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We propose protocols for calculating inner product, matrix addition and matrix multiplication based
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1 Introduction

Quantum computers can outperform classical computers by exploiting quantum features to solve prob-
lems efficiently. Those quantum features are exploited by devising efficient quantum algorithms that
take less running time (number of steps) to solve computational tasks. Quantum algorithms such as
Deutsch-Jozsa, Grovers Search, and Shors quantum factoring provide substantial speedup to classi-
cal algorithms. Quantum algorithms represent a widely acknowledged area of quantum information
whose intensive development is stimulated by the fast progress in constructing quantum processors
based on superconducting qubits (IBM, Google), trapped-ion technology (ionQ), topological qubits
(Microsoft).

Finding solutions to systems of linear equations is a ubiquitous problem in science and engineer-
ing. The Harrow-Hassidim-Loyd (HHL) algorithm [1] is a quantum algorithm that approximates a
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solution to a system of linear equations with an exponential speedup over the fastest classical algo-
rithm. Afterwards, other quantum algorithms to solve systems of linear equations were proposed
[2, 3, 4] and some simple meaningful instances of the HHL algorithm were experimentally realised
[5, 6, 7, 8]. There is, however, a significant obstacle in realizing the control rotation of ancilla via
quantum-mechanical tool in the HHL algorithm. An alternative protocol for solving systems of lin-
ear algebraic equations with a particular realization on superconducting quantum processor of IBM
Quantum Experience was proposed in [9], which also has certain disadvantage requiring inversion of
the matrix via classical algorithm. There are many applications of the HHL-algorithm in various pro-
tocols based on matrix operations [10, 11, 12], including solving differential equations [13]. The pro-
tocols of matrix algebra proposed in [14] are based on Trotterization method and Baker-Champbell-
Housdorff formula for exponentiating matrices. We underline the relevance of quantum Fourier trans-
form [15, 16, 17] and phase estimation [18, 19] in most of the above protocols. The inner product of
arbitrary vectors as a matrix operation is calculated in [11] using an ancilla and Hadamard operator.
The result is obtained via probabilistic method by performing measurements on ancilla. There is an
alternative “Sender-Receiver” scheme for the inner product via a two-terminal quantum transmission
line [20]. The given vectors are encoded as the pure states of two separated senders and the result
appears in a certain element of the two-qubit receiver’s density matrix after evolution and applying
the proper unitary transformation. This model can be modified where time-evolution is not required
and matrix operations are realized using the special unitary transformations only [21].

In this paper we develop further the idea of using the unitary transformations of special type for
realization of protocols of linear algebra. We concentrate on another aspect of a matrix and consider
that its elements are encoded into the pure state of a quantum system. Matrix operations (scalar prod-
uct, sum and product of two matrices) are realized via unitary operations over states of the composite
quantum system supplemented with multiqubit ancilla A. Then we operate a number of different
quantum operations W (k) on the resulting states of the whole system, and discard the garbage to ob-
tain the required result. First, result |res〉 appears in a superposition state |χ〉 = a|res〉 + |garb〉,
〈χ|χ〉 = 1, 〈res|garb〉 = 0. Stored in this way, |res〉 can be used as an input for another protocol
after discarding garbage |garb〉. Garbage can be removed by involving a one-qubit ancilla B supple-
mented with the proper controlled projection and successive measurement on B to obtain the output
|1〉 with the probability c = |a|

√
|〈res|res〉|, thus mapping |χ〉 to |res〉√

|〈res|res〉|
. Throughout the paper

we assume that the initial state of a quantum system is prepared in advance, although this is a problem
of its own [22].

2 Inner product

We consider two n-qubit subsystems S1 and S2 (we set N = 2n). The pure states

|Ψi〉 =

N−1∑
k=0

a
(i)
k |k〉Si , i = 1, 2,

∑
k

|a(i)k |
2 = 1, (1)

encode the elements of two vectors (complex in general) a(i) = (a
(i)
0 . . . a

(i)
N−1)T , i = 1, 2,

where |k〉 is the binary representation of k. Thus, each subsystem Si is encoded into n qubits and its
dimensionality logarithmically increases with vector dimensionality N . The initial state of the whole
system is |Φ0〉 = |Ψ1〉 ⊗ |Ψ2〉. We also consider an n-qubit ancilla A in the state |0〉A. Now we
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introduce the control operators

