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Quantum computing is the turning point that represents a revolution in software de-
velopment that will make it possible to solve those problems unsolvable with classical

computing. Just as in other milestones in the history of software development, such as
the adoption of object-oriented systems, where new software development processes and

new life cycles emerged, with the quantum computing revolution, a new life cycle for

quantum and hybrid software systems is needed. Although there are some life cycle pro-
posals for quantum software systems, most of them do not comprehensively address the

specific needs of these systems. In this paper, a quantum life cycle proposal is presented

adapted from the Incremental Commitment Spiral Model (ICSM) and an example of its
use is presented.

Keywords: Life cycle model, hybrid systems, quantum software, quantum software pro-
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1 Introduction

Many problems that have until now been impossible to solve, in practical terms, might be

able to be addressed using quantum computing [1]. “Quantum computing is at an inflec-

tion point with significant barriers to cross yet a world of opportunities ahead” [2]. These

opportunities are (and will be) taking place in various fields such as cryptography, artificial

intelligence, communications, optimization, pharmacology, medicine, chemistry, and materials

development, among many other sectors [3, 4, 5].

Notwithstanding preliminary demonstrations of such advances and their potential, the

advantages offered by quantum computing cannot be realized through the use of cutting-edge

quantum computers in isolation, but rather quantum software is also required, and this will

undoubtedly play an important role [6, 7]. Definitely, “software is the invisible writing that

whispers the stories of possibility into our hardware” [8].

Quantum software technology has undergone a big-bang approach in the last few years.

There is a wide variety of quantum programming languages [9], many quantum develop-

ment environments [10, 11], and a wide variety of types of quantum simulators and hardware.

Thereby, the quantum software programming techniques we have as of today have been exper-

imentally proposed in an ad hoc manner. Consequently, there is still not a specific methodol-
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ogy or process for developing high-quality quantum software. This gap is not easy to reliably

fill even for those experienced in the design and development of classical software because

the design, development, and analysis of quantum software are fundamentally different from

classical software development practices prevalent today [12].

One of the most important problems in any information systems department is to define a

common reference framework that can be used by all the people involved in the development

of the systems, and in which the processes, activities, and tasks to be carried out are defined.

Traditionally, the main professional organizations and international bodies have been dealing

with the life cycle of systems and software. Thus, for example, both IEEE and ISO/IEC have

published over time several standards entitled, respectively, ”IEEE Standard for Developing

Software Life Cycle Processes” and ”Information Technology - Software life-cycle Processes”.

They currently propose a joint ISO/IEC/IEEE 12207 standard [13], which defines a life-

cycle model as ”a framework of processes and activities concerning the life cycle, which can

be organized in stages, and which serves as a common reference for communication and

understanding”.

Most of these processes can be adapted for quantum software development. Some pro-

cesses, for example, such as procurement, will become more important since it is very likely

that to develop and offer quantum services, computing resources will have to be bought on

various quantum platforms on-demand, since quantum computers will be hardly ever avail-

able on-premises. What will change in those processes will be the methods and tools when

carrying out a specific process. For example, in the case of the system/software requirements

definition, and analysis and design processes, extensions of the UML language for quantum

software may have to be used [14, 15].

In the depicted landscape, what will probably change the most will be the quantum

software lifecycle model. The lifecycle model adopted in a software development project

influences the speed of development, improves quality assurance, control, and monitoring of

the project, minimizes costs and risks, and improves customer relationships, among others. A

wrong lifecycle selection can be a constant source of work slowdown, repetitive, unnecessary,

and frustrating work.

It should also be borne in mind that, as the Talavera Manifesto [7] states: “QSE embraces

the coexistence of classical and quantum computing”, so the adequate lifecycle model should

deal with both types of software. Hence, both classical and quantum software modules must

be developed to be integrated and operated together within hybrid information systems [16],

i.e., software systems combining quantum and classical software that works together. Hence,

a lifecycle model for developing quantum software must also consider that feature. Akbar et

al. [17] categorize various QSE challenges, from which this paper specifically deals with two

of them, the 14th challenge: “Integration with classical computing”, and the 22nd challenge:

“Project management issues”.

• Regarding classical-quantum software integration, quantum software cannot be devel-

oped and operated in isolation. “A key challenge is to, eventually, fully integrate these

types of systems into a unified classical and quantum software development lifecycle”

[18]. Thus, there are some issues, for example, the interpretation of results by the

classical counterpart, since quantum computations are stochastic [19]. Also, new archi-

tectural paradigms and design patterns will be necessary to develop quantum software
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effectively [20].

