
Quantum Information and Computation, Vol. 24, No. 15&16 (2024) 1326–1355
© Rinton Press

EFFICIENTLY CONSTRUCTING A QUANTUM UNIFORM SUPERPOSITION

OVER BIT STRINGS NEAR A BINARY LINEAR CODE

EDWARD FARHIa

Google Quantum AI and Massachusetts Institute of Technology
Cambridge, MA, USA

STEPHEN P. JORDANb

Google Quantum AI

Seattle, WA, USA

Received February 12, 2025

Revised February 21, 2025

We demonstrate that a high fidelity approximation to |Ψb⟩, the quantum superposition
over all bit strings within Hamming distance b of the codewords of a dimension-k linear

code over Zn
2 , can be efficiently constructed by a quantum circuit for large values of

n, b and k which we characterize. We do numerical experiments at n = 1000 which
back up our claims. The achievable radius b is much larger than the distance out to

which known classical algorithms can efficiently find the nearest codeword. Hence, these

states cannot be prepared by quantum constuctions that require uncomputing to find
the codeword nearest a string. Unlike the analogous states for lattices in Rn, |Ψb⟩ is not
a useful resource for bounded distance decoding because the relevant overlap falls off too
quickly with distance and known classical algorithms do better. Furthermore the overlap

calculation can be dequantized. Perhaps these states could be used to solve other code

problems. The technique used to construct these states is of interest and hopefully will
have applications beyond codes.

Keywords: quantum algorithms, state construction, linear codes

1 Introduction

Given a probability distribution p over the bit strings of length n one can define a correspond-

ing quantum state |p⟩ =
∑

x∈{0,1}n

√
p(x) |x⟩. The problem of preparing these states when p

can be efficiently sampled from classically was originally called qsampling in [1] but we call

it Quantum Distributional State Construction (QDSC), to emphasize that it is a problem of

preparing coherent quantum states. Given |p⟩ one can sample from the classical probability

distribution p by measuring |p⟩ in the computational basis. QDSC can also be used to do

things that classical sampling cannot. In particular, given two probability distributions p and

q on {0, 1}n, there is no way in general to determine whether p is close to q (e.g. in total

variation distance) by drawing polynomially many samples from p and q. In contrast, using

polynomially many copies of |p⟩ and |q⟩ one can answer this question using the Hadamard

test.

aedwardfarhi@google.com
bstephenjordan@google.com

1326

Edward Farhi and Stephen P. Jordan 1327

Here, we consider the problem of QDSC for the uniform distribution over all bit strings

within radius b of a binary linear code. Any binary linear code can be expressed in terms of

a generator matrix B ∈ Zk×n
2 as follows:

C = {xB : x ∈ Zk
2}. (1)

The quantities n and k are known as the length and dimension of the code, respectively.

There are 2k codewords. (We are assuming that the rows of B are linearly independent.)

For a given linear code C ⊂ Zn
2 and a radius b ∈ {0, 1, . . . , n} we will show how to efficiently

produce the state

|Ψb⟩ = N
∑
c∈C

∑
z∈Zn

2

Θ(b− |z|) |z⊕ c⟩ , (2)

where |z| denotes the Hamming weight of z, and Θ is the unit step function:

Θ(y) =

{
1 if y ≥ 0
0 if y < 0

. (3)

For now, assume that b is less than half the distance of the code. (The distance of the

code is the minimum Hamming weight of the difference between any two codewords.) In this

case, the state |Ψb⟩ is a superposition of non-overlapping balls of radius b centered at the

codewords of C. The normalization factor is then

N =
1√

2kVol(b)
(4)

where Vol(b) is the number of points contained within a ball of Hamming radius b:

Vol(b) =

b∑
j=0

(
n

j

)
. (5)

If the balls overlap the normalization is more complicated.

The uniform probability distribution over all bit strings within Hamming distance b of

a binary linear code is easy to sample from classically. First, sample x uniformly from bit

strings of length k and sample z uniformly from bit strings of length n and Hamming weight

at most b. Then compute xB⊕z. This suggests an approach to prepare the state |Ψb⟩. First,
prepare (1√

2k

∑
x∈Zk

2

|x⟩
)(1√

Vol(b)

∑
z∈Zn

2

Θ(b− |z|) |z⟩
)
|0⟩⊗n

. (6)

Next, reversibly compute xB ⊕ z into the last register, yielding

1√
2k

∑
x∈Zk

2

|x⟩ 1√
Vol(b)

∑
z∈Zn

2

Θ(b− |z|) |z⟩ |xB ⊕ z⟩ . (7)

Last, we need to uncompute x and z from the first two registers to obtain |Ψb⟩. By assump-

tion, b is less than half the distance of the code. Therefore, the balls do not overlap and x

and z are uniquely determined by xB ⊕ z. However, determining x and z from xB ⊕ z is

1328 Efficiently constructing a quantum uniform superposition over bit strings near a binary linear code

(|0⟩+ |1⟩)/
√
2 • H

|Ψb⟩ / Tv

Fig. 1. This circuit implements the Hadamard test. The unitary Tv implements the translation

by v. That is, Tv |x⟩ = |x⊕ v⟩. The probability that the final measurement yields outcome zero
is 1

2
+ 1

2
⟨Ψb|Tv |Ψb⟩.

in general a computationally hard problem. Specifically, it is a bounded distance decoding

problem for the code C where the bound on distance is b.

Bounded Distance Decoding. We are given a linear code C ⊂ Zn
2 specified by its generator

matrix, as in (1). We are given a bit string v ∈ Zn
2 and are promised that v has Hamming

distance at most d from the nearest codeword: minc∈C |v − c| ≤ d. The bounded distance

decoding problem is to find c.

Bounded distance decoding for general binary linear codes can only be solved out to d

logarithmic in n using known polynomial-time algorithms [2, 3] and is known to become NP-

hard for sufficiently large d [4]. Consequently the method just described is only capable of

efficiently preparing the state |Ψb⟩ for b = O(log n). Preparing |Ψb⟩ out to larger radius by

this direct approach fails due to an uncomputation barrier. In this work, we show that by

taking a more intrinsically quantum approach we can surpass the uncomputation barrier and

efficiently prepare |Ψb⟩ out to b much larger than the radius to which we can solve bounded

distance decoding.

In [1, 5] it was shown that the ability to prepare superpositions over points within Eu-

clidean distance b of the elements of a lattice in Rn would yield efficient quantum algorithms

to solve classically-intractible instances of the Bounded Distance Decoding (BDD) problem

over these lattices. No efficient quantum circuits for this state preparation task are known.

The states |Ψb⟩ that we prepare here are closely analogous to the states described in [1, 5],

except over Z2 instead of R and using Hamming distance instead of Euclidean distance.

The state |Ψb⟩ can be used as a resource for BDD on binary linear codes using the same

approach that was proposed in [1, 5] for lattices over R. For v ∈ Zn
2 let Tv be the corresponding

unitary translation operator defined by Tv |x⟩ = |x⊕ v⟩. If the overlap between |Ψb⟩ and its

translation by Tv is bigger than 0 then v is within distance 2b of the lattice. Given |Ψb⟩,
one can use the Hadamard test to estimate the overlap ⟨Ψb|Tv |Ψb⟩, as illustrated in figure

1. This overlap is determined by the distance from v to the nearest codeword and decreases

monotonically with this distance. (See §9.) By iteratively flipping a bit of v and accepting

the move if the distance is decreased one can find the nearest codeword.

The number of Hadamard tests required to detect that ⟨Ψb|Tv |Ψb⟩ is nonzero and hence

that v is less than distance 2b from the nearest codeword is on the order of 1/| ⟨Ψb|Tv |Ψb⟩ |2.
Using amplitude amplification, this cost can be reduced quadratically [6]. However, the over-

lap | ⟨Ψb|Tv |Ψb⟩ | falls rapidly with |v|. Consequently, as we show in §11, using the states |Ψb⟩
in this way beats brute force search but fails to outperform the classical algorithm Information

Set Decoding. Furthermore, in §10, we show that this approach can be dequantized.

It is interesting to see another example where the uncomputation barrier thwarts the

Edward Farhi and Stephen P. Jordan 1329

naive approach to QDSC. As discussed in [1], the graph isomorphism problem can be reduced

to QDSC as follows. Given a graph G with n vertices, one wishes to prepare the uniform

superposition over all of its permutations,

|ΦG⟩ =
1√
N(G)

∑
π∈Sn

|π(G)⟩ (8)

where N(G) is the appropriate normalization factor. If G and G′ are isomorphic graphs

then ⟨ΦG|ΦG′⟩ = 1. Otherwise ⟨ΦG|ΦG′⟩ = 0. These cases are easily distinguished using

the Hadamard test. Furthermore, the uniform probability distribution over permutations of

a graph is easy to sample from classically by sampling a permutation at random and then

applying it to G.

