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In the current era, known as Noisy Intermediate-Scale Quantum (NISQ), encoding large

amounts of data in the quantum devices is challenging and the impact of noise signifi-
cantly affects the quality of the obtained results. A viable approach for the execution of

quantum classification algorithms is the introduction of a well-known machine learning
paradigm, namely, the ensemble methods. Indeed, the ensembles combine multiple inter-

nal classifiers, which are characterized by compact sizes due to the smaller data subsets

used for training, to achieve more accurate and robust prediction performance. In this
way, it is possible to reduce the qubit requirements with respect to a single larger clas-

sifier while achieving comparable or improved performance. In this work, we present an

implementation and an extensive empirical evaluation of ensembles of quantum instance-
based classifiers for binary classification, with the purpose of providing insights into their

effectiveness, limitations, and potential for enhancing the performance of basic quantum

models. In particular, three classical ensemble methods and three quantum instance-
based classifiers have been taken into account here. Hence, the scheme that has been

implemented (in Python) has a hybrid nature. The results (obtained on real-world

datasets) have shown an accuracy advantage for the ensemble techniques with respect to
the single quantum classifiers, and also an improvement in robustness. In fact, ensembles

have proven effective not only in mitigating unsuitable data normalizations but also in

reducing the impact of noise on quantum classifiers, enhancing their stability.

Keywords: quantum computing, quantum machine learning, ensemble methods, quan-
tum classifiers, binary classification

1 Introduction

Quantum machine learning (QML) is a recent field of research, which aims at developing

quantum algorithms for solving machine learning problems in a more efficient way than the

classical counterparts [1]. If a sufficient number of fully connected qubits were available, a

quantum advantage (with respect to classical supercomputers) could be achieved on different

tasks and practical problems could be tackled effectively. However, the current era, known as

Noisy Intermediate-Scale Quantum (NISQ) [2], is characterised by noisy devices with limited

numbers of qubits. Additionally, in gate-based quantum devices, the impact of noise increases

with the circuit’s depth and size. As a consequence, encoding large amounts of data turns

out to be challenging, and the quality of the results obtained is significantly affected by noise.

To execute quantum algorithms on the current architectures, the size of the circuits must be

reduced. In this way, despite the current limitations, practical problems could be addressed,

making progress towards solving real-world challenges using quantum computing technologies.

Ensemble methods are a widely used machine learning technique that consists in combining

the predictions of multiple models [3]. This approach aims at enhancing prediction accuracy

and stability by exploiting model diversity. In the context of quantum computation, classical

ensembles represent an effective way to reduce the computational requirements. Indeed, the

internal models are typically characterized by compact sizes due to the smaller data subsets

used for training. In practice, ensemble methods allow executing quantum algorithms on

NISQ devices thanks to a more efficient resource usage with respect to single larger models

(the quantum circuits involved are typically smaller).

Concerning hybrid schemes, Incudini et al. [11] have proposed and evaluated the perfor-

mance of classical ensembles (bagging and boosting) of quantum neural networks for regression

and classification tasks. In their work, they have shown the ensemble methods’ ability of en-

hancing the performance of the base models while limiting the circuit size via an attribute
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bagging technique (indeed, for quantum neural networks, the circuit size is not affected by

the number of training samples). However, their focus lies on trainable models. In order to

investigate the behaviour of the ensemble methods in a cleaner context, where the variability

is given only by the data instance sampling procedure, instance-based classification models

and no attribute bagging technique are considered here. In this way, it is possible to better

understand the effect of ensemble methods on the performance of the base models, and also

their capability of mitigating noise and measurement sampling variance.

Quantum ensemble methods have been also developed. For instance, Schuld and Petruc-

cione [4] and Abbas et al. [5] have proposed quantum ensemble classifiers based on Bayesian

Model Averaging (BMA). The ensembles in question exploit non-trainable classifiers, under

the assumption that a large ensemble of weak classifiers can achieve good performance. In-

stead, Araujo and da Silva have presented a quantum ensemble of trainable classifiers [6].

In particular, they have considered a superposition of quantum classifiers, with the classi-

fiers being quantum neural networks. Macalauso et al. have proposed a quantum ensemble

framework [7] that is based on bagging and is characterised by an exponential growth of

the ensemble size at the price of a linear increase in the circuit depth. Regarding the work

by Windridge and Nagarajan [8], a quantum-SVM-based attribute bootstrap aggregation is

presented. In practice, a superposition of quantum decision hyperplanes is used to perform

attribute selection. Eventually, Qin et al. [9] and Zhang and Wang [10] have proposed hybrid

techniques to efficiently combine quantum classification algorithms, showing how the par-

allel combination of multiple variational quantum classifiers can outperform state-of-the-art

classification methods.

In this work, we present an implementation and the empirical evaluation of ensembles of

quantum instance-based classifiers. In detail, the scheme is hybrid, with classical ensemble

methods and quantum classification algorithms. Regarding the ensemble methods, bootstrap

[12], boosting [13], and stacking [14] have been considered. Concerning the quantum classifiers,

three non-trainable classifiers have been considered, namely, a quantum cosine classifier [15], a

quantum distance classifier [16], and a quantum k-nearest neighbors (quantum k-NN) classifier

[17, 18]. The quantum algorithms employed in this work, like many other quantum machine

learning algorithms, require the existence of a quantum random access memory (QRAM) [19]

to achieve a speedup with respect to classical computation. Working prototypes of QRAMs

have not been developed yet. However, this work does not focus on the potential quantum

time advantage, but on the empirical evaluation of the considered scheme in terms of accuracy.

To this end, the methods have been evaluated on a binary classification task on real-world

datasets. The results have shown an accuracy advantage with respect to single classifiers

and also an improvement in robustness. Indeed, the ensembles have shown the capability of

mitigating both unsuitable data normalizations and circuit noise.

The article is structured as follows: Section 2 provides some background information;

Section 3 introduces the hybrid scheme and presents the implementation details; Section 4

deals with the experiments performed and the results obtained; Section 5 concludes the work.

2 Background

In this section, some background information about quantum information and quantum ma-

chine learning is provided. Then, the algorithms considered in this work, which include
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classical ensemble methods and quantum classifiers, are introduced.

