let us compute the length of the string t collected by P = (vi1 , . . . , vi`). The

first node from the string adds |si1 | symbols to t. Each other node vij adds |sij | −w(ij−1, ij)

symbols. Therefore, the total length is

|si1 |+ |si2 | −w(i1, i2) + · · ·+ |si` | −w(i`−1, i`) =
∑̀
j=1

|sij | −
∑̀
j=2

w(ij−1, ij) =
∑̀
j=1

|sij | −w(P ).

Note that if P visits each node exactly once, then
∑`
j=1 |sij | =

∑n
j=1 |sj | = L, and the length

of the string t is L− w(P ).

Remind that according to the ConstructTheGraph procedure, the graph G is a full

graph. Let P ′ = (vi1 , . . . vi`) be a path that visits a node vir at least twice. In that case, we

remove the node vir from the path. The new path P ′′ = (vi1 , . . . , vir−1 , vir+1 , . . . , vi`) still

valid because the graph is full and any pair of nodes are connected. Let us compare lengths

m′ and m′′ of two superstrings that are collected by P ′ and P ′′, respectively.

The connection between vir−1 and vir+1 in P ′′ gives us a string u′′ which a prefix is

sir−1 and a suffix is sir+1 . The length of u′′ is minimal possible because w(ir−1, ir+1) is the

maximal overlap. The connection between vir−1 and vir+1 via vir in P ′ gives us a string u′

which a prefix is sir−1 and a suffix is sir+1 . Definitely, |u′| ≥ |u′′|. Therefore, m′ ≥ m′′. So,

superstrings that are collected by paths visiting each node exactly once are shorter than paths

that visit some node at least twice.

Thirdly, let us show that any path P ′′ that does not visit all nodes and corresponds

to a superstring can be extended to a path that visits all nodes such that the new collected

superstring is not longer than the original one. Assume that we have a path P ′′ = (vi1 , . . . , vi`)
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Algorithm 12 ConstructQI(long). Constructing Q and I from long

d← 1
id ← long1
qd ← 1
left← 2
right← |si1 |+ 1
while qd < n do

max i← left
max q ← −1
if longleft > 0 then

max q ← left+ |slongleft | − 1
end if
for j ∈ {left+ 1, . . . , right} do

if longj > 0 and j + |slongj | − 1 > max q then
max i← j
max q ← j + |slongj | − 1

end if
end for
if max q = −1 or max q < right then

Break the While loop and return NULL . We cannot construct another part of
the string t

end if
d← d+ 1
id ← longmax i
qd ← max i
left← right+ 1
right← max q + 1

end while
return (Q, I)

that does not visit vr, end the corresponding string t is a superstring. Therefore, t contains sr

as a substring too. So, there is vij and vij+1 such that the string u that is collected from sij

and sij+1 by removing their overlapping has sr as a substring. Note that it cannot be three

sequential nodes from the path P ′′ because otherwise, the middle string should be a substring

of sr. At the same time, it is an impossible situation because we remove all duplicates and

substrings in the first step of our algorithm. Assume that sr starts in u in position js and

finishes in position jf . Therefore, u[1, jf ] has sij as a prefix and sr as a suffix. At the same

time, u[js, |u|] has sr as a prefix and sij+1 as a suffix.

Let us update P ′′ by inserting vr between vij and vij+1. P ′′′ = (vi1 , . . . , vij , vr, vij+1, . . . , v
i`).

Let us look to the string u′ that is collected from sij , sr, and sij+1 according to connection

of vij , vr, and vij+1 in P ′′′. Assume that sr starts in u′ in position j′s and finishes in position

j′f . Therefore, u′[1, j′f ] has si
′
j as a prefix and sr as a suffix; and it is the shortest possible

such string. At the same time, u′[j′s, |u′|] has sr as a prefix and sij+1 as a suffix; and it is the

shortest possible such string.
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Hence, |u′[1, j′f ]| ≤ |u[1, jf ]|, and |u′[j′s, |u′|]| ≤ |u[js, |u|]|. At the same time,

|u| = |u[1, jf ]|+ |u[js, |u|]| − |sr| ≥ |u′[1, j′f ]|+ |u′[j′s, |u|]| − |sr| = |u′|

We can see that other parts of P ′′′ and P ′′ are the same. Therefore, strings t′′′ and t′′

collected by these paths are such that |t′′′| ≤ |t′′|. Hence, any path that does not visit all

nodes and corresponds to a superstring can be completed by the rest nodes and the new

corresponding superstring does not become longer. Therefore, we can search the required

path only among paths that visit all nodes exactly once.