W
(m)
j = P

(m)
j ⊗ σ(x)

j + (Ij − P (m)
j )⊗ IA,j , (2)

where P (m)
j = |mj〉S1

|mj〉S2 S1
〈mj |S2

〈mj | (m = 1, 0) is the projector acting on the pair of jth

qubits of the subsystems S1 and S2, σ(x)
j is the Pauli matrix, IA,j is the identity operator applied

to the jth qubit of the ancilla A, Ij is the 2-qubit identity operator acting on the jth spins of the
subsystems S1 and S2. Hereafter, in general, IX is the identity operator acting on the system X .
Note that all W (m)

j , m = 0, 1, j = 1, . . . , n, commute by construction. We apply the operator

W
(1)
S1S2A

=
∏n

j=1W
(0)
j W

(1)
j on |Φ0〉|0〉A, and obtain

|Φ1〉 = W
(1)
S1S2A

|Φ0〉|0〉A = (3)(
N−1∑
k=0

a
(1)
k a

(2)
k |k〉S1

|k〉S2

)
|N − 1〉A + |g1〉S1S2A.

Notice that all information needed to perform the inner product is collected in the first term of the
state |Φ1〉 (??). The second term |g1〉S1S2A is the garbage which is to be eventually removed. Since
all W (m)

j with different j are applied to different triples of qubits, they can be applied simultaneously.
Now we label the result and garbage in the state |Φ1〉 to prevent them from mixing in the following
calculations. For this goal we introduce the projector PA = |N − 1〉A A〈N − 1|, 1-qubit ancilla B1

in the initial state |0〉B1
and apply the control operator W (2)

AB1
= PA⊗ σ(x)

B1
+ (IA−PA)⊗ IB1

to the
ancillae A and B1, respectively. Thus we obtain

|Φ2〉 = W
(2)
AB1
|Φ1〉|0〉B1

=

(
N−1∑
k=0

a
(1)
k a

(2)
k |k〉S1

|k〉S2

)
×

|N − 1〉A ⊗ |1〉B1
+ |g1〉S1S2A ⊗ |0〉B1

.

The control operator W (2)
AB1

with the n-qubit control register can be represented in terms of O(n)

Toffoli operators [23]. Therefore the depth of the circuit calculating |Φ2〉 is O(n) = O(log N).
Now we apply the Hadamard transformations W (3)

S1S2A
= H⊗3n to all the qubits of |Φ2〉 simulta-

neously except the ancilla B1,

|Φ3〉 = W
(3)
S1S2A

|Φ2〉 =
〈Ψ∗2|Ψ1〉

23n/2
|0〉S1 |0〉S2 |0〉A|1〉B1 +

|g3〉S1S2AB1
, 〈Ψ∗2|Ψ1〉 =

N−1∑
k=0

a
(1)
k a

(2)
k .

To label the new garbage, we introduce the projectorPS1S2AB1
= |0〉S1

|0〉S2
|0〉A|1〉B1 S1

〈0|S2
〈0|A〈0|B1

〈1|,
prepare another ancilla B2 in the ground state |0〉B2

and apply the control operator W (4)
S1S2AB1B2

=

PS1S2AB1
⊗ σ(x)

B2
+ (IS1S2AB1

− PS1S2AB1
)⊗ IB2

to |Φ3〉 ⊗ |0〉B2
:

|Φ4〉 = W
(4)
S1S2AB1B2

|Φ3〉|0〉B2
=
〈Ψ∗2|Ψ1〉

23n/2
×

|0〉S1
|0〉S2

|0〉A|1〉B1
|1〉B2

+ |g2〉S1S2AB1
|0〉B2

.
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(b)(a) (c)

(d)

(e) (f)

Fig. 1: Various notations (a, b, c), and the circuits realizing inner product (d), matrix addition (e) and matrix multiplication (f).

The control operator W (4)
S1S2AB1B2

with 3n+ 1 control qubits can be represented in terms of O(3n) =

O(n) Toffoli gates [23].

The inner product of two vectors is stored in a probability amplitude. Measuring the ancilla B2

with the output |1〉B2
we remove the garbage and stay with the single term in the quantum state

|Φ5〉 =
〈Ψ∗2|Ψ1〉
|〈Ψ∗2|Ψ1〉|

|0〉S1 |0〉S2 |0〉A|1〉B1 , (4)

which stores the phase of the inner product. The absolute value of the inner product is known from
the probability of the above measurement which is |〈Ψ∗2|Ψ1〉|2/23n.