Now, consider the approach to quantum state preparation that is analogous to the above

(failed) attempt to make |Ψb⟩. For simplicity, we restrict attention to the case that G has no

automorphisms, so the number of distinct permutations is n!. The hoped for state construction

process would be:

1√
n!

∑
π∈Sn

|π⟩ |G⟩ → 1√
n!

∑
π∈Sn

|π⟩ |π(G)⟩ (9)

→ 1√
n!

∑
π∈Sn

|identity⟩ |π(G)⟩ . (10)

The second step of unentangling the first register from the second by reverting it to the

identity is achievable if, with knowledge of G, π can be computed from π(G). In this case,

one computes π from π(G) reversibly in superposition and applies π−1 to the first register.

However, computing π from π(G) is exactly the graph isomorphism problem. So we have not

made any progress.

In [1] reductions are also given from quadratic residuosity and discrete logarithm to QDSC.

In the case of discrete logarithm, the uncomputation barrier arises just as in the above two

examples. In the case of quadratic residuosity, the uncomputation task that arises is to

uncompute a superposition rather than an individual bit string. These examples show that

quantum approaches to several hard problems are thwarted by uncomputation barriers. Our

results in this paper provide an example of how an uncomputation barrier can be surmounted.

2 Preliminaries

We now give the background necessary for understanding our construction of |Ψb⟩. Our pro-

cedure begins by constructing a state over the dual code so let us review what the dual is.

Dual Code. Given a code C ⊂ Zn
2 , the dual code C⊥ is defined as

C⊥ = {d ∈ Zn
2 : d · c = 0 ∀c ∈ C}, (11)

where d · c =
⊕n

i=1 dici is the Zn
2 inner product.

The dual to a code of length n and dimension k has length n and dimension n − k. We

1330 Efficiently constructing a quantum uniform superposition over bit strings near a binary linear code

call the n − k by n generator matrix of the dual code B⊥. Given B we can efficiently con-

struct B⊥, as discussed in appendix Appendix B.

On the quantum side each codeword and each dual codeword can be viewed as a com-

putational basis state in a 2n-dimensional space. The normalized uniform superposition of

the 2k codewords is related to the normalized uniform superposition of the 2(n−k) dual code-

words by the Hadamard transform. Given any function f : Zn
2 → C, its Hadamard transform

f̃ : Zn
2 → C is defined by

f̃(x) =
1√
2n

∑
y∈Zn

2

(−1)x·yf(y). (12)

This transform can be applied to the amplitudes of a quantum state by applying the Hadamard

gate H = 1√
2

[
1 1
1 −1

]
to each qubit:

H⊗n
∑
x∈Zn

2

f(x) |x⟩ =
∑
x∈Zn

2

f̃(x) |x⟩ . (13)

Hadamard of a Uniform Superposition of Codewords. Given a uniform superposition

over a code C, its Hadamard transform is the uniform superposition over the dual code C⊥.

That is:

If f(x) =
1√
|C|

∑
c∈C

δx,c then f̃(x) =
1√
|C⊥|

∑
d∈C⊥

δx,d. (14)

Proof: Writing out the Hadamard transform yields

f̃(x) =
1√
2n

1√
|C|

∑
c∈C

(−1)x·c. (15)

For x ∈ C⊥

1√
|C|

∑
c∈C

(−1)x·c =
√
|C|. (16)

Recall that |C| = 2k and accordingly |C⊥| = 2n−k. Thus f̃(x) = 1√
|C⊥|

for any x ∈ C⊥.

For all x /∈ C⊥ one must have f̃(x) = 0 since any additional nonzero amplitudes would yield

norm greater than one, which cannot occur because the Hadamard transform is unitary.

Our algorithm for preparing |Ψb⟩ begins by constructing a preliminary state
∣∣∣Ψ̃b

〉
and

then applying the quantum Hadamard transform H⊗n. The state
∣∣∣Ψ̃b

〉
is the Hadamard

transform of the target state |Ψb⟩, ∣∣∣Ψ̃b

〉
= H⊗n |Ψb⟩ , (17)

so we see that acting on this state with the Hadamard transformation gives the target state.

Edward Farhi and Stephen P. Jordan 1331

By a slightly involved calculation which we defer to §5,∣∣∣Ψ̃b

〉
= N

∑
d∈C⊥

Kn−1
b (|d| − 1) |d⟩ , (18)

where Kn
j (x) is the Krawtchouk polynomial defined by

Kn
j (x) =

j∑
r=0

(
x

r

)(
n− x

j − r

)
(−1)r, (19)

and N is the normalization factor. If the balls do not overlap then

N =
1√

2n−kVol(b)
, (20)

which is also shown in section §5.
If we can construct

∣∣∣Ψ̃b

〉
we can act on it with the Hadamard transform and get our

desired state,

|Ψb⟩ = H⊗n
∣∣∣Ψ̃b

〉
. (21)

So our task now is to give an efficient construction of
∣∣∣Ψ̃b

〉
. Suppose we can make the state∣∣∣|Ψ̃b|

〉
= N

∑
d∈C⊥

∣∣Kn−1
b (|d| − 1)

∣∣ |d⟩ . (22)

For a given dual codeword d ∈ C⊥ it is easy to compute the sign of the amplitudeKn−1
b (|d|−1)

and apply it using phase kickback, as described in appendix Appendix A, to make the state

(18) from (22). So the task now is to make this unsigned state.

The unsigned state can be described in terms of a probability distribution as follows. Let

B⊥ ∈ Zk⊥×n be the generator matrix for C⊥. Again k⊥ = n− k. Then,∣∣∣|Ψ̃b|
〉
=

∑
u∈Zk⊥

2

√
p(u) |uB⊥⟩ , (23)

where p(u) is the normalized probability distribution over Zk⊥

2 given by

p(u) = N2
[
Kn−1

b (|uB⊥| − 1)
]2

(24)

States of the form
∑

x

√
p(x) |x⟩ can in some cases be prepared efficiently using the method

of conditional rotations, described in the next section.

3 Conditional Rotations by Metropolis Monte Carlo

Given a probability distribution p(u1, . . . , uk⊥), the method of conditional rotations, intro-

duced in [7] and further developed in [8, 9], can be used to efficiently prepare the state∑
u∈Zk⊥

2

√
p(u) |u⟩ (25)

1332 Efficiently constructing a quantum uniform superposition over bit strings near a binary linear code

provided certain marginal conditional probabilities can be efficiently computed. Here, our

goal is to prepare this state in the case that p(u) is as given in (24). Once we have done this,

it is straightforward to perform the transformation
∑

u

√
p(u) |u⟩ →

∑
u

√
p(u) |uB⊥⟩, using

classical reversible computation, to get the desired state (23). This is spelled out in §4. Our

method for computing the necessary conditional marginal probabilities is Metropolis Monte

Carlo.

The method of conditional rotations works as follows. Start with k⊥ qubits initialized to

the zero state, |0⟩⊗k⊥
. Suppose there is an efficient way to calculate the marginals p(u1 = 0)

and p(u1 = 1) which are the probabilities that the first bit is 0 or 1. Then perform a rotation

on the first qubit, obtaining(√
p(u1 = 0) |0⟩+

√
p(u1 = 1) |1⟩

)
|0⟩⊗(k⊥−1)

. (26)

Assuming there is an efficient way to compute subsequent conditional marginals, perform a

rotation on the second qubit conditioned on the value of the first qubit, obtaining[√
p(u1 = 0) |0⟩

(√
p(u2 = 0|u1 = 0) |0⟩+

√
p(u2 = 1|u1 = 0) |1⟩

)
+

√
p(u1 = 1) |1⟩

(√
p(u2 = 0|u1 = 1) |0⟩+

√
p(u2 = 1|u1 = 1) |1⟩

)]
|0⟩⊗(k⊥−2)

. (27)

Similarly, rotate the third qubit conditioned on the first two according to p(u3|u2, u1) and so

on until all the bits are rotated. At the end of this process one is left with the state∑
u1...uk⊥

a(u1, . . . , uk⊥) |u1 . . . uk⊥⟩ (28)

where

a(u1, . . . , un) =
√
p(u1)

√
p(u2|u1)× . . .×

√
p(uk⊥ |uk⊥−1, . . . , u1) (29)

=
√
p(u1, . . . , uk⊥) (30)

as desired.

