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Enhancing data security and privacy in distributed computing environments presents a key challenge in 
effectively deploying quantum protocols on edge devices with limited resources. The objective of this project is 
to enhance the security of edge devices by integrating secure quantum communication protocols using 
Quantum-Enhanced Generative Adversarial Networks (QE-GANs). To provide safe quantum communication 
integration for QE-GANs on edge devices, researchers can gather the necessary data through the data collection 
process from edge devices. For data pre-processing in speech recognition applications, Mel-frequency Cepstral 
Coefficients (MFCCs) are a popular choice. Measurement-Device-Independent Quantum Key Distribution 
(MDI-QKD) is a cutting-edge method that provides advanced security compared to conventional QKD for 
secure communication among edge devices. SMLA refers to secure multiparty logic and its utilization, a 
framework that enables secure communication between multiple parties while ensuring the confidentiality and 
integrity of the transmitted data. Qubit-masked messages (QMM) and Quantum Coded Modulated Discrete 
Permutation (QC-MDPC) are two sophisticated quantum communication methods for data encryption.  ρ 
represents the quantum state density matrix; DFR refers to Device-Independent Quantum Secure Randomness 
Generation Protocol. MATLAB will be utilized to simulate and analyse the performance of QE-GANs) for 
integrating secure quantum communication protocols into edge devices. The findings show that the peak energy 
value of 23.7568 represents the dominant frequency component, which plays a key role in significantly 
influencing the signal. Integrating secure quantum communication protocols with edge devices via QE-GANs 
could revolutionize data privacy, enhancing real-time encryption, robust authentication, and decentralized trust, 
paving the way for next-gen secure IoT networks.  

.  
 

Keywords: Secure Quantum Communication, Edge Device, Quantum-Enhance, Generative Adversarial Networks 
(QE-GANs), Quantum Key Distribution (QKD), Quantum Channel Noise Sources.  

 
1. Introduction 

The field of quantum communication has witnessed substantial progress over the past decade, 
offering revolutionary advancements in secure communication protocols based on the principles 
of quantum mechanics [1-2]. However, integrating quantum communication technologies into 
practical, resource-constrained environments like edge devices remains a significant challenge. 
Edge devices, characterized by limited processing power, storage, and communication 
capabilities, face considerable barriers when implementing quantum protocols that require 
substantial computational resources and secure data transmission [3-4]. This paper explores the 
integration of secure quantum communication protocols into edge devices using Quantum-
Enhanced Generative Adversarial Networks (QE-GANs), a novel approach combining quantum 
mechanics with machine learning to enhance the security and efficiency of communication 
systems [5-6]. The central problem addressed is the difficulty of deploying secure quantum 
communication protocols on edge devices. Traditional quantum communication methods, such 
as quantum key distribution (QKD) and quantum secure direct communication (QSDC), are 
often designed for centralized systems with abundant computational resources and reliable 
communication channels [7-8]. However, edge devices, which operate in decentralized, 
resource-constrained environments, require specialized protocols that can balance high security 
with limited computational capacity [9-10]. This gap in existing literature has hindered the 
widespread adoption of quantum-secure communication in real-world applications, such as IoT 
devices, autonomous systems, and edge computing networks [11-12]. The motivation behind this 
study is driven by the increasing need for secure communication in distributed networks, 
particularly in applications involving sensitive data transmission, such as healthcare, finance, 
and national security [13-14]. As edge devices become more pervasive in these industries, the 
ability to implement quantum-enhanced security directly on these devices becomes crucial. 
Quantum communication, with its inherent security advantages, offers a promising solution to 
these challenges. However, without integrating machine learning methods like QE-GANs, the 
complexity of quantum protocols remains a barrier to practical implementation. By leveraging 
QE-GANs, this research bridges the gap between quantum communication technologies and 
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edge computing. This paper demonstrates that QE-GANs can be effectively integrated with 
quantum communication protocols to enhance their performance on edge devices [15-16]. 
Outcomes show that QE-GANs can generate high-quality randomness, improve the efficiency of 
quantum secure communications, and adapt to the dynamic constraints of edge devices. The 
integration of QE-GANs results in improved data security, scalability, and computational 
efficiency, making secure quantum communication feasible for practical deployment [17-18]. 
The primary objectives of the study include designing and implementing a framework that 
integrates quantum-secure communication protocols into edge devices, developing and 
optimizing QE-GANs for enhancing quantum security protocols on resource-constrained 
devices, evaluating the performance of the proposed integration in terms of security, scalability, 
and computational efficiency, and providing a roadmap for future applications of quantum-
enhanced communication in edge and IoT networks [19-20]. By achieving these objectives, the 
study contributes significantly to the field of quantum communication, making secure quantum 
protocols accessible and deployable in practical, real-world environments. The following is the 
order of the remaining sections: Section 2 provided an overview of the literature, Section 3 
presented the suggested technique, Section 4 addressed the results, and Section 5 explained the 
paper's conclusion. 