2.1 Quantum machine learning

Quantum computing leverages quantum mechanical principles like superposition and entan-

glement for computation. In 2013, exploiting quantum computations, Lloyd, Mohseni, and

Rebentrost demonstrated an exponential speedup over classical clustering algorithms [20],

sparking the interest in Quantum Machine Learning (QML). In quantum computing, qubits

serve as the fundamental unit of information, analogously to classical bits. More precisely, a

qubit is any quantum system that can be described in a 2-dimensional Hilbert space. The

quantum states are in bijective correspondence with the projective rays in the Hilbert space.

Moreover, a qubit’s state, represented by a unit vector in C2, can be in a superposition of its

basis states |0⟩ and |1⟩. In the Dirac notation, this is written as

|ψ⟩ = α |0⟩+ β |1⟩ , (1)

where α, β ∈ C are called amplitudes and must satisfy the constraint |α|2 + |β|2 = 1. Actu-

ally, the amplitudes values cannot be directly observed. In fact, when a qubit is measured,

one of the basis states (|0⟩ or |1⟩) is obtained, with probabilities |α|2 and |β|2, respectively.
In practice, by operating on composite systems of qubits (registers), characterised by state

superposition, it is possible to perform parallel operations, and the presence of quantum

entanglement is the key enabling quantum advantages with respect to classical computations.

In quantum circuits, which represent the most common quantum computation model, the

computation is performed by means of quantum gates, which implement unitary operations.

In particular, there exist universal sets of quantum gates, in the sense that any n-qubit

quantum gate can be implemented up to arbitrary precision by using gates taken from these

sets. For example, the set {H, Pϕ, CNOT}, where H is the Hadamard gate, Pϕ is the phase

shift gate, and CNOT is the controlled-NOT gate, is universal [21].

A non-trivial problem in quantum computing (still unsolved) is how to encode data into

quantum states. In particular, there are two main strategies: basis encoding and amplitude

encoding. In basis encoding, data is encoded into the computational basis as classical bits.

Hence, given a binary string x = (b1, ..., bn), with bi ∈ {0, 1}, x is encoded as |x⟩ =
⊗n

i=1 |bi⟩.
In addition, by exploiting superposition, it is possible to represent a dataset X = {x1, ..., xm}
as |X⟩ = 1√

m

∑m
i=1 |xi⟩. Instead, in amplitude encoding, data is stored into the amplitudes of

quantum states. Given a normalized data vector x, i.e., a vector x ∈ Cd such that ||x|| = 1, it

is encoded as |x⟩ =
∑d

i=1 xi |i⟩. On the one hand, within the amplitude encoding framework,

d-dimensional data vectors can be encoded in log(d) qubits. On the other hand, amplitudes

are not directly observable; therefore, a repeated sampling of the qubits state is necessary in

order to estimate the amplitudes values.

As stated previously, in QML, quantum computing procedures are exploited to improve

machine learning algorithms. An important procedure is the so-called SWAP test [22], which

allows estimating the dot product of two data vectors. Specifically, the corresponding quan-

tum circuit, which is also the basis of two quantum classifiers employed in this work, is the

following:
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|0⟩ H H

|ψ⟩

|ϕ⟩

Given the quantum states |ψ⟩ and |ϕ⟩ (that can be also n-qubit states), the probability of

measuring 0 on the ancillary qubit after performing the SWAP test is P(0) = 1
2 + 1

2 | ⟨ψ|ϕ⟩ |
2.

Hence, by executing the circuit multiple times, it is possible to estimate the squared inner

product of the quantum states, which corresponds to the squared dot product of the data

vectors encoded in the amplitudes of |ψ⟩ and |ϕ⟩. In detail, in order to obtain an estimate up

to an error ϵ, the number of circuit repetitions required is O( 1
ϵ2 ).

Eventually, many QML algorithms, including one classifier used in this work, assume the

existence of a quantum random access memory [19] for an efficient state preparation. The

idea is to query a superposition of addresses to retrieve a superposition of N = 2n memory

cells in time O(n). Some physical proposals have been suggested, but there is no working

implementation yet and there are still doubts on its actual feasibility.

2.2 Ensemble techniques

Ensemble learning is a machine learning paradigm based on the intuition that combining

multiple models is more effective than using a single model [3]. Indeed, weak base models can

suffer from high bias or high variance, but their combination can produce a strong and more

robust learner with good performance. The ensemble techniques taken into account in this

work are bootstrap, boosting and stacking.

2.2.1 Bootstrap aggregating

The bootstrap aggregating algorithm, also known as bagging, is a simple ensemble scheme

based on the bootstrap sampling procedure proposed by Breiman [12]. In practice, homo-

geneous internal models are independently trained on sets obtained from the training set by

random sampling with replacement. This means that an element can be sampled multiple

times, and subsequent samplings are independent (i.i.d. samples). For a regression task, the

predicted value is the average of the models outputs. Instead, for a classification task, a

majority voting scheme is used. In particular, in the case of a binary classification task with

labels in {−1,+1}, the majority voting can be expressed as

y(x) = sign

(
M∑
i=1

mi(x)

)
, (2)

where M is the number of internal models, and mi is the i-th internal model. By introducing

diversity in the data through the bootstrapping process, bagging decreases the variance,

improving the performance and the robustness. In addition, it is a scalable and parallelizable

algorithm. Indeed, both the ensemble building (the sampling of the training instances for the

classifiers is independent) and the prediction step can be parallelized.



186 Ensembles of quantum classifiers

2.2.2 Boosting

Boosting is a homogeneous ensemble model based on an iterative training procedure. In detail,

at each iteration, a weak classifier is trained on data sampled from the training set according

to a distribution that is influenced by the performance of the previous iteration classifiers.