For this process to be efficient, it must be possible to efficiently evaluate all the necessary

conditional marginal probabilities in which the first m bits are fixed and the last k⊥ − m

bits are summed over, keeping track of how often bit m + 1 is 0 or 1 to get the marginal.

Classically precomputing these sums would be infeasible because there are exponentially many

of them. Instead, these evaluations are done in superposition by reversible circuits. Thus, the

key question is whether these conditional marginal probabilities can each be computed by an

efficient classical algorithm.

The classical algorithm that we propose for estimating these conditional probabilities is the

method of Markov chain Monte Carlo, using the Metropolis rule. We find that the necessary

Markov chains converge remarkably rapidly, despite the exponentially large state space of

codewords in C⊥ for certain values of b and k. We discuss the conditions that guarantee good

convergence in §8.
Consider first the Markov chain used to estimate the rotation probability for the first bit.

At each step in the Markov chain our random walker is located at some string u ∈ Zk⊥

2 . We

Edward Farhi and Stephen P. Jordan 1333

then choose one bit of u uniformly at random and flip it, yielding u′. Since we are going for

(24) we then evaluate:

f(u′) =
[
Kn−1

b (|u′B⊥| − 1)
]2

. (31)

If f(u′) ≥ f(u) this move is accepted and the walker moves from u to u′. Otherwise, the move

is accepted with probability f(u′)/f(u). This is the Metropolis rule. Under mild conditions,

this is guaranteed to converge to the limiting normalized distribution proportional to f .

One obtains a sequence of bit strings u,u′, . . . ∈ Zk⊥
2 by running this Markov chain. The

fraction of bit strings sampled in which the first bit is 1 is used as the marginal distribution for

the first qubit rotation. For the mth qubit rotation the same procedure is followed except that

the first m bits of u are frozen to specific values, and only flips of remaining k⊥ −m bits are

proposed in the random walk, thereby sampling from the necessary conditional distribution.

This is done reversibly in superposition over values that the firstm bits are fixed to. Reversible

implementation of the Markov chain is to be carried out using a reversible pseudorandom

number generator.

4 Quantum State Preparation Algorithm for |Ψb⟩

We now present pseudocode for the construction of |Ψb⟩, which is an example of the Quantum

Distributional State Construction problem. It relies on sampling by Metropolis Monte Carlo

which we described in the last section. The key equation (18) is established later so if you

take it on faith hopefully you have enough to follow the pseudocode.

Given a generator matrix for C, we construct |Ψb⟩ using the following steps.

1. Precompute Kn−1
b (h − 1) for h = 0, . . . , n so they need not be evaluated with the

quantum device. Note that they do not depend on the code.

2. Starting from the generator matrix for C, compute B⊥, the k⊥ × n generator matrix

for C⊥. This can be done in polynomial time, see for example appendix Appendix B.

3. Initialize a register of k⊥ qubits and second register of n qubits to the all zero state,

|0⟩⊗k⊥
|0⟩⊗n

.

4. Use the method of conditional rotations, estimated using the Metropolis Monte Carlo

method, to construct a weighted superposition over the coefficient vectors u,

→ N
∑

u∈Zk⊥
2

∣∣Kn−1
b (|uB⊥| − 1)

∣∣ |u⟩ |0⟩⊗n
.

where N is the normalization constant. Note that our method automatically produces

a normalized state so there is no need to know N in advance.

5. Reversibly compute the corresponding codewords of C⊥ into the second register,

→ N
∑

u∈Zk⊥
2

∣∣Kn−1
b (|uB⊥| − 1)

∣∣ |u⟩ |uB⊥⟩ .

1334 Efficiently constructing a quantum uniform superposition over bit strings near a binary linear code

6. Uncompute the first register, returning it to |0⟩⊗k⊥
. We do this after having classically

precomputed the right-inverse B−1
⊥ for the (non-square) matrix B⊥, that is, B⊥B

−1
⊥ = 1.

Then in the first register add (uB⊥)B
−1
⊥ to u. This yields

→ N
∑

u∈Zk⊥
2

∣∣Kn−1
b (|uB⊥| − 1)

∣∣ |0⟩ |uB⊥⟩ .

This can be rewritten as

= N
∑

d∈C⊥

∣∣Kn−1
b (|d| − 1)

∣∣ |d⟩ ,

where we have discarded the first register for clarity.

7. Use phase kickback (c.f. appendix Appendix A) to put in the correct sign of Kn−1
b (|d|−

1),

→ N
∑

d∈C⊥

Kn−1
b (|d| − 1) |d⟩ .

8. Perform the quantum Hadamard transform H⊗n. As we show next in §5, this yields

the desired final state,

→ N
∑
c∈C

∑
z∈Zn

2

Θ(b− |z|) |z⊕ c⟩ = |Ψb⟩ .

The fidelity with which the final state is produced depends entirely on the precision to

which the Metropolis Monte Carlo method can estimate the conditional probabilities defining

the qubit rotations. This is step 4. All other steps of the algorithm are exact.

5 Deriving the form of
∣∣∣Ψ̃b

〉
In this section we collect and prove some facts regarding Hadamard transforms and then use

them to derive (18).

Convolution theorem:

H⊗n 1√
2n

∑
z∈Zn

2

∑
y∈Zn

2

f(y)g(z⊕ y) |z⟩ =
∑
x∈Zn

2

f̃(x)g̃(x) |x⟩ (32)

where f̃ is the Hadamard transform of f

f̃(x) =
1√
2n

∑
y∈Zn

2

(−1)x·yf(y) (33)

and g̃ is the Hadamard transform of g.

Proof:

H⊗n 1√
2n

∑
z∈Zn

2

∑
y∈Zn

2

f(y)g(z⊕ y) |z⟩ = 1

2n

∑
x,y,z∈Zn

2

(−1)x·zf(y)g(z⊕ y) |x⟩ (34)

Edward Farhi and Stephen P. Jordan 1335

Let w = z⊕ y. Then the previous expression can be rewritten as

=
1

2n

∑
x,y,w∈Zn

2

(−1)x·(w⊕y)f(y)g(w) |x⟩ (35)

=
∑
x∈Zn

2

(1√
2n

∑
y∈Zn

2

(−1)x·yf(y)
)(1√

2n

∑
w∈Zn

2

(−1)x·wg(w)
)
|x⟩ (36)

=
∑
x∈Zn

2

f̃(x)g̃(x) |x⟩ .

Hadamard transform of a single ball: Given a radius b ∈ {0, 1, 2, . . . , n}, let g : Zn
2 → C

be

g(x) = Θ(b− |x|), (37)

where Θ is the unit step function as defined in (3). Then, the Hadamard transform of g is

g̃(x) =
1√
2n

Kn−1
b (|x| − 1), (38)

where Kn−1
b is the Krawtchouk polynomial as defined in (19).

Proof: To compute the Hadamard transform of a ball, first rewrite g(y) = Θ(b − |y|) as

g(y) =
∑b

j=0 δj,|y|. Then

g̃(x) =
1√
2n

b∑
j=0

∑
y∈Zn

2

(−1)x·yδj,|y|. (39)

The summand (−1)x·yδj,|y| depends on x and y only through r, the number of bits which are

equal to 1 in both x and y, and s, the number of bits which are equal to 1 in y but not x.

Thus,

g̃(x) =
1√
2n

b∑
j=0

|x|∑
r=0

n−|x|∑
s=0

(
|x|
r

)(
n− |x|

s

)
(−1)rδj,r+s (40)

=
1√
2n

b∑
j=0

(
j∑

r=0

(
|x|
r

)(
n− |x|
j − r

)
(−1)r

)
. (41)

The inner expression is recognizable as a Krawtchouk polynomial, which is defined by

Kn
j (x) =

j∑
r=0

(
x

r

)(
n− x

j − r

)
(−1)r (42)

thus we can write

g̃(x) =
1√
2n

b∑
j=0

Kn
j (|x|). (43)

1336 Efficiently constructing a quantum uniform superposition over bit strings near a binary linear code

Using the identity
b∑

j=0

Kn
j (x) = Kn−1

b (x− 1), (44)

which we derive in appendix Appendix C, we can further simplify our expression to

g̃(x) =
1√
2n

Kn−1
b (|x| − 1).