 
2. Literature Survey  

The survey serves as a comprehensive exploration of existing research and developments in edge 
computing and quantum communication protocols. By synthesizing and analysing relevant 
literature, this survey aims to identify key challenges, emerging trends, and innovative 
approaches in integrating secure quantum communication protocols into edge devices. Hasan et 
al [21] presented the potential of quantum communication technology to revolutionize existing 
communication systems. The findings indicate that quantum technology can not only enhance 
performance but also ensure security and reliability in communication systems. Additionally, the 
research proposes a model for a quantum communication system and discusses the challenges 
that need to be overcome to fully realize the communication-related potential of quantum 
technology. Ali et al [22] presented the impact of quantum computing on the future of 6G 
communication systems, focusing on enhancing security, computing efficiency, and 
communication reliability. The findings of this study highlight the significant potential of QC as 
a critical enabler for enhancing security and efficiency in 6G communication systems. Hua et al 
[23] proposed the hybrid quantum communication scheme using six-qubit entangled states for 
secure communication in IoT applications. Qiskit Aer simulation investigations demonstrate that 
the protocols' accuracy is higher than 0.999, indicating the scheme's practicality. Senapati et al 
[24] suggested the industrial manufacturing sector's potential for quantum communication, 
specifically in high-security production facilities such as Air and Defense units. The findings 
suggest that Quantum communication can significantly enhance the security measures in 
industrial manufacturing, providing a reliable and secure method for data transfer in sensitive 
industries. Zhou [25] interested in the potential overlap between the upcoming wireless 
communication and quantum communications systems is growing. The findings demonstrate 
that quantum communications have the findings demonstrate that quantum communications and 
open the door to more sophisticated wireless technologies.  
Nokhwal et al [26] presented the integration of quantum computing elements into 
Generative Adversarial Networks (GANs) to enhance training processes. Challenges related 
to quantum-classical amalgamation are addressed, with an emphasis on scalability and 
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limitations of quantum hardware. Liu et al [27] provided an overview of Generative 
Adversarial Networks (GANs), concentrating on visual synthesis algorithms and 
applications, such as neural rendering, processing, image translation, and video synthesis. 
The article discusses methods for stabilizing GAN training, which makes it possible to 
produce highly-resolution, lifelike images and videos and makes it easier to create new 
content creation apps. Tseng et al [28] proposed an approach to train more robust GAN 
models with limited information that involves employing a regularization strategy that 
considers the relationship between regularized loss and LeCam-divergence. This method 
aims to improve the ability to generalize and establish a more consistent learning process in 
scenarios with limited training data. Zhang et al [29] studied a quantum healthcare model 
built on intelligent mobile edge computing networks connected to the Internet of Things. 
Positive test findings were found about reducing reliance on IoT cloud analytics or storage 
facilities. The framework addresses all of the numerous factors, including design, functional 
challenges, capability needs, and selection criteria, that affect how feasible it is to integrate 
an edge-IoT ecosystem. Gorle et al [30] proposed a novel dynamic image watermarking 
technique with features inspired by quantum computing principles. Furthermore, this 
approach demonstrates resilience to typical image processing assaults, highlighting its 
promise for applications involving secure image verification [31-32]. 

 
3. Research Proposed Methodology  

Imagine ultra-secure communication channels like padlocks but for the tiniest devices at the 
edge of our networks [33]. This proposal looks at using a special AI called a Quantum-Enhanced 
Generative Adversarial Network (QE-GAN) to squeeze these complex security protocols onto 
those devices, even though they have limited resources. Think of the QE-GAN as a smart trainer, 
helping the devices learn the intricacies of the security system without needing a ton of 
computing power. This could revolutionize security by bringing unbreakable quantum-level 
protection to the frontlines of the data flow. 
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                                        Fig. 1. Block diagram for proposed work 
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Figure 1 shows the proposed work's block diagram. Through the acquisition of data from 
edge devices, researchers can obtain the information required to make it easier for QE-
GANs on edge devices to integrate secure quantum communication. MFCCs are commonly 
used for pre-processing speech recognition data and are essential in speech recognition 
applications. A secure method for communication on edge devices is MDI-QKD. Which 
provides better security than conventional QKD. Secure multiparty logic and its application 
(SMLA) refers to a framework that enables secure communication between multiple parties 
while preserving the confidentiality and integrity of the data being exchanged. Data 
encryption with Quantum-Masked Messages (QMM) and Quantum Coded Modulated 
Discrete Permutation (QC-MDPC) are advanced concepts in quantum communication. 
Noise in quantum channels causes problems for quantum communication, such as detection 
errors, decoherence, and defective channels. Error generation algorithms aid in the analysis 
of security, development of mistake correction methods, and understanding of error rates.  