The whole depth of the protocol is defined by the operatorsW (2)
AB1

andW (4)
S1S2AB1B2

, in both cases
it is O(n) = O(log N). The circuit is given in Fig. 1(d).

3 Matrix Addition

For adding two N ×M matrices A(i), i = 1, 2, with the elements {a(i)jk } (N = 2n, M = 2m), we
first introduce two registers R1 and R2 of n qubits and two registers C1 and C2 of m qubits which
enumerate rows and columns of both matrices, and two additional qubits D1 and D2 associated with
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the matrices A(1) and A(2) respectively. The pure states encoding the elements of matrices are

|Ψi〉 =

N−1∑
j=0

M−1∑
l=0

a
(i)
jl |j〉Ri

|l〉Ci
|0〉Di

+ (5)

s|0〉Ri
|0〉Ci

|1〉Di
,
∑
jl

|a(i)jl |
2 + |s|2 = 1, i = 1, 2,

where s is a parameter. The initial state of the whole system reads

|Φ0〉 = |Ψ2〉 ⊗ |Ψ1〉 = (6)

s

N−1∑
j=0

M−1∑
l=0

(
a
(1)
jl |j〉R1 |l〉C1 |0〉D1 |0〉R2 |0〉C2 |1〉D2 +

a
(2)
jl |0〉R1 |0〉C1 |1〉D1 |j〉R2 |l〉C2 |0〉D2

)
+ |g1〉R1C1R2C2D1D2 .

Our aim is to organize the sum a
(1)
jl + a

(2)
jl and label the garbage. To this end we introduce the 1-qubit

ancilla B1 in the ground states |0〉B1
, and define the operator

W (m) = P
(m)
D1D2

⊗ σ(x)
B1

+ (ID1D2
− P (m)

D1D2
)⊗ IB1

, (7)

where σ(x)
B1

is the Pauli matrix, and P (m)
D1D2

(m = 1, 2) are the projectors

P
(1)
D1D2

= |1〉D1
|0〉D2 D1

〈1|D2
〈0|, (8)

P
(2)
D1D2

= |0〉D1 |1〉D2 D1〈0|D2〈1|.

Obviously, [W (1),W (2)] = 0. Applying the operatorW (1)
D1D2B1

= W (1)W (2) to |Φ0〉|0〉B1
we obtain:

|Φ1〉 = W
(1)
D1D2B1

|Φ0〉 ⊗ |0〉B = (9)

s

N−1∑
j=0

M−1∑
l=0

(
a
(1)
jl |j〉R1

|l〉C1
|0〉D1

|0〉R2
|0〉C2

|1〉D2
+

a
(2)
jl |0〉R1

|0〉C1
|1〉D1

|j〉R2
|l〉C2
|0〉D2

)
|1〉B1

+

|g1〉R1C1R2C2D1D2
|0〉B1

.

Now we construct the control operator

W
(2)
D1R1C1R2C2

= |1〉D1 D1
〈1| ⊗ SWAPR1,R2

SWAPC1,C2
+

|0〉D1 D1
〈0| ⊗ IR1C1R2C2

that acts on |Φ1〉 and swaps the states of R1 with R2 and states of C1with C2 to yield

|Φ2〉 = W
(2)
D1R1C1R2C2

|Φ1〉 = (10)

s

N∑
j=1

M∑
l=1

(
a
(1)
jl |j〉R1

|l〉C1
|0〉D1

|0〉R2
|0〉C2

|1〉D2
+

a
(2)
jl |j〉R1

|l〉C1
|1〉D1

|0〉R2
|0〉C2

|0〉D2

)
|1〉B1

+

|g2〉R1C1R2C2D1D2
|0〉B1

.
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We notice that the SWAPs in the control operator W (2)
D1R1C1R2C2

have common single control and are
related to different pairs of qubits; therefore they can be applied simultaneously. Consequently, the
depth of this operator is O(1). Next, we apply the Hadamard operators W (3)

D1D2
= HD1HD2 to D1

and D2:

|Φ3〉 = W
(3)
D1D2

|Φ2〉 =
s

2

N−1∑
j=0

M−1∑
l=0

(a
(1)
jl + (11)

a
(2)
jl )|j〉R1

|l〉C1
|0〉D1

|0〉R2
|0〉C2

|0〉D2
|1〉B1

+

|g3〉R1C1D1R2C2D2B1 .