With these facts in hand, we can derive (18) as follows. Examination of (2) shows that

|Ψb⟩ is proportional to a convolution in the form of (32). Namely,

|Ψb⟩ =

√
2n

Vol(b)

1√
2n

∑
z∈Zn

2

∑
y∈Zn

2

f(y)g(z⊕ y) |z⟩ , (45)

where

f(x) =
1√
2k

∑
c∈C

δc,x (46)

and

g(x) = Θ(b− |x|). (47)

The convolution theorem therefore tells us that

H⊗n |Ψb⟩ =

√
2n

Vol(b)

∑
x∈Zn

2

f̃(x)g̃(x) |x⟩ . (48)

Now the Hadamard transform of f(x) is given by (14) and the Hadamard transform of g(x)

is given by (38) so plugging in gives∣∣∣Ψ̃b

〉
= H⊗n |Ψb⟩ = N

∑
d∈C⊥

Kn−1
b (|d| − 1) |d⟩ (49)

where N is given as

N =
1√

2n−kVol(b)
. (50)

So we have established (18).

6 Impact of Imperfect Convergence on Fidelity

In §7 we show computer experiments to see how well a Metropolis Monte Carlo algorithm

does at sampling from a Krawtchouk distribution at n = 1000 with 1010 samples. In this

section we quantify the effect of sampling with a finite number of samples versus the ideal

limiting distribution. We calculate the fidelity between the ideal quantum state and one

that arises from imperfect sampling assuming that the only source of error is the imperfect

sampling. We do assume that the sampled distribution is uniform over codewords of a given

Hamming weight, as it is in the ideal case. The result is (60) in terms of the ideal and sampled

distributions and is evaluated in specific cases in the next section.

Edward Farhi and Stephen P. Jordan 1337

Let

|h⟩ = 1√
W (h)

∑
d∈C⊥

|d|=h

|d⟩ , (51)

where W (h) is the number of codewords in C⊥ with Hamming weight h. Note that we are

not assuming anything about W (h). Then

⟨h|h′⟩ = δh,h′ . (52)

By (22), ∣∣∣|Ψ̃b|
〉
= N

n∑
h=0

√
W (h)

∣∣Kn−1
b (h− 1)

∣∣ |h⟩ . (53)

The probability distribution over Hamming weights defined by this state is

pideal(h) =

[
Kn−1

b (h− 1)
]2

W (h)∑n
h=0

[
Kn−1

b (h− 1)
]2

W (h)
. (54)

We can correspondingly rewrite (53) as

∣∣∣|Ψ̃b|
〉
=

n∑
h=0

√
pideal(h) |h⟩ . (55)

Let psam(h) be the probability distribution over Hamming weights achieved from the product

of conditional probabilities estimated by Markov chains, as in (29) and (30). Assuming no

other sources of error, the unsigned state resulting from conditional rotations would be∣∣∣|Ψ̃sam
b |

〉
=

n∑
h=0

√
psam(h) |h⟩ . (56)

Here is where we assumed that the distribution over sampled dual codewords at fixed Ham-

ming weight is uniform. By (52), the inner product between
∣∣∣|Ψ̃sam

b |
〉
and

∣∣∣|Ψ̃b|
〉
is

〈
|Ψ̃sam

b |
∣∣∣ |Ψ̃b|

〉
=

n∑
h=0

√
psam(h)

√
pideal(h). (57)

The minus signs imposed by phase kickback are always exact, and so the signed state will

have this same inner product

〈
Ψ̃sam

b

∣∣∣ Ψ̃b

〉
=

n∑
h=0

√
psam(h)

√
pideal(h). (58)

Let |Ψsam
b ⟩ be the approximation to |Ψb⟩ obtained by taking the Hadamard transform of∣∣∣Ψ̃sam

b

〉
,

|Ψsam
b ⟩ = H⊗n

∣∣∣Ψ̃sam
b

〉
. (59)

1338 Efficiently constructing a quantum uniform superposition over bit strings near a binary linear code

Now |Ψb⟩ is the Hadamard of
∣∣∣Ψ̃b

〉
so the fidelity of the ideal state with the sampled state is

⟨Ψsam
b |Ψb⟩ =

n∑
h=0

√
psam(h)

√
pideal(h). (60)

By doing numerical experiments where we classically sample to get psam(h) we can estimate

the quantum fidelity between the less than perfect quantum state and the ideal.

7 Empirical Convergence of Metropolis Monte Carlo

To see if the Monte Carlo algorithm converges with not too many samples we consider the

Markov chain used in the first step of the method of conditional rotations. That is, none of

the bits of u are fixed and the state space consists of all 2k
⊥

bit strings u. Any subsequent

Monte Carlo step with m bits of u frozen is essentially a version of the same problem with m

rows of the generator matrix for C⊥ removed. As we will see in §8, failures of convergence can
arise when one or both of the ball radius b and the Hamming distance f of the step size in the

random walk are too large. The step size f is the Hamming weight of a row of the generator

matrix B⊥. As B⊥ is in systematic form, these rows have Hamming weight approximately

k/2. In the mth random walk, we have removed m of these rows. This leaves b unchanged

and f still has an expected size of k/2. So we expect that if the first step converges, the

subsequent ones do as well.

For our examples we use random codes. Because this state space is exponentially large, it is

not practical to verify the convergence of the Metropolis Markov chain by directly comparing

the sampling frequencies to (24). Instead, we measure the frequency at which elements of

C⊥ with given Hamming weight are sampled. If the algorithm is converged, these sampling

frequencies should be proportional to

W (h)
[
Kn−1

b (h− 1)
]2

(61)

where W (h) is the number of codewords in C⊥ with Hamming weight h. It is well known

that random linear codes have a weight distribution which is close to binomial [10]

W (h) ≃ 2k
⊥

2n

(
n

h

)
(62)

so we take

pideal(h) ∝
(
n

h

)[
Kn−1

b (h− 1)
]2

. (63)

We do not need the explicit form of the normalization for what follows.

We want to see if sampling can produce the distribution in (63). We show two numerical

examples. The first is at n = 1000, k = 100, b = 20 and is shown in figure 2. The results

show close agreement between the measured sampling frequencies as a function of Hamming

weight and the prediction of (63). This close agreement suggests both that the Metropolis

algorithm is well converged and that the binomial distribution is a good approximation to

W (h).

Figure 2 shows that pideal(h) is very small outside of a limited range of Hamming weights.

In the example shown pideal(h) is very small for Hamming weights less than roughly 340 or

Edward Farhi and Stephen P. Jordan 1339

300 350 400 450 500 550 600 650 700
Hamming Weight

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Pr
ob

ab
ilit

y

n=1000,k=100,b=20,samples=1010

Sampled
Ideal

Fig. 2. Comparison between pideal(h) and the probability distribution in Hamming weight

produced by Metropolis Monte Carlo sampling on a random linear code with n = 1000 and
k⊥ = n − k = 900 basis vectors. The ball radius is b = 20. The Metropolis random walk was

run for 1010 steps. The fidelity between the ideal quantum state and the sampled quantum state

is 0.999995. We plot only from Hamming weight 300 to 700 because outside of that range the
sampled probabilities are zero.

1340 Efficiently constructing a quantum uniform superposition over bit strings near a binary linear code

greater than roughly 660. This is significant, because finding codewords of low (or high) Ham-

ming weight is an approximate version of the lightest codeword problem which is classically

hard. Algorithms that require sampling from dual codewords of very low Hamming weight

are unlikely to be successful. In this example, for our task of constructing the state (2), we

succeed without going near low Hamming weight dual codewords.

For a linear code, we can estimate the minimum Hamming weight of any nonzero codeword.

As shown in [11], if a generator matrix is chosen uniformly at random then with high prob-

ability the resulting code will have minimum distance D saturating the Gilbert-Varshamov

bound. That is, D is obtained by solving

2k =
2n

Vol(D)
=

2n∑D
j=0

(
n
j

) . (64)

In our example the dual is a random code, and we estimate that minimum Hamming weight

of any nonzero dual codeword is approximately 14. We see that we are not sampling near the

smallest dual codewords and we do not need to.

By choosing larger k and b we can construct examples in which the support of pideal(h)

extends to dual codewords of low and high Hamming weight which take exponential time to

reach. In such cases, the Markov chain converges nicely to the correct relative probabilities

for the dual codewords of Hamming weight in the middle range but the outer tails are cut off.

We illustrate this in figure 3 where n = 1000, k = 300, and b = 60. In figure 4 we show the

central region but we rescale the two distributions so they both sum to one in this limited

range. Note the excellent agreement between the sampled and the ideal in the middle range.