3.1 Data Acquisition 

Leveraging a combination of direct measurements, protocol analysis, and data collection from 
edge devices, researchers can acquire the necessary data to facilitate the connection of QE-
GANs on edge devices with secure quantum communication. The special characteristics of the 
quantum channel must be carefully considered, existing communication protocols, and data 
utilized for QE-GAN training. Moreover, to address challenges related to limited resources, 
security concerns, and data labelling for an implementation to be effective, the data-collecting 
procedure is essential [34]. With a robust data acquisition strategy in place, researchers can 
effectively train QE-GANs to generate realistic and secure outputs tailored to the edge device's 
application. This integration has great potential to enable intelligent and secure data processing 
at the network's edge, opening up new opportunities for enhanced communication and 
information exchange in various industries and applications. 

3.2 Pre-processing on the Classical Edge Device 

Edge devices, those with limited processing power, are getting a security boost. This approach 
involves pre-processing data on the device itself before it interacts with complex quantum 
communication protocols. Quantum-Enhanced Generative Adversarial Networks (QE-GANs) 
act like AI trainers [35]. They run on the classical (non-quantum) side of the device, getting the 
information ready for the quantum protocols. This way, even edge devices with less power can 
leverage the ultra-secure world of quantum communication. It's like having a security prep 
course for your data before it enters the high-tech vault. Mel-frequency Cepstral Coefficients 
(MFCCs) are a widely used data pre-processing method in speech recognition applications. 
Because of their capacity to capture speaker-independent speech aspects while simulating human 
hearing, MFCCs are especially well-suited for edge devices. MFCCs are effective for devices 
with limited resources because they minimise data size, concentrate on important aspects, and 
allow for quicker processing.  

3.2.1 Mel Frequency Cepstral Coefficient (MFCC) 

Mel-Frequency Cepstral Coefficients (MFCCs) are a popular technique for data pre-processing 
in speech recognition applications, particularly suitable for edge devices due to their ability to 
capture speaker-independent features of speech while mimicking human hearing. MFCCs reduce 



 

1266     Integration of secure quantum communication protocols into edge device using … (QE-GANS)

 

data size, focus on relevant features, and enable faster processing, making them efficient for 
resource-constrained devices. This stage involves processing the signal after it has passed 
through a filter that highlights higher frequencies. In equation (1) Through this process, the 
(X[n]): Input signal at the (n)-th sample, (Y[n]): Output signal after difference processing at the 

(n)-th sample, (W[n] ): Hamming window applied to the signal, where ( ), (N): 
Number of samples in each frame,  (M): Frame overlap factor, where (M < N). 

  
                                                                         (1) 
 
Therefore, it is assumed that 95% of each given sample came from a prior sample. Segmenting 
speech samples that are acquired by analogue to digital conversion (ADC) into brief frames that 
have a duration of 20–40 milliseconds. N sample frames are created from the voice signal. 

 is used to divide adjacent frames apart. The feature extraction processing chain 
considers the following block and all of the nearest frequency lines are integrated to create a 
window shape known as a hamming window. As follows is the equation for the Hamming 

window and the window be described as  where    = the number of 

samples in every frame,  = Output signal,  = input signal,  = Hamming window, 
then the result of windowing signal is shown below: 
 

                                    (2) 

                                 (3) 

 
To change the time domain of every N sample frames are entered in the frequency range 

equation (2) and (3). The convolution of the vocal tract impulse response  and the  
Fourier Transform is utilized to translate the glottal pulse in the time domain. The statement 
supports the equation below: 
 
                                  (4) 
 

In equation (4)  and are the Fourier Transform of  

and respectively. The voice signal deviates from the linear scale and has a relatively broad 
frequency range in the FFT spectrum. The procedure results in an approximate Mel scale by 
computing the weighted sum of the spectral components of a collection of triangular filters. Each 
filter has a triangle magnitude frequency response that, at the centre frequency, is equal to unity 
and falls linearly to zero frequencies of the two filters next to it. The total of each filter's filtered 
spectral components is then the filter's output.  
 
                    (5) 
 
Discrete Cosine Transform (DCT) is utilized to transform the log Mel spectrum within a certain 
time frame and is calculated by this equation (5). The Mel Frequency Cepstrum Coefficient is 
the name given to the conversion's outcome. Acoustic vectors are the term assigned to this group 
of coefficients. In a window spanning time samples t1 through t2, the following equation 
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represents the energy in a frame for a signal x. (X(t)): Input time-domain signal, (X(w)): Fourier 
Transform of (X(t)), (H(w)): Fourier Transform of the filter (H(t)), (Y(w)): Fourier Transform of 
the output signal (Y(t)), (F(Mel)): Mel scale frequency. 
 