Thus, the sum of two matrices is stored in the first term of |Φ3〉. To label the garbage, we prepare the 1-
qubit ancillaB2 in the state |0〉B2 , introduce the projectorPD1,D2,B1 = |0〉D1 |0〉D2 |1〉B1 D1〈0|D2〈0|B1〈1|
and apply the control operator W (4)

D1D2B1B2
= PD1D2B1 ⊗ σx

B2
+ (ID1D2B1 − PD1D2B1) ⊗ IB2 to

|Φ3〉|0〉B2
:

|Φ4〉 = W
(4)
D1D2B1B2

|Φ3〉|0〉B2
=
s

2

N−1∑
j=0

M−1∑
l=0

(
(a

(1)
jl +

a
(2)
jl )|j〉R1

|l〉C1
|0〉D1

|0〉R2
|0〉C2

|0〉D2

)
|1〉B1

|1〉B2
+

|g2〉R1C1D1R2C2D2B1
|0〉B2

.

Finally, on measuring the ancilla B2 with the output |1〉B2
we remove the garbage and obtain

|Φ5〉 = |Ψout〉|0〉D1
|0〉R2

|0〉C2
|0〉D2

|1〉B1
,

|Ψout〉 = G−1
N−1∑
j=0

M−1∑
l=0

(a
(1)
jl + a

(2)
jl )|j〉R1

|l〉C1
,

where the normalization G= (
∑

jl |a
(1)
jl + a

(2)
jl |2)1/2 is known from the probability of the above mea-

surement which is s2G2/4. It follows from the above consideration that the depth of this protocol is
O(1). The circuit is given in Fig. 1(e).

4 Matrix Multiplication

We present a protocol for multiplying N ×K matrix A(1) by K ×M matrix A(2), with the elements
A(i) = {a(i)jk }, i = 1, 2, assuming N = 2n, K = 2k, M = 2m with positive integers n, k, m.

We first introduce one register of n qubits, two registers of k qubits and one register of m qubits
which enumerate rows and columns of both matrices. The pure states encoding the elements of matri-
ces are

|Ψi〉 =
∑
jl

a
(i)
jl |j〉Ri |l〉Ci , (12)

∑
jl

|a(i)jl |
2 = 1. (13)
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The initial state of the whole system reads

|Φ0〉 = |Ψ2〉 ⊗ |Ψ1〉 = (14)
N−1∑
j1=0

K−1∑
l1,j2=0

M−1∑
l2=0

a
(1)
j1l1

a
(2)
j2l2
|j1〉R1

|l1〉C1
|j2〉R2

|l2〉C2
.

We also consider the k-qubit ancilla A in the ground state |0〉A. Now we define the operators
W

(m)
j (m = 0, 1)

W
(m)
j = P

(m)
j ⊗ σ(x)

A,j + (Ij − P (m)
j )⊗ IA,j , (15)

where IA,j is the identity operators acting on the jth qubit of the ancilla A, Ij is the identity operator
acting on the 2-qubit subsystem including the jth qubits of C1 and R2, and
P

(m)
j = |mj〉C1

|mj〉R2 C1
〈mj |R2

〈mj | are the projectors acting on the jth qubits of C1 and R2.

All operators W (m)
j , mj = 0, 1, j = 1, . . . ,K commute with each other. Applying the operator

W
(1)
C1R2A

=
∏k

j=1W
(1)
j W

(0)
j to |Φ0〉|0〉A we obtain:

|Φ1〉 = W
(1)
C1R2A

|Φ0〉|0〉A = (16)N−1∑
j1=0

K−1∑
j=0

M−1∑
l1=0

a
(1)
j1j
a
(2)
jl1
|j1〉R1

|j〉C1
|j〉R2

|l1〉C2

 |K − 1〉A +

|g1〉R1C1R2C2A.