This results in high fidelity between the ideal quantum state and the sampled quantum state.

A quantitative analysis of which values of n, k, b are expected to yield fully-converged Markov

chains as in figure 2 versus which are expected to yield cut-off distributions as in figure 3 is

given in §8.
Note that, even in this second example (n = 1000, k = 300, and b = 60), the ideal distribu-

tion over dual codewords has negligible probability at Hamming weight below approximately

263, whereas the shortest nonzero dual codeword for a random code of these parameters is,

with high probability, approximately 65. So achieving full convergence would not require

sampling near the shortest nonzero codeword.

Another phenomenon that we frequently observe in the unconverged regime is that some

codewords just at the boundaries of the regions of accessible Hamming weights are sampled

with frequencies that appear to be anomalously high. An example of this phenomenon can

be seen in figure 3 in which there are a few outlier red points showing sampling frequencies

substantially higher than expected.

By the results of §6, namely (60), we can compute the fidelity between a state arising

from the sampled probability distributions and the ideal state, under the assumption that the

sampling of codewords of a given Hamming weight is uniform as in the ideal case. We are

ignoring the error that occurs from successive conditional rotations. For the well converged

example at n = 1000, k = 100, b = 20 from figure 2 we obtain a fidelity of 0.999995. For the

example at n = 1000, k = 300, b = 60 shown in figure 3 we obtain fidelity 0.67. These overlaps

are high and show that in practice we should be able to make the desired states with good

fidelity.

Edward Farhi and Stephen P. Jordan 1341

0 200 400 600 800 1000
Hamming Weight

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Pr
ob

ab
ilit

y

n=1000,k=300,b=60,samples=1010

Sampled
Ideal

Fig. 3. Comparison between pideal(h) and the probability distribution in Hamming weight
produced by Metropolis Monte Carlo sampling on a random linear code with n = 1000 and

k⊥ = n− k = 700 basis vectors. The ball radius is b = 60. The Metropolis random walk was run

for 1010 steps. Incomplete convergence is observed because the region of nonnegligible support for
pideal(h) extends to dual codewords of small and large Hamming weight which are inaccessible to
the random walk. Still the fidelity between the ideal quantum state and sampled quantum state

is 0.67 because the sampling in the middle range is very accurate as is shown in figure 4.

1342 Efficiently constructing a quantum uniform superposition over bit strings near a binary linear code

460 480 500 520 540
Hamming Weight

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ob

ab
ilit

y

n=1000,k=300,b=60,samples=1010

Sampled
Ideal

Fig. 4. Here is a blowup of the central region of figure 3. In figure 3 the sampled frequencies for

these Hamming weights are higher than in pideal(h) because the sampled frequencies on the low
and high Hamming weight tails are too small so the central region gets amplified to maintain the

normalization. Here we show only the range 450 ≤ h ≤ 550 and renormalize both the ideal and

sampled distributions so that these probabilities in this region both add to one.

Edward Farhi and Stephen P. Jordan 1343

8 Analysis of Convergence of Metropolis Monte Carlo

In this section we derive a criterion to predict which values of n, k, b will yield good conver-

gence, and which will not. We then compare these predictions against numerical experiments.

Based on the form of pideal(h) illustrated in figure 2, we identify two circumstances that

cause concern regarding the convergence of our Markov chain to its limiting distribution. The

first we will show is actually not problematic. The second can prevent full convergence for

some values of n, k, b that we fully characterize.

First, one expects the random walk to fail if pideal(h) contains regions of high probability

separated by a region of very low probability with width greater than the Hamming distance

of the trial steps. We would expect failure in this case because the Metropolis walk would

need to go from one region to the other only by stepping across a region of low probability.

The Metropolis walk will not accept moves into very low probability regions so they will create

“bottlenecks” for the Metropolis walk.

As shown in figure 2, pideal(h) oscillates, and has many points of low probability. If

the Metropolis walk were only allowed to make moves of Hamming distance one, these low

probability codewords would create bottlenecks, which might cause the Metropolis walk to

fail. However, the walk actually moves by taking steps of Hamming distance one on the

coefficient vector u. A step u → u′ where |u′ − u| = 1 corresponds to a step from the dual

codeword uB⊥ to the dual codeword u′B⊥. That is, the new dual codeword is obtained

by adding one row of B⊥ to the current dual codeword. The distance of the move will be

the Hamming weight of the row. When B⊥ is in systematic form, as defined in appendix

Appendix B, the typical Hamming weight of a row is is approximately (1/2)(n− k⊥) = k/2.

By taking steps of Hamming distance k/2, the Metropolis walk can easily step over regions

of very low probability as is confirmed in our numerical examples.

It is known that the Krawtchouk polynomial Kn
b (x) has b real zeros which all lie in the

range n/2−
√

b(n− b) ≤ x ≤ n/2 +
√
b(n− b) [12, 13]. So the average spacing between the

zeros is 2
√

(n− b)/b and numerically we see that the zeros are roughly uniformly spaced.

Many of the values of x where the exact zeros occur are not at integers but as we can see from

figure 4 at the integer values near the exact zeros the polynomial is tiny. As discussed above,

a bottleneck could occur if there were a “trough” in which pideal(h) is consistently low over

some region whose width is larger than the steps taken by the random walker. So we can see

that unless 2
√

(n− b)/b ≫ k/2, the oscillations in pideal(h) are of short enough wavelength

that any troughs will be much narrower than the step length for the walker and this type of

bottleneck will not occur. Accordingly in our numerical experiments we do not see this failure

mode.

The second circumstance in which we might expect the Markov chain to fail to converge

is when the distribution pideal(h) assigns nonnegligible probability to codewords of Hamming

weight near either zero or n, which become exponentially hard to reach by the sampling

process. (Note that this is not the problem of finding short codewords which are difficult to

discover. It is a problem of failure to sample.) If a random walker is sitting at a bit string of

very low Hamming weight, a move that is proposed in the Metropolis algorithm which flips

roughly k/2 bits will be much more likely to raise the Hamming weight than lower it. And

the reverse holds at very high Hamming weight. If the edges of the nonnegligible region for

pideal(h) extend beyond these entropic barriers, then we expect the random walk to converge

1344 Efficiently constructing a quantum uniform superposition over bit strings near a binary linear code

incompletely. After any reasonable number of moves in the random walk, the number of times

the walker reaches the regions beyond the entropic barrier will remain tiny, thereby cutting

off the tails of the desired distribution pideal(h). We see this in figure 3.

Unlike bottlenecks, which we believe never occur, this second failure mode can occur when

b or k is large. We can quantify this as follows. Consider a random walker at bit string d

that has Hamming weight h. At a given step of the Metropolis algorithm a move is proposed

by adding a random row of B⊥, which will have Hamming weight f ≃ k/2 since B⊥ is in

systematic form. We model this as flipping f bits of d chosen uniformly at random. Let j

be the number of ones in d that flip and accordingly the number of zeros that flip is f − j.

The Hamming weight of the flipped string is (h − j) + (f − j) so to decrease the Hamming

weight we need j > f/2. Counting the number of ways that this can happen we get that the

probability for the proposed move to decrease the Hamming weight is

Pdown(h) =

∑f
j=⌈f/2⌉

(
h
j

)(
n−h
f−j

)(
n
f

) . (65)

If h becomes too small relative to n and f then this probability becomes exponentially small.

The value of h below which Pdown becomes insurmountably small relative to the number of

steps in the Markov chain defines an entropic barrier which the random walker is unlikely

to cross. One also has the analogous situation at h close to n for which Pup becomes insur-

mountably small.

The existence of this entropic barrier only prevents convergence if the region to which

pideal(h) assigns nonnegligible probability extends outside this entropic barrier. Using the

results of [12] on the asymptotics of Krawtchouk polynomials, we find that the region on

which pideal(h) is nonnegligible is

n/2−
√
b(n− b) ≤ h ≤ n/2 +

√
b(n− b). (66)

Since this region is symmetric about n/2, the region of nonnegligible pideal(h) extends above

the high-Hamming-weight entropic barrier for the same values of n, k, b in which it extends

below the low-Hamming-weight barrier. Hence, given n, k, b we can predict whether the

Markov chain will converge by solving Pdown(h) = ϵ for h using some appropriately small ϵ.

If the resulting value hbarrier(ϵ) satisfies hbarrier(ϵ) < n/2−
√

b(n− b) then the Markov chain

can be expected to converge, and otherwise not.