         (6) 

 

In equation (6) Compared to the 39 properties of double delta, which each reflect the change in 
the related delta features across frames, Equation 8's thirteen delta characteristics each display 
the change in the energy or cepstral characteristic that is pertinent. 

 

         (7) 
 
Implementing MFCCs on classical edge devices may require optimizations such as adjusting the 
number of coefficients in equation (7), optimizing the filter bank design, and using integer 
arithmetic. Further exploration can be done through tutorials on MFCCs and research papers 
focusing on optimizing MFCCs for embedded systems. 

3.3 Quantum Key Distribution (QKD) Protocol Execution 

Integrating Quantum Key Distribution (QKD) and Quantum-Enhanced Generative Adversarial 
Networks (QE-GANs) directly on edge devices are positive signs, as they encourage researchers 
to focus on building a strong foundation for data security. This involves developing practical 
solutions like post-quantum cryptography and lightweight encryption techniques for resource-
constrained devices [36]. It appears that encrypted communication on edge devices will have a 
bright future, with potential breakthroughs in miniaturized quantum hardware and hybrid 
quantum-classical approaches. 

3.3.1 Measurement-Device-Independent QKD (MDI-QKD) 

Measurement-Device-Independent Quantum Key Distribution (MDI-QKD) is an intriguing 
approach for secure communication on edge devices, offering enhanced security compared to 
traditional QKD. MDI-QKD eliminates the need to trust measurement devices, making it more 
suitable for scenarios where device security is challenging.  : (Rectilinear basis QBER, 
the quantum bit error rate in the rectilinear basis, : Error in the rectilinear basis, related to 

) and the error correction process, (H(x)): Binary Shannon entropy function,  

 
                                              (8) 

 
where the equation (8) QBER and gain in the rectilinear basis are denoted by the letters erect and 

, respectively (i.e.,  and ),  
is a function of inefficiency for the process of error correction, and 

H  is the binary Shannon entropy function. 
 

                                                                                           (9) 
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where  and  represent, respectively, the typical photon count of the signals in situations 
when the number of required dummy states is finite in (9). This is similar to standard finite 
decoy state QKD protocols 
 

                                                                                               (10) 

                                                                                                   (11) 

 
The linear equations (10) and (11) with the index i denoting the different decoy settings can 

obtain the parameters  and  For all n. 
 

                                                      (12)        

                                                   (13) 

 

For Equations (12) and (13) j fixed, varying in the parameters . Once the yields  are 
obtained for all j, is again equivalent to and the legitimate users can estimate the parameters 

 . MDI-QKD provides benefits such as higher security and flexibility in device choice for 
edge devices. However, there are still limitations to address, including complexity and distance 
limitations. As quantum technology advances, MDI-QKD may establish itself as a pillar for 
communication security in the future IoT landscape. 

3.3.2 Edge-assisted Quantum Protocol for SMLA (Secure Multiparty Logical and Its Application) 

Secure multiparty logic and its application (SMLA) refers to a framework that enables secure 
communication between multiple parties while maintaining the integrity and confidentiality of 
the sent data [37]. This technique can be used to improve dialogue for quantum security 
protocols by incorporating quantum-enhanced generative adversarial networks (QE-GANs) into 
edge devices. By using SMLA as a foundation for incorporating QE-GANs into edge devices, 
organizations can guarantee that confidential information is shielded from unwanted access and 
manipulation. This method can enable secure and efficient communication between edge 
devices, providing a foundation for building secure and reliable edge computing systems. 

 

                                               (14) 

                  (15) 

 

In equations 14 and 15, we can easily deduce that  = I and H2 = I. Both r1½j and s1½j are 
randomly and privately selected by participant P1. 
 
                                                        (16) 

                                                                                            (17) 
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In contrast, the equations (16) and (17). ES transforms the 8-nary integer S into a 2d-component 

vector (g1, g2, g2d), wherein the component  th and gj represent the number of participants in 

the  th group. 

In addition, Pauli operator can also be written as 
 
                                                                                                                          (18)                  

                                                |   | ,                                                                              (19) 
                                                                                                                                  (20) 

 
In equations (18), (19) and (20). The integration of secure quantum communication protocols 
into edge devices using QE-GANs can help improve the security of data transmission and 
processing in edge computing environments. QE-GANs are neural networks that are specifically 
designed to work with quantum data, Therefore, they are ideal for enhancing quantum 
communication protocols' security.  
 