Finally, let us show that if P has the maximal weight and visits each node exactly once,

then it is the shortest superstring. Assume that we have another path P ′ that visits each node

exactly once but the weight w(P ′) < w(P ). Let m and m′ be the lengths of the superstrings

collected by P and P ′, respectively. Then, m′ = L−w(P ′) > L−w(P ) = m′. Therefore, the

superstring collected by P is the shortest superstring.

Appendix E The implementation of the function GetSymbol(i,j)

For access to s̃i, we do not need to concatenate these strings. It is enough to imple-

ment GetSymbol(i, j) function that returns j-th symbol of s̃i. The index of the string

i ∈ {1, . . . , n}, and the index of the symbol j ∈ {1, . . . , |si+1|+ · · ·+ |sn|+ i−2}. The function

has O(1) query complexity. The implementation of the function is based on Binary search

and has O(log n) time complexity and O(1) query complexity, it is presented in Algorithm 14.

The subroutine requires precalculated array start such that start[i] = |s1| + · · · + |si−1| + 1

for i ∈ {1, . . . , n}, and start[1] = 1. It can be computed in O(n) query and time complexity

using formula start[i] = start[i− 1] + |si−1| for i ∈ {2, . . . , n}. It can be done once before the

whole algorithm.
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Algorithm 13 SearchSegment(u). Searching for an indexes segment of suffixes for t that
have u as a prefix

low ← NULL, high← NULL
l← 1
r ← n
Found← False
while Found = False and l ≤ r do

mid← (l + r)/2
pref ← t[sufmid,min(n, sufmid + |u| − 1)]
pref1← t[sufmid−1,min(n, sufmid−1 + |u| − 1)]
compareRes← QCompare(pref, u), compareRes1← QCompare(pref1, u)
if compareRes = 0 and compareRes1 = −1 then

Found← true
low ← mid

end if
if compareRes < 0 then

l← mid+ 1
end if
if compareRes ≥ 0 then

r ← mid− 1
end if

end while
if Found = True then

l← 1
r ← n
Found← False
while Found = False and l ≤ r do

mid← (l + r)/2
pref ← t[sufmid,min(n, sufmid + |u| − 1)]
pref1← t[sufmid+1,min(n, sufmid+1 + |u| − 1)]
compareRes← QCompare(pref, u), compareRes1← QCompare(pref1, u)
if compareRes = 0 and compareRes1 = +1 then

Found← true
high← mid

end if
if compareRes ≤ 0 then

l← mid+ 1
end if
if compareRes > 0 then

r ← mid− 1
end if

end while
end if
return (low, high)
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Algorithm 14 Implementation of GetSymbol(i, j) for i ∈ {1, . . . , n}, j ∈ {1, . . . , |si+1| +
· · ·+ |sn|+ i− 2}.
j ← j − 1 + start[i+ 1] + i. We update all symbol indexes by indexes in the concatenation
of all strings from S via $-separator.
left← i+ 1, right← n
symbol← NULL . The symbol is unknown at the moment
while left ≤ right do

mid← b(left+ right)/2c
jm← start[mid] + (mid− 1) . The index of the first symbol of smid

if j ≥ jm and j < jm+ |smid| then . j is inside smid

j′ ← j − jm+ 1
symbol← smidj′

stop the while loop.
end if
if j = jm+ |smid| then . the j-th symbol is separator

symbol← $
stop the while loop.

end if
if j < jm then

right← mid− 1
else

left← mid+ 1
end if

end while
return symbol