The boosting algorithm used in this work is one of the most famous ones, namely, AdaBoost

[13]. In AdaBoost, which stands for adaptive boosting, a weak classifier is trained on a subset

of the training set and used to predict the class (let us restrict to classification) of all training

samples. The classification errors are then used to increase the weight of the misclassified

instances for the next iteration sampling and to compute a weight for the classifier inside the

final aggregated model. Indeed, the aggregation strategy is a weighted average of the internal

models. In particular, for a binary classification task with labels in {−1,+1}, the ensemble

prediction can be written as

y(x) = sign

(
M∑
i=1

αimi(x)

)
, (3)

where αi is the weight of the i-th internal model mi. Boosting decreases the bias, while

also reducing the variance. Nevertheless, the training procedure, which is iterative, cannot be

parallelized. Instead, at prediction time, the output of the internal classifiers can be computed

in parallel.

2.2.3 Stacking

Stacking is a heterogeneous ensemble technique [14]. In particular, different internal models

are trained and evaluated on the training set using a k-fold cross validation technique, obtain-

ing a prediction for every internal classifier - training point pair. These predictions are then

used as the training set of a meta-classifier that combines the output of the internal classifiers

into a final prediction. Specifically, the internal classifiers are trained on the full training set,

and the stacking classifier prediction can be expressed as

y(x) = mmeta(m1(x), ...,mM (x)), (4)

where mmeta is the meta-classifier model. The main advantage of stacking is that, by com-

bining diverse classifiers based on different assumptions, the performance with respect to the

single classifiers improve. In addition, the internal classifiers can be trained and executed in

parallel.

2.3 Quantum classifiers

The quantum classification algorithms considered are a quantum cosine classifier, a quantum

distance classifier, and a quantum k-nearest neighbors classifier. Their details are provided

below.

2.3.1 Quantum cosine classifier

The quantum cosine classifier proposed by Pastorello and Blanzieri [15] is an algorithm for

binary classification based on the cosine similarity of data vectors. In particular, the classifi-
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cation function implemented by the classifier is the following:

y(x) = sign

(
N−1∑
i=0

yi cos (xi, x)

)
, (5)

where N is the number of training samples, xi is the feature vector of the i-th sample,

yi ∈ {−1,+1} is the corresponding label, and

cos (x, y) =
x · y

∥x∥∥y∥
. (6)

Concerning the data encoding scheme, the classifier uses the amplitude encoding for the

feature vectors xi, which must be unit-norm normalized, and the basis encoding for the binary

labels yi, which are mapped to the domain {1, 0} according to

li =
1− yi

2
. (7)

The initial state is defined as

|Ψ⟩ = 1√
2
(|ψx⟩ |0⟩+ |ψ⟩ |1⟩) ∈ Hn ⊗Hd ⊗Hl ⊗Ha, (8)

where

|ψx⟩ =
1√
N

N−1∑
i=0

|i⟩ |xi⟩ |li⟩ ∈ Hn ⊗Hd ⊗Hl, and

|ψ⟩ = 1√
N

N−1∑
i=0

|i⟩ |x⟩ |−⟩ ∈ Hn ⊗Hd ⊗Hl.

In detail, the classifier assumes the existence of a QRAM in order to have an efficient prepa-

ration of the initial state. Then, a SWAP test on the states |+⟩ and |Ψ⟩ is performed, and

the probability of measuring 1 on the SWAP test ancillary qubit turns out to be

P(1) =
1

4
(1− ⟨ψx|ψ⟩), (9)

with

⟨ψx|ψ⟩ =
1√
2N

N−1∑
i=0

li cos (xi, x). (10)

Eventually, the predicted label is given by

y(x) = sign(1− 4P(1)). (11)

In practice, the quantum circuit requires 3 qubits for the SWAP test, ⌈log2N⌉ qubits for

the index register (Hn), ⌈log2D⌉ qubits for the feature register (Hd, with D being the number

of features) and 1 qubit for the binary labels (Hl). If a QRAM is available, the algorithm has

a time complexity of O(log(ND)) and a space complexity of O(log(ND)) qubits.
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2.3.2 Quantum distance classifier

The quantum distance classifier proposed by Schuld et al. [16] is a binary classification

algorithm based on the squared euclidean distance of feature vectors. In this work, a slightly

modified version is considered. Specifically, the classification function implemented by the

classifier is defined as

y(x) = sign

(
N−1∑
i=0

yi(1−
1

4
||xi − x||2)

)
, (12)

where N is the number of training samples, xi is the feature vector of the i-th sample, and

yi ∈ {−1,+1} is the corresponding label.

As in the quantum cosine classifier, the amplitude encoding is used for the features vector,

the basis encoding is used for the binary labels (the mapping is given by Eq. (7)), and the

presence of a QRAM is assumed. The initial state of the circuit is defined as

|Ψ⟩ = 1√
2N

N−1∑
i=0

|i⟩ (|0⟩ |x⟩+ |1⟩ |xi⟩) |li⟩ ∈ Hn ⊗Ha ⊗Hd ⊗Hl. (13)

In particular, the quantum circuit consists of a Hadamard gate and two qubits measurements,

with the second one being a conditional measurement; thus, the circuit complexity is constant.

The probability of obtaining k ∈ {0, 1} in the second measurement, which is performed on

the label qubit, is equal to

P(k) =
1

4Np0

∑
i:li=k

||x+ xi||2, (14)

where p0 is the probability of obtaining 0 in the first measurement. Since the data vectors

are characterised by unit norm, the following relationship holds:

1

4N

∑
i

||x+ xi||2 =
1

N

∑
i

(1− 1

4
||x− xi||2). (15)

Hence, the predicted label is given by

y(x) = sign

(
P(0|0)− 1

2

)
. (16)

Basically, the quantum circuit needs 1 ancillary qubit (Ha), ⌈log2N⌉ qubits for the index

register (Hn), ⌈log2D⌉ qubits for the feature register (Hd, with D being the number of

features), and 1 qubit to encode the binary labels (Hl). Assuming the availability of a QRAM,

the algorithm has a time complexity of O(log(ND)) and a space complexity of O(log(ND))

qubits.