Let us now compare this prediction against computer experiments. The location of the

entropic barrier is not highly sensitive to the choice of ϵ so we semi-arbitrarily set ϵ = 10−6.

Using this criterion, for any fixed n we can map out the k−b plane, classifying each point into

one of three categories. The first category is where the left entropic barrier hbarrier(ϵ) is below

the Krawtchouk edge at n/2−
√
b(n− b). In this case we expect efficient convergence across

the full range of nonnegligible pideal(h). The second region is where the entropic barrier is

above the Krawtchouk edge. In this case we expect the sampled distribution psam(h) to look

like pideal(h) with the outer tails cut off. The third region is where the ball radius exceeds

the minimum distance of the code C, that is 2b > D. This is the regime of overlapping balls,

which we do not consider in this paper. These regions are plotted for n = 1000 in figure 5.

We next examine a slice through these regions along the line k = 5 × b. We choose a

set of seven evenly-spaced points along this line, and at each one generate ten random codes

Edward Farhi and Stephen P. Jordan 1345

0 50 100 150 200 250
b

0

200

400

600

800
k

n=1000
fully-convergent
cut-off

Fig. 5. At n = 1000 we show the region (blue) in the b− k plane in which we predict our Markov

chain to efficiently converge and the region (red) in which we expect the sampled distribution to be

resemble the ideal distribution with its low and high Hamming weight tails cut off. The boundary
between the the red and blue regions is described after (66). The white region corresponds to

overlapping balls (2b greater than the code distance), which we do not consider in this paper. The

grey crosses illustrate the location of the Monte Carlo experiments plotted in figure 6.

and carry out our Markov chain for each one. The analysis above predicts that the first

four points, which lie in the fully-convergent region, should yield sampled distributions over

Hamming weights with high fidelity to the ideal distribution. The last three points, which

lie in the cut-off region, should have fidelity falling off due to an increasing fraction of the

tails of the distribution being cut off. Two of these seven points, namely k = 100, b = 20 and

k = 300, b = 60 are used in §7 to illustrate in more detail the behavior in the convergent and

cut-off regions, respectively.

The results are shown in figure 6, which show good qualitative agreement with these

predictions. For our trials at the three points in the cut-off region, the fidelity, as calculated

with (60), is greater than 0.5, as shown in figure 6. This is higher than one might naively

expect since a look at figure 3 suggests that the sampled and ideal distributions are not close.

However inside of the entropic barrier where psam is not tiny, the two distributions are in fact

proportional, that is, one is scale factor times the other. See figure 4 where both have been

normalized over the plotted region. The quantum state overlap (60) has support only inside

the entropic region where the two distributions are proportional and the fidelity is then the

square root of the scale factor which is not very small.

1346 Efficiently constructing a quantum uniform superposition over bit strings near a binary linear code

50

100

150

200

250

300

350

400

Ha
m

m
in

g
we

ig
ht

Krawtchouk edge
Entropic barrier

10 20 30 40 50 60 70
b

0.0

0.2

0.4

0.6

0.8

1.0

fid
el

ity
n = 1000, k = 5 × b

Fig. 6. Here, at n = 1000 we take a slice through the k − b plane illustrated in figure 5 by setting
k = 5 × b. For b = 10, 20, ...70 we run ten trials of the Markov chain each with 1010 steps. Then

we compute the fidelity
∑n

h=0

√
psam(h)

√
pideal(h). The first four values of b are in the region

where we expect full convergence, and we observe high fidelity. The last three are in the cut-off
region, and we observe the fidelity drop off.

Edward Farhi and Stephen P. Jordan 1347

b b b

D

b

Fig. 7. The red circles represent balls from Tv |Ψb⟩. Their centers are separated by Hamming

distance D, which is the minimum distance of the code C. The blue circle represents a ball from

|Ψb⟩. All balls have radius b. Here we illustrate that if 4b < D then it is impossible for any ball
from |Ψb⟩ to overlap more than one ball from Tv |Ψb⟩. The closest it can come to this is if δ = 2b

which is shown. This is illustrated using Euclidean distance, but the same holds for Hamming

distance, as it also obeys the triangle inequality.

9 Overlap of |Ψb⟩ with Tv |Ψb⟩

Our original motivation for finding a way to construct |Ψb⟩ is that the overlap of this state

with its translation by v gives information about how close v is to the lattice. We do not

claim that we have an efficient quantum algorithm for BDD. Still we want to understand

how this overlap depends on how far v is from the lattice and in this section we derive an

expression for the ideal state overlap ⟨Ψb|Tv |Ψb⟩. This determines the runtime needed to

solve BDD using Hadamard tests, which we discuss in §11.

Let δ be the displacement of v from the nearest codeword. That is

δ = v ⊕ c (67)

where c is the element of the code C that minimizes |v⊕c|. If each ball in |Ψb⟩ overlaps with
only one ball from Tv |Ψb⟩ then ⟨Ψb|Tv |Ψb⟩ is equal to the overlap between a pair of single

normalized balls displaced by δ. This is because there are 2k overlapping ball pairs and there

is the same factor in the denominator from the overall normalization. We denote the overlap

of a single ball with its translate by δ as A(δ).

Since the triangle inequality holds for Hamming distance, one can observe that if 2b+ |δ|
is less than the minimum distance of the code C then it is guaranteed that each ball in

|Ψb⟩ will overlap with at most one ball from Tv |Ψb⟩. Furthermore, if 4b is less than the

minimum distance of C then this will hold for all v, as illustrated in figure 7. In these cases

⟨Ψb|Tv |Ψb⟩ = A(δ). In our first example in §7 we have n = 1000, k = 100 and b = 20. We

estimate the length of the smallest codeword is 320 so we are safely in the regime of 4b < D.

For our next example at n = 1000, k = 300 and b = 60 we estimate that the smallest codeword

has length 192 so for δ up to 72 we have 2b + |δ| < D and so each ball in |Ψb⟩ will overlap

only one ball from Tv |Ψb⟩.

By definition

A(δ) = ⟨B1|B2⟩ (68)

1348 Efficiently constructing a quantum uniform superposition over bit strings near a binary linear code

where, for j = 1, 2

|Bj⟩ =
1√
|Bj |

∑
x∈Bj

|x⟩ (69)

Bj = {x ∈ Zn
2 : |x⊕ zj | ≤ b} (70)

(71)

and z1, z2 are any pair of bit strings satisfying

z1 ⊕ z2 = δ. (72)

Now

⟨Ψb|Tv |Ψb⟩ = ⟨B1|B2⟩ =
|B1 ∩B2|√
|B1| · |B2|

=
|B1 ∩B2|

|B1|
, (73)

where we used that |B1| = |B2|. Next, observe that

|B1| =
b∑

j=0

(
n

j

)
. (74)

To compute |B1 ∪B2| we can assume without loss of generality that

z1 =

n︷ ︸︸ ︷
00 . . . 000 . . . 0

z2 = 11 . . . 1︸ ︷︷ ︸
δ

00 . . . 0︸ ︷︷ ︸
n−δ

where δ = |δ|, which is equal to the distance from v to the nearest codeword.

Starting from z2 one generates all elements of B2 by flipping s1 bits from the first δ and

s2 bits from the last n − δ, where s1 + s2 ≤ b. The number of ways to do this is
(
δ
s1

)(
n−δ
s2

)
.

The Hamming weight of the resulting string is δ − s1 + s2. Therefore,

|B1 ∩B2| =
∑

(s1,s2)∈P

(
δ

s1

)(
n− δ

s2

)
(75)

where

P = {(s1, s2) : s1 ≥ 0, s2 ≥ 0, s1 + s2 ≤ b, and δ − s1 + s2 ≤ b}. (76)

Putting it all together, we have

A(δ) =

∑
(s1,s2)∈P

(
δ
s1

)(
n−δ
s2

)∑b
j=0

(
n
j

) (77)

with P as given in (76). In the case that each ball overlaps with at most one other,

⟨Ψb|Tv |Ψb⟩ =
∑

(s1,s2)∈P

(
δ
s1

)(
n−δ
s2

)∑b
j=0

(
n
j

) , (78)

where δ is the Hamming distance from v to the nearest codeword.