Since the operators W (1)
j and W (0)

j with different j are applied to different triples of qubits, they can
be performed in parallel. To label the garbage, we introduce the projector PA = |K − 1〉A A〈K − 1|
together with the 1-qubit ancilla B1 in the ground state |0〉B1 . Then we construct the control operator
W

(2)
AB1

= PA ⊗ σ(x)
B1

+ (IA − PA)⊗ IB1
, and apply it to |Φ1〉|0〉B1

:

|Φ2〉 = W
(2)
AB1
|Φ1〉|0〉B1

= (17)N−1∑
j1=0

K−1∑
j=0

M−1∑
l1=0

a
(1)
j1j
a
(2)
jl1
|j1〉R1 |j〉C1 |j〉R2 |l1〉C2

×
|K − 1〉A|1〉B1

+ |g1〉R1C1R2C2A|0〉B1
.

This k-qubit control operator has depthO(k). Now we apply the Hadamard transformationsW (3)
C1R2A

=

H⊗3k to C1, R2 and A:

|Φ3〉 = W
(3)
C1R2A

|Φ2〉 =

1

23k/2

N−1∑
j1=0

K−1∑
j=0

M−1∑
l1=0

a
(1)
j1j
a
(2)
jl1
|j1〉R1

|0〉C1
|0〉R2

|l1〉C2

×
|0〉A|1〉B1

+ |g2〉R1C1R2C2AB1
.

Here the first term contains the desired matrix product. Next, to label the new garbage, we pre-
pare another one-qubit ancilla B2 in the ground state |0〉B2

, introduce the projector PC1R2AB1
=
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|0〉C1 |0〉R2 |0〉A|1〉B1 C1〈0|R2〈0|A〈0|B1〈1| and the control operator W (4)
C1R2AB1B2

= PC1R2AB1 ⊗
σ
(x)
B2

+ (IC1R2AB1 − PC1R2AB1) ⊗ IB2 of the depth O(k) with (3k + 1)-qubit control register. Ap-
plying this operator to |Ψ3〉|0〉B2

we obtain

|Φ4〉 = W
(4)
C1R2AB1B2

|Φ3〉|1〉B2 = (18)

1

23k/2

N−1∑
j1=0

K−1∑
j=0

M−1∑
l1=0

a
(1)
j1j
a
(2)
jl1
|j1〉R1

|0〉C1
|0〉R2

|l1〉C2

×
|0〉A|1〉B1 |1〉B2 + |g3〉R1C1R2C2AB1 |0〉B2 .

Performing measurement over B2 with the output |1〉B2
we remove garbage and obtain

|Φ5〉 = |Ψout〉 |0〉C1
|0〉R2

|0〉A|1〉B1
,

|Ψout〉 = G−1
N−1∑
j1=0

K−1∑
j=0

M−1∑
l1=0

a
(1)
j1j
a
(2)
jl1
|j1〉R1 |l1〉C2 ,

where the normalization G= (
∑

j1,l2
|
∑

j a
(1)
j1j
a
(2)
jl1
|2)1/2 is known from the probability of the above

measurement which equals G2/23k. The result of multiplication is stored in the registers R1 and C2.
From the above analysis we conclude that the depth of the whole protocol is defined by the operators
W

(2)
AB1

and W (4)
C1R2AB1B2

and equals O(k) = O(log(K)). The circuit is given in Fig. 1(f).
We emphasize that inner vector product and matrix addition can be recast as matrix multiplication.

The inner product of two N -element vectors is the product of 1 × N and N × 1 matrices A(1) and
A(2), while the sum of N ×M matrices A(1) and A(2) can be found in the result of the product of the
following 2N × 2M matrices

Ã(1) =

(
A(1) INM

0NM 0NM

)
, Ã(2) =

(
INM 0NM

A(2) 0NM

)
⇒

Ã(1)Ã(2) =

(
A(1) +A(2) 0NM

0NM 0NM

)
,

where INM and 0NM are, respectively, the N ×M identity and zero matrices.
Remark on probability amplification. In the algorithms of calculating the inner product and matrix

multiplication, the probability of obtaining the needed ancilla state |1〉 in result of measurement is not
large, it is ∼ 1/N3 ≤ 1/2. Partially, the problem of small probability can be solved performing the
set of L experiments on different processors, although this method is not very effective in our case
because the probability of needed result in single measurement doesn’t exceed 1/2. For instance, we
assume that the state |0〉 of the ancilla appears with probability 1−1/N3 in result of the measurement.
Then, performing L = N3 experiments we obtain that the probability of getting |0〉 in all experiments
is (1−1/N3)N

3

tends to e−1 asN →∞. Then the probability of measuring |1〉 is (1−e−1)→ 0.632.
This is rather large value, but the price is the increase in the required space N3 times.