2.3.3 Quantum k-nearest neighbors classifier

The quantum k-nearest neighbors classifier proposed by Afham et al. [17] and Ma et al. [18]

is a quantum version of the k-nearest neighbors algorithm [23], which is one of the simplest

algorithms for multiclass classification in machine learning. In particular, the quantum k-NN

in question is based on the notion of fidelity of quantum states. Indeed, the algorithm selects
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the k nearest neighbors based on the fidelity of the states encoding the training and test

feature vectors, with the fidelity F being defined as

F (|ψ⟩ , |ϕ⟩) = | ⟨ψ|ϕ⟩ |2. (17)

More in detail, the algorithm exploits the amplitude encoding for the data features, and

the initial state is defined as

|Ψ⟩ = |0⟩ |x⟩ |ψx⟩ ∈ Ha ⊗Hd ⊗Hd ⊗Hn, (18)

where

|ψx⟩ =
1√
N

N−1∑
i=0

|xi⟩ |i⟩ ∈ Hd ⊗Hn,

N is the number of training samples, and xi is the feature vector of the i-th sample. Regarding

the quantum circuit, it consists of a SWAP test and two measurements. Specifically, the first

measurement is performed on the SWAP test ancillary qubit (Ha), while the second one is

performed on the index register |i⟩. By iterating this procedure, it is possible to estimate, for

each index i, the quantity Q(i), which is defined as

Q(i) = P(i|0)− P(i|1) = 2(Fi − ⟨F ⟩)
N(1− ⟨F ⟩2)

, (19)

where Fi is the fidelity of the quantum states |x⟩ and |xi⟩, and ⟨F ⟩ is the average value of

Fi over i. Eventually, the k nearest neighbors are retrieved by classically sorting the training

data according to Q(i), and the predicted label is obtained through a majority voting.

In practice, the circuit requires 1 ancillary qubit for the SWAP test (Ha), ⌈log2N⌉ qubits
for the index register (Hn), and 2 ⌈log2D⌉ qubits for the feature registers (Hd, with D being

the number of features). Assuming the presence of a QRAM, the circuit time complexity is

O(log(ND)) and the space complexity is O(log(ND)) qubits.

3 Ensembles of Quantum Classifiers

In this work, a hybrid scheme characterised by classical ensembles and quantum internal clas-

sifiers is employed. In practice, the quantum instance-based classifiers described in Section 2.3

are used as internal models of the ensemble methods presented in Section 2.2. A high-level

view of the interaction between classical and quantum components is shown in Figure 1. First

of all, the input data is classically processed to produce the input for the quantum models.

Then, after the quantum encoding of the classical information, the quantum circuits are run

multiple times, with final measurements, in order to obtain sufficiently precise estimates of the

output quantities. Eventually, the output of the quantum models is classically post-processed

to either carry on the training procedure or provide the final output.

The hybrid scheme allows employing quantum classification algorithms in homogeneous

and heterogeneous ensemble techniques taken from the literature. In this way, it is possible to

analyse the advantages in accuracy and robustness of using quantum classifiers in ensemble

schemes while being compatible with the hardware limitations of current architectures, which

do not allow efficient quantum implementations of ensemble techniques yet.
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Fig. 1. High-level view of the interaction between classical and quantum components in the hybrid

scheme employed.

3.1 Implementation

The hybrid scheme has been developed in Python language using Qiskit [24], the open-

source SDK provided by IBM for building and running quantum circuits either on quantum

hardware [25] or in simulation (the code is available at https://github.com/emiliantolo/

ensembles-quantum-classifiers). In this work, the high-performance Aer simulator has

been used for the execution of the algorithms. It is also worth mentioning that, although the

scheme is theoretically valid for multiclass classification tasks, the code provided here sup-

ports only binary classification. Additional details about the implementation of the models

are provided in the following.

3.1.1 Ensemble techniques

Ensemble methods have been developed form scratch, ensuring a standard implementation.

Regarding bootstrap (Section 2.2.1), the ensemble is built by sampling with replacement

N subsets of S elements each from the training set; these subsets are then used as the

training sets of the N internal quantum classifiers. Concerning boosting (Section 2.2.2), N

training iterations are performed. In detail, at each step, a classifier is trained on a subset

of S elements sampled from the training set according to the distribution determined by the

previous iterations; then, the classifier is used to predict the training set labels, allowing the

computation of the classifier weight in the ensemble and the definition of the new distribution.

It is worth mentioning that an ϵ = 1e−10 value has been added in the computation of errors,

in order to avoid divisions by zero. Eventually, for stacking, a k-fold cross validation procedure

is run on the training set for each selected internal model, obtaining a prediction for each

training instance; these predictions are then used as the training set for the meta-classifier,

while the internal models are trained on the full training set. In particular, the meta-model

used in this work takes as input not only the predicted output classes, but also the prediction

confidences of the internal models. Concerning the prediction step, it is performed according

to Eqs. (2), (3), and a variation of (4), respectively.

3.1.2 Quantum classifiers

First of all, the implementation of the quantum cosine classifier described in Section 2.3.1

has been taken from the work by Zardini et al. [26]. An example circuit for a toy dataset

is shown in Figure 2a, and additional details about the implementation can be found in the

original article.

Instead, the quantum distance classifier illustrated in Section 2.3.2 has been implemented

from scratch. An example circuit for the same toy dataset is provided in Figure 2b. In detail,

the circuit is initialized by computing and directly setting the amplitudes of all qubits except

https://github.com/emiliantolo/ensembles-quantum-classifiers
https://github.com/emiliantolo/ensembles-quantum-classifiers
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(a)

(b)

(c)

Fig. 2. Quantum circuit example for the quantum cosine classifier (a), the quantum distance

classifier (b), and the quantum k-NN classifier; the dataset and the test instance considered are
X = {([1, 0, 0, 0],−1), ([0, 1, 0, 0],−1), ([0, 0, 1, 0], 1), ([0, 0, 0, 1], 1)} and x = [1, 0, 0, 0], respectively.
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the one (q6) used to encode the training labels. Indeed, the labels are subsequently encoded in

the circuit by applying NOT (X) and multi-controlled NOT gates. Then, a Hadamard gate

(H) is applied to the ancillary qubit (q0), and the state of the ancillary and the label qubits

is measured. It is worth noting that, at the time of running the experiments, the conditional

measurement required by the algorithm was not supported by Qiskit. Hence, all the iterations

in which the outcome of the first measurement is 1 must be discarded when computing the

probability estimate. In practice, if the data is standardized, the probability of obtaining 0

is around 0.5; otherwise, it is larger than 0.5.