Edward Farhi and Stephen P. Jordan 1349

10 Dequantizing the calculation of ⟨Ψb|Tv |Ψb⟩
Here we show that there is a classical sampling procedure that one can run to estimate

⟨Ψb|Tv |Ψb⟩ by sampling a ±1 variable and averaging the result. The number of samples

needed to distinguish this quantity from zero is of order 1/| ⟨Ψb|Tv |Ψb⟩ |2, which has the same

scaling as the number of repetitions of the Hadamard test that are needed in the quantum

setting. The quantity ⟨Ψb|Tv |Ψb⟩ is exponentially small in the distance of v from the lattice

so both the quantum and dequantized algorithms require time exponential in this distance

to distinguish ⟨Ψb|Tv |Ψb⟩ from zero. The dequantization shown here is modeled on the

dequantization results regarding lattices on Rn shown in [14].

To dequantize the estimation of ⟨Ψb|Tv |Ψb⟩ we first write Tv in terms of PauliX operators

which flip bits where v is 1,

Tv =
∏

i s.t. vi=1

Xi. (79)

Next, we recall that |Ψb⟩ = H⊗n
∣∣∣Ψ̃b

〉
. Since HXiH = Zi we have

⟨Ψb|Tv |Ψb⟩ = ⟨Ψb|
∏

i s.t. vi=1

Xi |Ψb⟩ (80)

=
〈
Ψ̃b

∣∣∣H⊗n
∏

i s.t. vi=1

XiH
⊗n
∣∣∣Ψ̃b

〉
(81)

=
〈
Ψ̃b

∣∣∣ ∏
i s.t. vi=1

Zi

∣∣∣Ψ̃b

〉
. (82)

Recalling the expression (18) for
∣∣∣Ψ̃b

〉
this yields

⟨Ψb|Tv |Ψb⟩ = N2
∑

d∈C⊥

[
Kn−1

b (|d| − 1)
]2 ⟨d| ∏

i s.t. vi=1

Zi |d⟩ . (83)

The quantity N2
[
Kn−1

b (|d| − 1)
]2

is the probability distribution over dual codewords that

we sample from in our Markov chain. See (24). In a slight abuse of notation we define

pideal(d) = N2
[
Kn−1

b (|d| − 1)
]2

, (84)

where N is the normalization factor (20). The previously defined probability pideal(h) over

Hamming weights is related to this by

pideal(h) =
∑

d∈C⊥

|d|=h

pideal(d). (85)

For any given codeword, the quantity ⟨d|
∏

i s.t. vi=1 Zi |d⟩ ∈ {+1,−1} is easy to compute.

Namely

⟨d|
∏

i s.t. vi=1

Zi |d⟩ = (−1)d·v. (86)

Consequently,

⟨Ψb|Tv |Ψb⟩ =
∑

d∈C⊥

pideal(d)(−1)d·v. (87)

1350 Efficiently constructing a quantum uniform superposition over bit strings near a binary linear code

The formula (87) yields the following dequantization of our procedure for estimating

⟨Ψb|Tv |Ψb⟩. Use Metropolis Monte Carlo to sample dual codewords according to pideal.

For each dual codeword sampled, compute (−1)d·v. After S samples, the average of this list

of ±1 values will be an estimate of ⟨Ψb|Tv |Ψb⟩ accurate to ±O(1/
√
S), provided n, k, b are in

the regime where the Markov chain converges. This is the same regime for which our quantum

state preparation works and is characterized in §8.

11 Bounded Distance Decoding with Hadamard Tests

To distinguish an overlap of ϵ from an overlap of zero via Hadamard tests requires order

1/ϵ2 repetitions, as dictated by standard sampling statistics. Thus, 1/| ⟨Ψb|Tδ |Ψb⟩ |2 pro-

vides an estimate of runtime for this task as a function of δ = |δ|. Neglecting sampling error,

| ⟨Ψb|Tδ |Ψb⟩ | is given by (78). Given an empirical distribution over Hamming weights of

dual codewords observed in our Monte Carlo simulations, we can also calculate | ⟨Ψb|Tδ |Ψb⟩ |
making only the assumption that dual codewords of given Hamming weight remain equiprob-

able. We omit this calculation, as it is much more involved than the calculation of the ideal

overlap given in §9.
But we show the runtimes in the presence of empirically observed sampling errors in figures

8 and 9 alongside the ideal runtimes achievable without sampling errors.

In figures 8 and 9 we compare these runtimes against classical brute force search, which

has runtime
(
n
δ

)
. We also compare against Information Set Decoding, a more sophisticated

classical randomized algorithm described in §12. We find that the quantum approach out-

performs brute force search but falls short of Information Set Decoding. All three of these

algorithms could be quadratically sped up using Grover search, leaving their relative perfor-

mance unaffected.

12 Information Set Decoding

In this section we discuss a classical algorithm for BDD, specifically the most basic version

of Information Set Decoding [15]. This provides a useful point of reference because it is a

simple classical algorithm that provides nearly state of the art performance. More recently,

other more complicated classical algorithms have been devised that achieve improved (but

still exponential) scaling relative to ISD, e.g. [16, 17]. Some noteworthy features of ISD are

that it uses only polynomial memory and it can be quadratically accelerated through Grover

search [18].

In a bounded distance decoding problem, we are given a generator matrix B ∈ Zk×n
2 for a

code C and a vector v which is near an unknown codeword c, that is, v = c⊕ δ ∈ Zn
2 . Here

δ is the error vector satisfying |δ| = δ with δ not too large. So uB = c for some u ∈ Zk
2 . The

goal is to find c, or equivalently u.

The ISD algorithm works as follows.

1. Select k elements of {1, 2, . . . , n} uniformly at random. Let v(k) be the length-k string

obtained by keeping only these bits from v and let B(k) be the k × k submatrix of B

obtained by keeping only these columns of B.

2. Check whether B(k) is an invertible matrix over the field Z2. If not, go back to step 1

and try a different subset.

Edward Farhi and Stephen P. Jordan 1351

3. Solve the linear system ũB(k) = v(k) for ũ ∈ Zk
2 using Gaussian elimination.

4. Compute the Hamming distance |ũB ⊕ v|. If this is equal to δ then ũB is a codeword

of distance δ from v and we are done. Otherwise, go back to step 1 and try again with

a different subset.

Next, let us analyze the probability of success for each trial. The probability that a uni-

formly random k × k matrix over the field Z2 is invertible, in the limit of large k, is approxi-

mately 0.29 [19]. For generic dense B this is also an accurate prediction of the approximate

probability that the random submatrix B(k) will be invertible in step 2.

Since v = c⊕ δ, the linear system we solve in step 3 can be rewritten as

ũB(k) = c(k) ⊕ δ(k). (88)

If we are lucky, the subset of bits we chose contains no errors. That is δ(k) = 0. In this case,

ũB(k) = c(k). (89)

Next, recall that since c is a codeword there is a u such that uB = c. Given c one could solve

this system of linear equations to obtain u. In fact, this system of equations is overdetermined,

0 5 10 15 20 25 30
Distance to Nearest Codeword

0

10

20

30

40

50

Lo
g 1

0 R
un

tim
e

n=1000,k=100,b=20,samples=1010

Hadamard Tests (Sampled)
Hadamard Tests (Ideal)
Brute Search
Information Set Decoding

Fig. 8. The log of the runtimes for three approaches to Bounded Distance Decoding as a function

of the distance to the nearest codeword. The red circles are from brute force search which the

quantum algorithm beats but Information Set Decoding does the best. To illustrate the effect of
sampling errors, the blue dots show the runtimes corresponding to the overlaps implied by the

Hamming weight distributions on the dual code observed in ten Monte Carlo trials. This is for
the well converged examples with n = 1000, k = 100, b = 20. Consequently, the blue dots all lie

on top of one another and match the ideal.

1352 Efficiently constructing a quantum uniform superposition over bit strings near a binary linear code

having n constraints but only k unknowns. Throwing away all but k of these constraints will

still provide a fully determined system of equations, provided that the remaining submatrix

of B is invertible. Since δ(k) = 0, the system we solve in step three is (89), which is precisely

this same system of equations, which we can solve to obtain the unique solution ũ = u. Now

ũB is c, which we have checked in step four has Hamming distance δ from v and so the

algorithm terminates with success. How likely is this to happen?