                                                                                                                            (21) 
                                                                                                                         (22) 

 
Overall, MDI-QKD holds promise for securing communication in edge-assisted quantum 
protocols for SMLA. By taking advantage of the special qualities of entanglement and post-
processing techniques, it offers a path towards building secure and scalable communication 
channels for mobile learning applications [38]. The integration of secure quantum 
communication protocols into edge devices using QE-GANs and SMLA can assist businesses in 
utilizing the advantages of quantum technology while maintaining high levels of security for 
their data and communication networks. For equations (21) and (22) When sensitive data is 
exchanged between devices at the network edge, QKD offers a way to establish a provably 
secure communication channel. However, unreliable measurement equipment may create 
security flaws in conventional QKD systems. 

3.4 Data Encryption with Quantum-Masked Messages 

The expedition for securing data on classical edge devices is advancing with promising 
developments. Even so, direct quantum communication integration with Quantum-Enhanced 
Generative Adversarial Networks (QE-GANs) is not yet feasible, Quantum computing is a 
rapidly developing field. Quantum-masked messages (QMM) provide a look into the potential 
applications of quantum physics to data security [39]. In the meantime, advancements in post-
quantum cryptography provide robust encryption methods for today's classical devices, ensuring 
data security on edge devices. The narrative of data security on edge devices continues to unfold 
with exciting developments in quantum-inspired security. A cryptographic method called 
Quantum Coded Modulated Discrete Permutation (QC-MDPC) combines discrete permutation 
and quantum coding to improve security. QC-MDPC combines the two techniques to encrypt 
data with a very resilient method against attackers. 

3.4.1 Quantum Coded Modulated Discrete Permutation (QC-MDPC) 

Quantum Coded Modulated Discrete Permutation (QC-MDPC) is a cryptographic technique that 
combines quantum coding with discrete permutation to enhance security. Utilizing a blend of the 
two methods, Data is encrypted in this manner, and QC-MDPC becomes highly resilient to 
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attacks. This method involves encoding the data using quantum coding and then applying 
discrete permutation to shuffle the encoded data in a specific pattern. This creates a complex and 
dynamic encryption scheme that is difficult for hackers to break. An innovative method for 
safeguarding private data in networks and communication systems is QC-MDPC in equation 
(23). 

 
                                                                             (23) 
 
which univocally associates each possible binary k-tuple (or information vector) to a binary n-

tuple (or code vector, or code word). If  is a vector subspace and a linear block code  is 

required to have k linearly independent codewords  that form a basis of . This time, 

each codeword  can be articulated as a consolidation of the foundational 
vectors in (24): 
 

                                       (24) 
 

where the coefficients are taken from the information vector . Equation 
(25) can be written in matrix format, as follows: 
 

                                                                            (25) 
 

The matrix G is named a generator matrix for the code, having size : A special case of 

systematic is when each code word is obtained by appending redundancy bits to the  

information bits. Specifically, the general codeword  assumes the following form. 
 

                                                            (26) 
 

where each redundant (or “parity”) bit  can be articulated using the informational scraps via a 
related “parity-check equation”. A systematic block code can be defined through a generator 
matrix G in the following form in (26):  
 

                                                                                                                                       (27) 
 

where  represents the  identity matrix while  is a matrix of size representing the 
set of parity-check equations (27). 
 

                                                                                                                          (28)     
 
where represents the  identity matrix. A particular case is when , the 

identity matrix. This implies that G assumes the form (2.5), with , therefore in this 
instance, a proper parity-check matrix is produced in equation (28)  
 

                                                                                                       (29) 
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Because of these alternatives, the number of iterations used is often much smaller than the 

maximum number (29). Hence, to define a complexity measure, We can make use of  or to 
the typical quantity of iterations . By considering the quantity of information bits as well, the 
decoding complexity can be determined using the two definitions that follow at the bit level 
(BC) in (30): 
 

                                                                 (30) 

                                                   (31) 

 
In equation (31) Data encryption with Quantum-Masked Messages (QMM) and Quantum Coded 
Modulated Discrete Permutation (QC-MDPC) are enhanced concepts in quantum 
communication and coding that are currently in the early stages of development and difficult to 
implement with current technology. It is crucial to focus on practical security measures for 
outdated edge devices. This may involve utilizing post-quantum cryptography, adopting 
lightweight encryption techniques, and integrating homomorphic encryption to strengthen data 
security. While large-scale adoption of QMM and QC-MDPC might be far off, advancements in 
quantum technology and hybrid quantum-classical approaches should be monitored for future 
possibilities. In the meantime, Present-day edge device data security requires a laser-like focus 
on workable solutions. 