Concerning the quantum k-NN described in Section 2.3.3, it has also been implemented

from scratch. An example circuit for the same toy dataset is displayed in Figure 2c. In

practice, the circuit is initialized by directly setting the amplitudes of two states: the state

encoding the training set (q1-q4), and the state encoding the test instance (q5-q6). After that,

a SWAP test is applied to the features registers of the two states (q3-q4 and q5-q6), with the

ancillary qubit (q0) as control qubit. Eventually, the state of the ancillary qubit and the state

of the index register (q1-q2) are measured.

4 Empirical Evaluation

This section deals with the methods taken into account, the experimental setup used, the

datasets considered, and the results obtained.

4.1 Methods and experimental setup

The ensemble techniques and the quantum classifiers considered in this work are summarised

in Tables 1 and 1b, where quantum 3NN represents the quantum k-NN model with k = 3.

Instead, Table 1c lists all the data normalization techniques taken into account. In particular,

none corresponds to no normalization, std stands for standardization, and minmax is the so-

called min-max normalization. More in detail, the standardization of the j-th feature of the

i-th training instance in the {x1, ..., xn} training set is defined as

std(xij) =
xij − µ(x1j , ..., x

n
j )

σ(x1j , ..., x
n
j )

, (20)

where µ(x1j , ..., x
n
j ) and σ(x

1
j , ..., x

n
j ) are respectively mean and standard deviation of the j-th

feature over the training set. The corresponding min-max normalization is given by

minmax(xij) =
xij −mini=1,...,n x

i
j

maxi=1,...,n xij −mini=1,...,n xij
, (21)

where mini=1,...,n x
i
j and maxi=1,...,n x

i
j are the minimum and maximum feature values of the

j-th feature in the training set. Hence, after the standardization, the features have zero mean

and standard deviation equal to one, while, after the min-max normalization, they belong to

the [0, 1] interval (the test features are clipped to 0 or 1, if they exceed the interval edges).

All ensemble methods have been evaluated with all data normalization techniques. In

addition, bootstrap and boosting have been evaluated with all quantum classifiers, also varying

the number of internal classifiers (N) and the number of training samples per classifier (S).

Instead, for stacking, the configuration reported in Table 2 has been used.
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Table 1. Ensemble techniques (a), quantum classifiers (b), and normalization techniques (c) con-

sidered.
(a)

Ensemble techniques
bootstrap
boosting
stacking

(b)

Quantum classifiers
quantum cosine

quantum distance
quantum 3NN

(c)

Normalization techniques
none
std

minmax

Table 2. Stacking configuration tested.

Classifier Normalization
Internal

quantum cosine std
quantum distance std
quantum 1NN minmax
quantum 3NN minmax

Meta
quantum 5NN none

Regarding the quantum models, as stated in Section 3.1, the Aer simulator provided

by Qiskit has been used for the execution of the algorithms. In particular, the number of

measurements, also known as shots, has been set to 8192, which corresponds to the maximum

allowed number of shots on real quantum IBM devices.

Eventually, it is worth highlighting that three simulation methods have been considered

here: statevector, local simulation and noisy simulation. In the first case, the results are

obtained by processing the final state vector of the circuit; hence, the probability estimates

are exact. In the second method, the behaviour of the real machine is emulated by sampling

state counts from the final probability distribution of the circuit, where no noise model has

been taken into account; this method represents a best-case scenario. Eventually, the third

method adds a noise model to the simulation, imitating the ibm brisbane system with a 127-

qubit Eagle r3 QPU. The noisy simulation enables experiments that mimic the execution of

real NISQ devices by utilizing the same properties, such as qubit coupling map, basis gates,

and incorporating quantum and readout errors. Specifically, in the experiments, we have

employed the gate fidelity values obtained from the latest calibration of the IBM quantum

processor (on date 2023-11-15 16:20:29). However, due to the computational expensiveness

of the noisy simulation, only a limited number of experiments have been performed utilizing

noisy simulation in Section 4.3.4.

All results (if not specified differently) have been collected using a Monte Carlo (leave one

group out) cross-validation technique [27], with 10 independent runs and a “80% training”

- “20% validation” dataset split. In particular, for each dataset split, the values of the

normalization techniques parameters have been computed on the training set samples.

4.2 Datasets

In the experiments, 11 datasets taken from the work by Zardini et al. [26] have been used.

These datasets, whose properties are reported in Table 3, can be downloaded from the GitHub

repository associated to the just mentioned article [28]. In particular, the original versions

of these datasets come from the UCI Machine learning Repository [29], and most of them

have been preprocessed to make them suitable for a binary classification task. It is also
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Table 3. Datasets considered.

Name # samples # features Class balance
iris setosa versicolor 100 4 balanced (50/50)
iris setosa virginica 100 4 balanced (50/50)

iris versicolor virginica 100 4 balanced (50/50)
vertebral column 2C 310 6 unbalanced (100/210)

seeds 1 2 140 7 balanced (70/70)
ecoli cp im 220 7 unbalanced (77/143)
glasses 1 2 80 9 almost balanced (42/38)

breast tissue adi fadmasgla 71 9 unbalanced (49/22)
breast cancer 80 9 almost balanced (44/36)

accent recognition uk us 80 12 unbalanced (63/17)
leaf 11 9 30 14 almost balanced (14/16)

worth mentioning that, for the algorithms tested in this work, the considered datasets lead

to quantum circuits with sizes of at most 15 qubits, which can be simulated in a reasonable

time.

4.3 Results

The results obtained are presented and discussed in the following sections.

4.3.1 Bootstrap and boosting hyperparameters

Bootstrap and boosting require to set two hyperparameters, namely, the number of internal

classifiers N and the number of training samples for each classifier S. These parameters

have a heavy impact on the performances of the ensembles. Hence, a grid search has been

used in order to find the best configuration. In particular, the values taken into account

are N = [5, 10, 30, 50] and S = [6, 8, 10, 20]. The related plots are provided in Appendix 1,

Figures A.1 and A.2.