Example of matrix multiplication. As an example, we multiply two 2× 2 matrices

A1 =

(
0.4 0.4
0.2 0.8

)
, A2 =

(
0.4 0.2
0.4 0.8

)
. (19)
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Thus, N = M = K = 2, n = m = k = 1. Normalizations (13) hold for these matrices. Each
subsystem Ri, Ci, i = 1, 2, includes only one qubit and

|Ψ1〉 = 0.4|0〉R1
|0〉C1

+ 0.4|0〉R1
|1〉C1

+ (20)

0.2|1〉R1 |0〉C1 + 0.8|1〉R1 |1〉C1 ,

|Ψ2〉 = 0.4|0〉R2 |0〉C2 + 0.2|0〉R2 |1〉C2 +

0.4|1〉R2
|0〉C2

+ 0.8|1〉R2
|1〉C2

.

The ancilla A includes one qubit, operators Wm)
1 are given by the expression

W
(m)
1 = P

(m)
1 ⊗ σ(x)

A + (I1 − P (m)
1 )⊗ IA, m = 0, 1, (21)

where projectors read

P
(0)
1 = |0〉C1 |0〉R2 C1〈0|R2〈0|, (22)

P
(1)
1 = |1〉C1 |1〉R2 C1〈1|R2〈1|.

We also have

W
(2)
AB1

= PA ⊗ σ(x)
B1

+ (IA − PA)⊗ IB1 (23)

with PA = |1〉A A〈1|. The operator W (3)
C1R2A

= H⊗3, the projector PC1R2AB1
remains the same as

well as the operator W (4)
C1R2AB1B2

. Finally, we obtain after measurement of the ancilla B2 resulting
in |1〉B2 with the probability G2/23 = 0.1106, G =

√
0.8848:

|Ψout〉 = G−1
(

0.32|0〉R1 |0〉C2 + 0.4|0〉R1 |1〉C2 + (24)

0.4|1〉R1 |0〉C2 + 0.68|1〉R1 |1〉C2

)
.

5 Conclusion

We proposed protocols for inner product of two vectors, matrix addition and matrix multiplica-
tion. The protocols employ tensor product of quantum states to get product of matrix elements, the
Hadamard transformations convert those products into sums, and ancilla measurements remove the
garbage that appears along with the useful result. In all three protocols the result is conserved in the
probability amplitudes of certain quantum states, so that the matrices obtained as result of multiplica-
tion or addition can be used in further calculations. It is remarkable that the depth of the protocols for
inner product and matrix multiplication increases logarithmically with the dimension of the considered
matrices, while that of addition protocol is O(1) and doesn’t depend on matrix dimensionality.
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[19] A. Luis, J. Peřina, Optimum phase-shift estimation and the quantum description of the phase
difference, Phys. Rev. A 54, 4564 (1996).

[20] J. Stolze, and A. I. Zenchuk, Computing scalar products via a two-terminal quantum transmission
line, Phys. Lett. A 383, 34 (2019).

[21] W. Qi, A. I. Zenchuk, A. Kumar, J. Wu, Quantum algorithms for matrix operations and linear
systems of equations, Commun. Theor. Phys. 76, 035103 (2024).

[22] Z. Hu, S. Kais, Characterization of quantum states based on creation complexity, Adv. Quantum
Technol. 3, 2000043 (2020).

[23] A. Y. Kitaev, A. H. Shen, M. N. Vyalyi, Classical and Quantum Computation, Graduate Studies
in Mathematics, V.47, American Mathematical Society, Providence, Rhode Island (2002).

https://doi.org/10.48550/arXiv.quant-ph/0201067
https://doi.org/10.48550/arXiv.quant-ph/0201067
https://doi.org/10.1103/PhysRevLett.86.1889
https:///doi.org/10.1098/rspa.1998.0164
https:///doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1103/PhysRevA.54.4564
https://doi.org/10.1016/j.physleta.2019.125978
 https://doi.org/10.48550/arXiv.2202.04888
https://doi.org/10.1002/qute.202000043
https://doi.org/10.1002/qute.202000043

	Introduction
	Inner product
	Matrix Addition
	Matrix Multiplication
	Conclusion