3.5 Transmission and Decryption with Quantum Key and Noise Removal 

The ultra-secure communication of the future on-edge devices with QKD, noise removal, and 
Quantum-Enhanced Generative Adversarial Networks (QE-GANs) faces some challenges due to 
current technology limitations. Concepts like QKD and QE-GANs are complex and require 
significant resources, making them difficult to integrate with resource-constrained edge devices. 
Noise removal in quantum communication channels is also a hurdle, as implementing QE-GANs 
for this purpose is far off [40]. Research in quantum communication is progressing, and 
miniaturization and simplification of the technology are ongoing. With advancements in QKD 
and the near future, more secure communication will be a possible acknowledgement of noise-
resistant coding schemes. 

3.5.1 Quantum Channel Noise Sources with Error Generation Algorithm 

Quantum communication faces challenges due to noise in quantum channels, including 
decoherence, channel imperfections, and detection errors. Error generation algorithms help 
understand error rates, develop error correction techniques, and analyse security. QKD is a 
secure communication system based on quantum concepts. Noise removal techniques like error 
correction codes help mitigate the impact of noise.  A proper subset of the EB channels is 
provided by the completely depolarizing maps, which transform any input state ρ of S into an 

assigned fixed point , i.e. 

 
                                                 (32) 
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For equation (32), each completely depolarizing channel  define  to be the 

minimum value of the mixing probability parameter  that transforms the convex 
convolution into an element of EB, i.e. 

 
                                         (33) 

 

Computing corresponds to determining the minimum µ for which the state in (33) 
 

                                                  (34) 

 

To get a functional of  alone we need hence to optimize the possible choices of the fixed point 

. This brings us to define the function in (34) and (35) 
 

                                                    (35) 

 

Equations (36), (37) and (38) in below. Given  and  CPT transformations we have 
 

                                                           (36) 
                                                         (37) 

 
Accordingly, the following inequality holds,                    
 

                                              (38) 

 

which explicitly disproves the monotonicity of under concatenation. 

 
Table 1 presents the Error Generation Algorithm is an iterative procedure used to optimize a 
codebook for clustering or quantization by minimizing the error between training vectors 

and codebook entries. The algorithm begins by initializing a training sequence  a 

codebook  containing the mean of all training vectors, and an error vector  Two 
empty clusters, Cluster 1 and Cluster 2, are also initialized. In the first step, the algorithm 

computes the initial code vector  as the mean of all training vectors. Next, it computes 

the error vector  by identifying the closest codebook entry to each training vector and 

assigning an error based on a ratio condition if the ratio  /  <= 10, the error is the ratio; 

otherwise, it is set to 10. The error vector is then used to form two new vectors,  and  

by adding and subtracting \( E \) from the code vector. The Euclidean distances between 

the training vectors and ,  are then computed, and each training vector is assigned to the 
closest cluster. The codebook is updated based on the newly formed clusters, and the error 
vector is recomputed. This process repeats iteratively until convergence. The final output 
consists of the optimized clusters, Cluster1 and Cluster2. Through this iterative refinement, 
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the algorithm adjusts the codebook and minimizes error, improving clustering accuracy [41-
45]. 

 
                              Table 1. Error generation algorithm 

 
Algorithm 1: Error Generation Algorithm 
Initialize parameters: 
T = { , , .. } (training sequence) 
K = length of the source vector 
C = initial codebook (containing the mean of all training vectors) 
E = error vector 

Cluster1 = {} 
Cluster2 = {} 

Compute initial code vector C 
Calculate the mean of all training vectors to get the initial code vector C 
Compute error vector E: 
Find  such that is the minimum value in code vector C 
Assign E: 
If  /  <= 10, assign   =   /  
Else, assign  = 10 
Form vectors  and : 
Add error vector E to code vector C to get  
Subtract error vector E from code vector C to get  
Calculate Euclidean distances between training vectors and , : 
For each training vector : 
Calculate   = ||  -   
Calculate  = || -   
If  < , put  in Cluster1; else put  in Cluster2 
Repeat steps 3 to 5 until convergence: 
Update codebook C based on Cluster1 and Cluster2 
Recompute error vector E 
Form new  and  
Recalculate Euclidean distances and update clusters 
Output 
Final clusters Cluster1 and Cluster2. 

 
 

 
4. Experimentation and Result Discussion 

This study delves into the practical implementation of our proposed methodology. This section 
aims to evaluate the performance, security, and efficiency of the integrated architecture through 
testing and outcome analysis. Various metrics and benchmarks are employed to assess the 
efficiency of using QE-GANs in unification with quantum communication methods in 
improving edge device communication security and dependability. Performance metrics for QE-
GANs integration include security efficiency, computational efficiency, scalability, and quantum 
error correction. System configuration involves quantum communication layers, edge devices 
with quantum encryption, and hybrid classical-quantum GAN architectures. Furthermore, 
Python simulations in Jupiter will be used to confirm the efficacy of our approach in practical 
applications, providing valuable insights into its practical applicability and potential limitations. 
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                                                   Table 2. System configuration for simulation 
 

Python Jupiter Version 3.8.0 
Operation System Ubuntu 
Memory Capacity 4GB DDR3 

Processor Intel Core i5 @ 3.5GHz 

 
Table 2 outlines the system configuration utilized for the simulation in this study. The 
simulations were conducted using Python Jupiter version 3.8.0 on an Ubuntu operating 
system. The system had a memory capacity of 4GB DDR3 and was powered by an Intel 
Core i5 processor clocked at 3.5GHz. This configuration ensured sufficient computational 
resources to execute the simulations effectively and accurately capture the intended 
phenomena under investigation. 