As expected, the performance improve and the variance decreases by increasing the number

of internal classifiers. Instead, for a fixed number of internal models N , the performance do

not improve by increasing the number of training samples for each classifier. It is also possible

to notice that, for even numbers of training samples, the accuracy is almost constant, whereas

it drops for odds values. Indeed, odd numbers of training samples imply that the training sets

cannot be balanced, since it is a binary classification task. This affects especially the cosine

and the distance classifiers, because their prediction is an average value computed over all

the training samples; instead, the k-NN classifier is less affected by this issue. Moreover, the

optimal number of training samples has turned out to be dataset-dependent for the cosine

and distance classifiers, while the accuracy of the k-NN classifier has always improved by

increasing S (as expected). The considerations provided for bootstrap about the number of

internal classifier and the number of training samples for each classifier hold also for boosting.

Actually, the reduction in variance turns out to be more evident in this case.

In the end, the configuration N = 30, S = 8 has been chosen, since N = 30 already

allows achieving good performance and S = 8 represents a good tradeoff between accuracy

and runtime (the size of the index register is three qubits).

4.3.2 Performance comparison

The results achieved by all combinations of ensemble, base classifier, and normalization tech-

nique are shown in Figure 3. In detail, each box contains 110 points (one for each run on
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Fig. 3. Accuracy achieved by local simulation with 8192 shots, for all combinations of ensemble,

base classifier, and data normalization technique. Each box contains 110 points (one for each run
on each dataset).
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each dataset), with each data point being the accuracy obtained by local simulation with 8192

shots. In addition, the orange line represents the median, the green triangle corresponds to

the mean, while the blue circle represents the median of a statevector simulation executed

on the same data. Focusing on the quantum classifiers executed without ensembles (first

row), the quantum cosine and the quantum distance classifiers achieve the best performance

when the input data is standardized. Instead, the quantum k-NN performs better with a

min-max normalization. Indeed, in this quantum k-NN, the samples are sorted according to

the squared cosine similarity with respect to the test instance; therefore, the features should

belong to the same semi-axis to achieve good results.

Concerning bootstrap (second row), the introduction of the ensemble technique leads to a

performance improvement for the quantum cosine classifier, while the behaviour with respect

to the different normalization techniques remains unchanged. Similar considerations hold for

the quantum distance classifier, with the best performance being achieved with the standard-

ization of input data. Instead, the bootstrap ensemble with the quantum k-NN performs

the best when the input data is not normalized; in this case, there is also a performance

improvement with respect to using the single classifier, whereas the performance tend to

worsen when a data normalization technique is used. Regarding boosting (third row), the

results achieved with the quantum cosine classifier turn out to be better than those obtained

by bootstrap and by the single classifier. Indeed, the accuracy is visibly better for no and

min-max normalizations, and the variance is lower overall. The best results are still achieved

with the standardization of input data. These considerations hold also for the quantum dis-

tance classifier, while, for the quantum k-NN classifier, boosting and bootstrap turn out to

be almost equivalent (there is a little performance improvement). Eventually, the stacking

ensemble (fourth row) shows very consistent performance regardless of the data normalization

technique employed. Indeed, each internal classifier applies its own normalization technique.

Let us consider now only the best-performing normalization technique in local simula-

tion for each “ensemble”-“classifier” pair (see Figure A.3 in Appendix 1 for an easier visual

comparison). Focusing on the classifiers without ensembles, the cosine and the distance clas-

sifiers with standardization of input data perform similarly (the former being slightly better),

and they both outperform the quantum k-NN with min-max normalization (the statevector

median with no data normalization is also reported for the k-NN, since it is better than

the min-max one). Concerning bootstrap, the classifier achieving the best results (also with

respect to the single classifiers) turns out to be the quantum cosine classifier with data stan-

dardization. Indeed, both the quantum distance classifier with data standardization and the

quantum k-NN without data normalization show a lower variance, but also a lower median

accuracy. Regarding boosting, the configuration with cosine distance classifier and data stan-

dardization has the best median accuracy among all methods tested, while the version with

distance classifier and data standardization has the best mean accuracy. Eventually, stacking

shows good median and mean performance.

The effect of introducing bootstrap and boosting with respect to using single quantum

classifiers is shown more in detail in Figure 4. Concerning bootstrap (plot on the left), as

stated previously, the performance tend to improve for both the quantum cosine and the

quantum distance classifier, whereas they tend to worsen for the quantum k-NN. In terms of

normalization technique, independently from the classifier used, a significant improvement can
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Fig. 4. Comparison between ensemble techniques and single classifiers in terms of average accuracy

over 10 Monte Carlo runs. The left plot refers to bootstrap, the right plot to boosting. In

both cases, all normalization techniques are taken into account, each data point corresponds to a
different dataset, and local simulation with 8192 shots has been used.

be observed for no data normalization. Instead, there is a little advantage for standardization,

and an overall neutral effect for min-max normalization. Regarding boosting (plot on the

right), the performance of both the quantum cosine and the quantum distance classifiers

improve significantly with the introduction of the ensemble technique, whereas there is not

a clear benefit for the quantum k-NN. As in the previous case, standardization is the only

normalization technique not taking advantage of the ensemble usage.

It is worth noting that both the quantum cosine and quantum distance classifiers are

significantly affected by the class balance in the training data. Indeed, their predictions

are given by weighted sums over the training set. The effect of the class balance on the

performance of these classifiers is analysed in Appendix B.

4.3.3 Measurement sampling

As expected, the performance obtained with local simulation differ from the ideal ones, rep-

resented by statevector. Indeed, the repeated sampling from the final probability distribution

of the qubits states inevitably introduces some uncertainty, which may lead to a wrong label

prediction (for quantum cosine and quantum distance classifiers) or a wrong nearest neighbors

ranking (for the quantum k-NN). Figure 5 shows the impact of sampling on the performance

of the various methods. Focusing on the single classifiers (upper left), only in a few cases (lo-

cated in the low-accuracy region) local simulation turns out to be better than statevector ; in

addition, the main outliers are all related to the quantum k-NN with no data normalization.