The string δ has n bits, of which δ have errors and each trial randomly selects k of these

n bits. The probability that the subset contains no errors is exactly(
n−δ
k

)(
n
k

) . (90)

Hence, the probability of success in one trial is

pISD ≃ 0.29

(
n−δ
k

)(
n
k

) . (91)

If δ is small compared to n and k then one can make the approximation

pISD ≃ 0.29(1− k/n)δ. (92)

0 5 10 15 20 25 30
Distance to Nearest Codeword

0

10

20

30

40

50

Lo
g 1

0 R
un

tim
e

n=1000,k=300,b=60,samples=1010

Hadamard Tests (Sampled)
Hadamard Tests (Ideal)
Brute Search
Information Set Decoding

Fig. 9. The log of the runtimes for three approaches to Bounded Distance Decoding. Here

n = 1000, k = 300, b = 60 and the Monte Carlo converges incompletely. To illustrate the effect
of sampling errors, we use ten colors to plot the runtimes corresponding to the overlaps implied

by the Hamming weight distributions on the dual code observed in ten Monte Carlo trials. Even
though the Monte Carlo has not perfectly converged the quantum algorithm beats brute force

search in all ten cases. Still Information Set Decoding beats the quantum algorithm.

Edward Farhi and Stephen P. Jordan 1353

The expected runtime of ISD is 1/pISD, which can be reduced to 1/
√
pISD if one replaces

random sampling with Grover search [18].

13 Discussion

In this work, we show how to solve the Quantum Distributional State Construction problem

for |Ψb⟩, the superposition over bit strings within Hamming distance b of a linear code of

length n and dimension k. We map out the region of n, k, b where this procedure efficiently

yields a high fidelity approximation to |Ψb⟩. We find that this region extends beyond the

uncomputation barrier that thwarts a direct approach to constructing |Ψb⟩.
We restricted our investigations in several respects. We considered only balls whose radius

is less than half the distance of the code, so that the balls do not overlap. We considered

only random binary linear codes. And the only application we considered is the bounded

distance decoding problem where we did not beat a known classical algorithm and our pro-

cedure can be dequantized. Given that |Ψb⟩ can be constructed efficiently out to surprisingly

large b, it may be interesting to consider potential algorithmic, cryptographic, or complexity-

theoretic applications beyond what we considered here. Or, the state preparation method

used here could perhaps be applied to overcome uncomputation barriers in other Quantum

Distributional State Construction problems.

Acknowledgements

We thank Madhu Sudan for discussions a long time ago. We thank Noah Shutty and Bill

Huggins for more recent discussions. And we particularly thank Oded Regev for a key obser-

vation.

References

1. Dorit Aharonov and Amnon Ta-Shma. Adiabatic quantum state generation and statistical zero
knowledge. In Proceedings of the 35th Annual ACM Symposium on Theory of computing (STOC),
pages 20–29, 2003. arXiv:quant-ph/0301023.

2. Piotr Berman and Marek Karpinski. Approximating minimum unsatisfiability of linear equations.
In Electron. Colloquium Comput. Complexity (ECCC), volume 25, 2001.

3. Noga Alon, Rina Panigrahy, and Sergey Yekhanin. Deterministic approximation algorithms for
the nearest codeword problem. In International Workshop on Approximation Algorithms for
Combinatorial Optimization, pages 339–351. Springer, 2009.

4. Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating the minimum
distance of a linear code. IEEE Transactions on Information Theory, 49(1):22–37, 2003.

5. Dorit Aharonov and Oded Regev. A lattice problem in quantum NP. In Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 210–219. IEEE,
2003. arXiv:quant-ph/0307220.

6. Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification
and estimation. Contemporary Mathematics, 305:53–74, 2002. arXiv:quant-ph/0005055.

7. Christof Zalka. Simulating quantum systems on a quantum computer. Proceedings of the Royal
Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1969):313–
322, 1998. arXiv:quant-ph/9603026.

8. Phillip Kaye and Michele Mosca. Quantum networks for generating arbitrary quantum states. In
International Conference on Quantum Information, page PB28. Optica Publishing Group, 2001.
arXiv:quant-ph/0407102.

1354 Efficiently constructing a quantum uniform superposition over bit strings near a binary linear code

9. Lov Grover and Terry Rudolph. Creating superpositions that correspond to efficiently integrable
probability distributions. quant-ph/0208112, 2002.

10. Vladimir Blinovsky, Uri Erez, and Simon Litsyn. Weight distribution moments of random lin-
ear/coset codes. Designs, Codes and Cryptography, 57:127–138, 2010.

11. Alexander Barg and G. David Forney. Random codes: minimum distances and error exponents.
IEEE Transactions on Information Theory, 48(9):2568–2573, 2002.

12. Mourad E. H. Ismail and Plamen Simeonov. Strong asymptotics for Krawtchouk polynomials.
Journal of Computational and Applied Mathematics, 100:121–144, 1998.

13. Wei-Yuan Qiu and Roderick Wong. Asymptotic expansion of the Krawtchouk polynomials and
their zeros. Computational Methods and Function Theory, 4(1):189–226, 2004.

14. Dorit Aharonov and Oded Regev. Lattice problems in NP ∩ coNP. Journal of the ACM (JACM),
52(5):749–765, 2005.

15. Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions on
Information Theory, 8(5):5–9, 1962.

16. Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding exponents: ball-collision
decoding. In Advances in Cryptology–CRYPTO 2011: 31st Annual Cryptology Conference, pages
743–760. Springer, 2011.

17. Alexander May and Ilya Ozerov. On computing nearest neighbors with applications to decoding
of binary linear codes. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 203–228. Springer, 2015.

18. Daniel J. Bernstein. Grover vs. McEliece. In Post-Quantum Cryptography–PQCrypto 2010: Third
International Workshop, pages 73–80. Springer, 2010.

19. William C. Waterhouse. How often do determinants over finite fields vanish? Discrete Mathemat-
ics, 65(1):103–104, 1987.

20. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

Appendix A Phase Kickback

Let f : {0, 1}n → {0, 1} be a function for which we know an efficient classical circuit. A

unitary Uf can always be implemented efficiently such that [20]:

Uf |x⟩ |z⟩ = |x⟩ |z ⊕ f(x)⟩

where the second register is a single qubit. By initializing the second register to |0⟩ one

obtains f(x) written into the computational basis in the second register. One can instead

compute f into the phase by initializing the second register with 1√
2
(|0⟩ − |1⟩) so

Uf |x⟩
1√
2
(|0⟩ − |1⟩) = (−1)f(x) |x⟩ 1√

2
(|0⟩ − |1⟩) .

The second register remains unentangled with the first and can be discarded. The net effect

is |x⟩ → (−1)f(x) |x⟩. By linearity, an arbitrary superposition undergoes the transformation∑
x

a(x) |x⟩ →
∑
x

(−1)f(x)a(x) |x⟩ .

This is known as phase kickback and it is one of the steps in the state preparation algorithm.

Appendix B Systematic Form for Linear Codes

The k × n generator matrix B for a code C is not unique. The basis vectors b1, . . . ,bk that

form the rows of B can be replaced by any invertible Z2-linear combination of b1, . . . ,bk

Edward Farhi and Stephen P. Jordan 1355

without changing the code. One consequence of this is that B can be put into systematic

form:

B = [1k×k|R] ,

where 1k×k is an identity matrix and R is a general k × (n − k) matrix. Thinking of Z2

as a finite field, systematic form is recognizable as reduced row echelon form, which can be

obtained in O(k2n) classical operations using Gaussian elimination. Let

B⊥ =
[
RT |1n−k×n−k

]
.

By construction, BBT
⊥ = R⊕R = 0. Hence, B⊥ is a generator matrix for the dual code C⊥.

From this construction, we see that given a generator matrix for C, a generator matrix for

C⊥ can be obtained in polynomial time classically. Also if we want to generate a random

code and its dual at the same time we can just generate a random k × (n− k) matrix R and

then get B and B⊥ immediately.

Appendix C Krawtchouk Identity

As stated in (44), Krawtchouk polynomials obey the identity

b∑
j=0

Kn
j (x) = Kn−1

b (x− 1).

To show this, we note that binomial coefficientschave the property
(
x
r

)
=
(
x−1
r

)
+
(
x−1
r−1

)
.

Thus

b∑
j=0

Kn
j (x) =

b∑
j=0

j∑
r=0

(
x

r

)(
n− x

j − r

)
(−1)r

=

b∑
j=0

j∑
r=0

[(
x− 1

r

)
+

(
x− 1

r − 1

)](
n− x

j − r

)
(−1)r

=
b∑

j=0

([
j∑

r=0

(
x− 1

r

)(
n− x

j − r

)
(−1)r

]
+

[
j−1∑
r=0

(
x− 1

r

)(
n− x

j − r − 1

)
(−1)r+1

])

=

b∑
j=0

(
Kn−1

j (x− 1)−Kn−1
j−1 (x− 1)

)
= Kn−1

b (x− 1),

where the last line follows from Kn−1
−1 (x− 1) = 0.

cWe take
(n
−1

)
= 0.