4.1 Pre-processed on the Classical Edge Device 

The method's initial phase is to extract characteristics from the input data that are Mel-Frequency 
Cepstral Coefficients (MFCC). In this vital pre-processing step, the unprocessed audio signals 
are converted into a representation that captures the frequency content and temporal dynamics of 
the audio. By extracting MFCC features, the classical edge device prepares the data for 
subsequent analysis and classification tasks, establishing the basis for precise and effective 
processing [46- 49]. 

 

 
 

                                      Fig. 2. Analysis of frequency domain in various techniques 

 
Figure 2 displays the frequency versus energy Discrete Cosine Transform (DCT), 
showcasing the distribution of energy across different frequency components. The highest 
recorded energy value reaches 23.7568, indicating the dominant frequency component 
contributing significantly to the signal. Following closely is the second-highest energy value 
at 17.6997, representing another notable frequency component. Conversely, the lowest 
energy value is observed at 6.5790, signifying a frequency component with minimal 
contribution to the overall signal energy. This visualization offers insights into the 
frequency-domain representation of the signal, highlighting the relative importance of 
different frequency components based on their energy levels. Another displays the triangular 
band pass filter's response, depicting frequency bin versus amplitude. The highest recorded 
amplitude within the specified frequency range is noted at 0.0077, indicating the peak 
intensity of the filtered signal. The Fast Fourier Transform (FFT) plot illustrates frequency 
(Hz) versus energy, showcasing the distribution of energy across different frequency 
components. The highest recorded energy value exceeds 140, indicating significant signal 
power at a specific frequency or frequency [50-51].  
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4.2 Quantum Key Distribution (QKD) Protocol Execution 

The Quantum Key Distribution (QKD) Protocol is being carried out. This critical phase involves 
the implementation and deployment of QKD protocols to establish secure cryptographic keys 
between communicating parties. Through the application of quantum concepts, including 
quantum entanglement and uncertainty, QKD protocols ensure the generation of secure keys 
immune to eavesdropping attempts, thus laying the foundation for secure communication 
channels in quantum networks. 
 
Figure 3 represents the relationship between key rate and distance (Km), with different 
legends denoted as (-5,0,25, 0.5), (-5,0.0,1.0), (-8, 0,.25, 0.5) PLOB, and (-8,0.0,1.0). Each 
legend corresponds to a specific parameter setting or condition, influencing the key rate at 
various distances. For instance, the legend (-5, 0, 25, 0.5) may represent different signal-to-
noise ratios or modulation schemes, while (-8, 0, .25, 0.5) PLOB could indicate variations in 
the polarization state of light. By examining the key rate across different distances and under 
different conditions, this visualization aids in assessing the performance and feasibility of 
quantum networks over various transmission distances. The relationship between key rate 
and distance (Km), with various legends denoting different scenarios or conditions. The 
corresponding values for each legend are as follows: "zero" has a key rate value of -1.5499, 
"total" corresponds to a key rate of -1.630, "one" is associated with a key rate of -1.2495, 
and "PLOB" exhibits the highest key rate value at 0.6554.  

 

 
 

                  Fig. 3. Key rate Vs distance analysis for quantum communication systems 

 

4.3 Data Encryption with Quantum-Masked Messages 

The process of encrypting data using quantum-masking techniques. In this step, quantum 
masking is employed as a sophisticated encryption method to secure sensitive information. 
Quantum-masked communications are created from information by applying the ideas of 
quantum mechanics, ensuring unparalleled security and resilience against conventional 
decryption methods. This step is essential in guaranteeing the confidentiality and integrity of 
data in modern cryptographic systems. 
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                Fig. 4. Frequency-strain relationship in strain-sensitive system components 

 
Figure 4 illustrates the relationship between frequency (Hz) and strain (1/√ (Hz)) for various 
components or phenomena within the system. The data points represent different sources of 
strain or strain-related quantities, such as aLOIGO reference quantum noise (QN), aLOIGO 
squeezed quantum noise, arm loss, SRC loss, external loss, and the total cost limit. Each 
data point corresponds to a specific frequency and its corresponding strain value. For 
instance, the aLOIGO reference quantum noise exhibits a strain value of 10-20.3736 at the 
given frequency, while the arm loss contributes a strain of 10-8.1614. This visualization aids 
in understanding the distribution and impact of strain across different frequency ranges, 
providing insights into the performance and limitations of the system components in terms 
of strain sensitivity. 