Looking at bootstrap (upper right), almost all points are located near the main diagonal,

with outliers mainly related to quantum cosine and quantum distance classifiers without data
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Fig. 5. Comparison between statevector and local simulation with 8192 shots in terms of average

accuracy over 10 Monte Carlo runs. All combinations of internal classifier and normalization

technique are shown for each ensemble technique, and each data point corresponds to a different
dataset.

normalization. This suggests that the probability values are close to the decision threshold

when the data is not normalized. Concerning boosting (bottom left), the performance drop

when using local simulation turns out to be evident. This might be related to the ensemble

building process; indeed, the uncertainty in the predictions of the internal models might lead

to the computation of suboptimal boosting parameters. In addition, the outliers have the

same properties of the bootstrap’s ones. Eventually, for stacking (bottom right), it is possi-

ble to notice a performance drop in the low-middle accuracy region. To better understand

the impact of sampling on each configuration, the distribution of the accuracy difference be-

tween local simulation and statevector for each combination of ensemble technique, quantum

classifier, and data normalization is shown in Figure A.4 in Appendix 1.
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Fig. 6. Average accuracy over 120 runs on the iris versicolor virginica dataset as a function of

the number of shots (ranging from 1024 to 262144). The plot refers to the quantum distance
classifier with min-max data normalization, considering all ensemble techniques; the shaded re-

gions correspond to 95% confidence intervals, which have been computed according to a Binomial
distribution.

Additionally, the relationship between number of measurements (shots) and performance

has been analysed for a single case, namely, the quantum distance classifier with min-max

data normalization. For this purpose, all ensemble techniques and a single dataset have

been taken into account. The results are shown in Figure 6. In detail, the single classifier

achieves comparable results to statevector already with 1024 shots, while, for bootstrap and

boosting, the number of measurements required to reach the ideal performance is in the order

of 105. Moreover, bootstrap performs worse than boosting, but it reaches the 95% confidence

interval with 104 shots. Instead, boosting achieves comparable performance to bootstrap in

the statevector execution even with a low number of shots, but it requires ten times repetitions

to reach the 95% confidence interval. In general, a large number of shots is needed to achieve

near-to-exact performance (the number of shots grows quadratically with respect to the size

of the confidence interval).

4.3.4 Noisy experiments

The noisy simulation method permits a more accurate representation of the behaviour of

the current quantum devices, but it has a high computational cost, limiting the experiments

that can be performed in a reasonable amount of time. As a consequence, we have chosen

to evaluate only the quantum distance classifier with bootstrap and boosting ensembles. In-

deed, simulating the quantum cosine classifier requires way more CPU-hours compared to the
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Fig. 7. Accuracy achieved by different configurations of the quantum distance classifier with std

data normalization on the 8 considered datasets for statevector and noisy simulation modalities.

In detail, the configurations considered are: single classifier with the full training set (single),
single classifier with 8 bootstrapped data samples (single 8), bootstrap and boosting ensembles.

The number of shots used for noisy simulation is 8192, and the number of points per box is 80

(one for each run on each dataset).

distance classifier. The data normalization technique used is std, as the previous experiments

have shown that it yields the best results for the distance classifier. Lastly, regarding the

datasets, we have selected those containing 100 data samples or less (thus, 8 out of 11).

The results obtained, which are displayed in Figure 7, reveal the ensembles’ superiority

over the single classifier in a noisy environment. Actually, the comparison includes also

a quantum distance classifier with 8 training samples (sampled with replacement from the

training set), which corresponds to an internal classifier of the ensemble methods. It turns

out that, in a noisy environment, a classifier with only 8 data samples performs better on

average than a classifier trained on the entire dataset, despite the expectations based on

the statevector results. The reason is that larger circuits are more affected by noise. Thus,

small classifiers, like those exploited by the ensemble methods, prove to be advantageous in a

noisy environment. Eventually, it is worth observing that both bootstrap and boosting have

obtained a higher average accuracy compared to the single small classifier (both in the ideal

case and in the noisy simulation), confirming again the effectiveness of the ensembles.

Instead, Figure 8 shows the comparison between the ensemble methods and the single

(large) quantum distance classifier for each pair of dataset and Monte Carlo run. This view

allows evaluating the accuracy enhancement provided by the ensemble techniques on each

dataset in the case of a noisy simulation. In particular, the majority of data points are

located above the bisector, demonstrating the effectiveness of bootstrap and boosting even
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Fig. 8. Comparison between ensemble methods and quantum distance classifier with std data

normalization in terms of accuracy over 10 Monte Carlo runs. The left plot refers to bootstrap,

the right plot to boosting. Each data point corresponds to a different pair of dataset and Monte
Carlo run, and noisy simulation with 8192 shots has been used.
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Fig. 9. Comparison between statevector and noisy simulation with 8192 shots in terms of accuracy
for the quantum distance classifier with std data normalization. Each data point corresponds to
a different combination of ensemble technique, Monte Carlo run, and dataset.

in a noisy setup. A few points, associated mainly with the glasses 1 2 and breast cancer

datasets, fall below the bisector. However, they represent a clear minority.

Lastly, Figure 9 provides an alternative view (with respect to Figure 7) for the comparison
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between statevector and noisy simulation. In particular, the points related to the bootstrap

and boosting ensembles are closer to the bisector than those related to the single classifier.

This confirms that the single classifier is more affected by noise than the ensemble methods,

which demonstrate greater robustness (probably due to the usage of small internal classifiers).

To conclude, it is important to highlight that, in the experiments performed here, most

of the quantum circuit logic deals with data encoding. Indeed, ideally, the preparation of the

initial state should scale logarithmically with respect to the number of training data instances.

However, without a QRAM, it scales linearly. As a consequence, the impact of noise in the

noisy experiments turns out to be higher. Instead, the gate complexity for executing the

quantum algorithms remains constant for the quantum distance and cosine classifiers, and

logarithmic in the number of features for the quantum k-NN.

5 Conclusions

In this work, a hybrid ensemble scheme characterised by classical ensemble techniques and

quantum instance-based classification algorithms has been considered and empirically evalu-

ated, in simulation with and without noise, on a binary classification task. In particular, the

ensemble techniques taken into account are bootstrap, boosting, and stacking, while the con-

sidered quantum classifiers are a quantum cosine classifier, a quantum distance classifier, and

a quantum k-nearest neighbors classifier. In addition, three data normalization techniques,

namely, no normalization, standardization, and min-max normalization, have been taken into

account. The results have shown that the introduction of the ensemble techniques leads to

a performance improvement with respect to using single quantum classifiers. In detail, the

ensemble models have demonstrated a slight advantage in accuracy compared to single clas-

sifiers when considering an ideal execution with a suitable data normalization technique. At

the same time, they have shown the ability to mitigate both unsuitable data normalizations

and noise, making quantum classifiers more stable. Indeed, a strong dependency of the clas-

sifiers’ performance on the data normalization technique used has been observed, as well as

the benefit of having class-balanced datasets for classifiers like the quantum distance one.

More in detail, in a noiseless environment, the single quantum cosine and quantum dis-

tance classifiers have achieved the best performance with data standardization, while the

quantum k-NN has performed better with the other two techniques. Both bootstrap and

boosting have improved the performance of the single classifiers, especially when the base

performance was poor, with the quantum k-NN with data standardization being an anomaly

in this sense (the performance did not improve). Actually, boosting has proven to be the

best ensemble technique in terms of absolute performance but also the most sensitive to mea-

surements uncertainty (due to the iterative structure). It is also worth mentioning that, for

both bootstrap and boosting, the number of shots required to reach near-to-exact results

has turned out to be quite high. Eventually, stacking has shown good accuracy results and

good stability with respect to different data normalization techniques (the internal classifiers

perform a subsequent normalization). Concerning the noisy experiments, both bootstrap and

boosting have outperformed the quantum distance classifier, showing their capability of miti-

gating the impact of noise on performance by leveraging smaller internal models that are less

affected by noise.

Given the promising results obtained, demonstrating how ensembles improve classification
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accuracy and mitigate data normalization and quantum circuit noise issues, thereby enhancing

performance while constraining circuit size, an interesting possibility for future work could be

the development of quantum ensemble techniques. For instance, quantum ensembles could be

implemented by means of variational quantum circuits (VQCs) based on Hardware Efficient

Ansatzes (HEAs) [30] with parametrized weights induced by the ensembles parameters.
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Appendix A Additional plots

Additional plots related to the noiseless experiments are provided in this appendix. Specifi-

cally, Figures A.1 and A.2 show the classification accuracy obtained by bootstrap and boosting

with different parameter configurations. Instead, Figure A.3 shows the results achieved by
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the ensemble methods when the optimal data normalization technique is considered for each

classifier. Lastly, Figure A.4 shows the comparison between local simulation and statevector

for all combinations of ensemble technique, quantum classifier, and data normalization.
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Fig. A.1. Accuracy comparison for the bootstrap technique, varying the number of internal classi-
fiers N (left) and the number of training samples for each classifier S (right) while keeping fixed the

other parameter (S = 6 in the left plot, N = 30 in the right plot). Each box contains 990 points,

with each data point being the accuracy obtained in a run on a certain dataset by a combination
of quantum classifier and normalization technique.
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Fig. A.2. Accuracy comparison for the boosting technique, varying the number of internal classi-
fiers N (left) and the number of training samples for each classifier S (right) while keeping fixed the

other parameter (S = 6 in the left plot, N = 30 in the right plot). Each box contains 990 points,

with each data point being the accuracy obtained in a run on a certain dataset by a combination
of quantum classifier and normalization technique.

single bootstrap boosting stacking

quantum cosine
std
quantum distance

std

quantum k-NN
minmax

quantum cosine
std
quantum distance

std

quantum k-NN
none

quantum cosine
std
quantum distance

std

quantum k-NN
none

combined
std

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

none

simulation median
simulation mean
statevector median
statevector median best

Fig. A.3. Accuracy achieved by local simulation with 8192 shots, for all combinations of ensemble
and base classifier. Each box contains 110 points (one for each run on each dataset), and only the
best-performing normalization technique (in local simulation) is shown for each models pair.
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Fig. A.4. Comparison of local simulation with 8192 shots and statevector in terms of accuracy
difference for all combinations of ensemble technique, quantum classifier, and data normalization
technique. The number of points per box is 110, with each data point being related to a run on a
certain dataset.
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Appendix B Class imbalance

Both the quantum cosine and the quantum distance classifiers are strongly influenced by the

training data class balance. Indeed, the label predictions are given according to a weighted

sum over the training set (Eqs. (5) and (12)). Hence, if the classes are not balanced, the

most frequent one is preferred. Moreover, the cosine similarity can take negative values.

Instead, in the quantum distance classifier, the weight belongs to the interval [0, 1]; as a

consequence, every data instance gives a non-negative contribution to the corresponding label.

In conclusion, if the weights magnitude is small, the prediction is determined mainly by the

ratio of classes in the training set.
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Fig. B.1. Accuracy achieved by the quantum distance classifier with non-balanced and balanced

training sets, for all combinations of ensembles and data normalization techniques. The number
of shots used for local simulation is 8192, and the number of points per box is 110 (one for each

run on each dataset).
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Figure B.1 shows the results achieved by the quantum distance classifier with non-balanced

and balanced training sets, for all combinations of ensemble and data normalization tech-

niques. In particular, for the single classifier, the most frequent class has been subsampled

in order to match the number of instances of the other class; instead, for the ensembles, the

balance has been obtained by sampling the same number of data instances from each class

when building the training sets for the internal models. Focusing on the single classifiers,

it is possible to notice that, while the results with data standardization are almost identical

in the two cases, there is a significant performance improvement for no and min-max data

normalizations when forcing the class balance. Nevertheless, a remarkable difference with

respect to the ideal performance can be observed. Furthermore, standardization (std) turns

out to be still the best normalization technique for the quantum distance classifier. Similar

considerations hold for bootstrap, whose ideal performance with balanced data are also not

always better than the ideal ones for the single classifier; however, the results achieved in sim-

ulation are still better. Eventually, boosting seems to be not as sensitive to class imbalance

as the other classifiers, and its results are in line with the ones achieved with non-balanced

class. In the end, it remains the best-performing ensemble technique.
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