 

 
 

                               Fig. 5. Relationship between ρ and DRF 

 
Figure 5 illustrates the relationship between ρ (a parameter representing a certain 
characteristic) and DFR for the highest recorded value, which stands at 1.9218. This value 
signifies the peak point or maximum intensity of the relationship between ρ and DFR. By 
investigating this highest value, the figure provides valuable insight into the optimal 
conditions or critical points within the examined parameter space, aiding in the 
identification of significant trends or phenomena. 
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4.4 Transmission and Decryption with Quantum Key and Noise Removal 

The transmission and decryption utilise the generated quantum key while addressing potential 
errors through error generation algorithms and mitigating the effects of quantum channel noise 
sources. This step involves the crucial task of securely transmitting encrypted data over quantum 
channels and then decrypting it using the quantum key. Assuring the transmission's 
dependability and accuracy, error generation algorithms are utilized to identify and rectify any 
potential faults that may emerge along the transmission procedure. Moreover, quantum channel 
noise sources, such as photon loss, de-coherence, and other environmental factors, are 
considered and succeeded in boosting the communication system's resilience and effectiveness. 
 
Figure 6 shows the generation and error algorithm for two different legends. Each legend 
represents a distinct algorithm or method employed for error correction or mitigation during 
data generation processes. Through an analysis of these algorithms' performance across 
various generations, the figure provides insights into their effectiveness in reducing errors 
and improving data quality over successive iterations. This comparison aids in identifying 
the most suitable algorithm for achieving reliable and accurate data generation in the given 
context. 

 
 

 
 

                                Fig. 6. Generation Vs error values 
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                 Fig. 7. Analysis of pre-emphasis, signal framing and hamming windowing 

 
Figure 7 illustrates the pre-emphasis for time (s) versus amplitude, showcasing the 
amplitude levels ranging from the highest point of 0.3602 to the lowest level of -0.10513. 
This graphical depiction highlights the range of signal amplitudes over time and provides 
crucial information about the dynamic amplitude alterations done during pre-emphasis. 
Signal framing over time (s) versus amplitude, with the highest level reaching 0.5379 and 
the lowest level descending to -0.2875. This illustration offers a visual portrayal of the 
amplitude variation of the signal over time, highlighting its dynamic nature and amplitude 
range. Analysing signal framing enables researchers to understand signal characteristics, 
such as peak levels and fluctuations, crucial for signal processing and analysis tasks in 
various domains, including telecommunications, audio processing, and biomedical signal 
analysis. The Hamming windowing time (s) is shown in the figure that is plotted against the 
corresponding amplitude levels. The highest recorded amplitude reaches 0.01237, 
representing the peak signal intensity, while the lowest level is noted at -0.10513, indicating 
the trough or minimum amplitude value. This visualization provides valuable insight into 
the temporal characteristics of the signal under Hamming windowing, showcasing both its 
peak and nadir amplitudes over time. 

 
5. Research Conclusion  

Secure quantum communication protocols integrated into edge devices using the utilization of 
Quantum-Enhanced Generative Adversarial Networks (QE-GANs) show great potential in 
improving Quantum communication's security and efficiency in edge computing environments. 
The proposed methodology demonstrates how QE-GANs can enhance Quantum communication 
protocols' security and optimize quantum keys to suit the limited resources of edge devices. This 
research highlights the importance of utilizing QE-GANs to address the challenges posed by 
real-time processing and resource constraints in edge computing, enabling the application of 
secure quantum communication solutions at the network's edge. Future research avenues may 
explore the scalability and adaptability of QE-GANs in various edge computing scenarios, as 
well as investigate other potential applications of quantum-enhanced generative adversarial 
networks beyond secure communication protocols. The development of QE-GAN models using 
MATLAB might offer insightful information on the performance and quantum communication 
protocols optimized for edge devices, clearing the path for useful applications in actual settings. 
The findings show that the highest recorded energy value reaches 23.7568, indicating the 
dominant frequency component contributing significantly to the signal. Through continued 
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advancements in quantum-enhanced technologies and edge computing frameworks, we 
anticipate significant strides in enhancing the effectiveness and safety of edge device 
communication networks. The future scope of integrating secure quantum communication 
protocols into edge devices via QE-GANs includes advancing privacy-preserving IoT, real-time 
secure data transfer, adaptive encryption, and decentralized security in quantum-enhanced 
networks. 
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