• Regarding project management, there are some issues like risk management specifically

framed in the development of hybrid software systems. For example, a limited avail-

ability of real quantum hardware, which leads to test quantum software in simulators,

sometimes leads to different results when the quantum software is executed in the pro-

duction environment. Other risks with a high impact on the success of quantum software

development projects are standardized tools and frameworks, or scalability [21].

The remainder of this paper is organized as follows: Section 2 presents an overview of

lifecycle model evolution, while Section 3 discusses some related work about quantum software

lifecycle models. Section 4 introduces the ICSM foundations and principles. Section 5 presents

the hybrid quantum software lifecycle model proposed, and Section 6 provides the key decision

input and some risk pattern examples to illustrate its application. Lastly, some conclusions

and future research are detailed.

2 Evolution of software lifecycle models

In the history of software engineering, several breakthroughs have happened at different times

[22]. The evolution of Software Engineering is “bottom-up” since it was developed after com-

puter science foundations and computer manufacturing had already been laid. First, and most

notably, the diffusion of third-generation languages such as COBOL in the 70s, resulted in the

structured design techniques proposed by Myers, Yourdon, and Constantine; subsequently,

the E/R model was defined by Chen, Gane and Sarson, DeMarco and Weinberg came up with

structured analysis. In the 1980s comprehensive methodologies (Merise, SSADM, Information

Engineering, etc.) were published. Grady Booch considers this period to be the first “golden

age” of software engineering [8].

Regarding lifecycle models, the original version of the waterfall model of the life cycle was

proposed by Royce [23] and since then, numerous refinements and variations of the model have

appeared [24, 25]. This model received numerous criticisms [26] because software development

is not linear and because it takes a long time to deliver something of value with a waterfall

model. Because of this, other models appeared such as the Incremental [27] or the Spiral

model [28].

In the 90s, the hot topic became object orientation, which presented object-oriented analy-

sis, design, and development patterns. Frontiers between software lifecycle phases are blurred

and, as a result, new software lifecycles emerged: Cluster model [29], Fountain model [30],

“Pinball” model [31], etc., and a little later, the Unified Software Development Process [32]

with a use-case driven, architecture centered, iterative and incremental software lifecycle

model. In these years agile methodologies also began to disseminate, and therefore life cycle

models such as the ones used in conjunction with Extreme Programming (XP) [33] and Scrum

[34].

In turn, it was de adoption of Object-Oriented adoption that provided the seeds for the

later model-driven architecture at the beginning of the 21st century. More agile and automatic

development models were also used in the latter part of the first decade of this century, where

DevOps or “continuous software engineering” [35] began to be widely adopted. A synthesis
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of all these software lifecycle models can be found in the ICSM (Incremental Commitment

Spiral Model) proposed by Boehm et al. [36, 37].

In the last 5 years, quantum computing has begun to make inroads into the industrial

world [38] and we are convinced that it will be the main driver for a new software engineering

golden age during this decade [39]. So, we need to adapt some of these well-known lifecycle

models to this new scenario or specifically define a new one for quantum software production.

3 State of the art

There is very little research in the quantum field from a software engineering point of view,

particularly concerning the languages and software development phases [40]. We have found

only a few academic proposals for quantum lifecycle models.

Zhao [41] proposed a slight adaptation of the waterfall model, with five phases: quantum

software requirements analysis, quantum software design, quantum software implementation,

quantum software testing, and quantum software maintenance. He also introduced each phase

from the perspective of quantum software development. The main problem with this model

is that it inherits all the weaknesses of the classical waterfall life cycle that are aggravated

(e.g., in the case of risks) with quantum software development.

In [42], a quantum development life cycle (QDLC) inspired by the waterfall model is

proposed, with the following stages: feasibility study, system requirement specification, system

design, software implementation and coding, system testing, and system maintenance and

software quality management. In the quantum software implementation and coding phase the

authors propose a first step (high-level programming abstractions) to separate classical and

quantum functions. The second step is done by using logical-level schedulers and optimizers,

and the third one, with physical-level schedulers and optimizers during the synthesis flow of

quantum circuits. The last step of this stage is to get low-level constructs for device control

firmware. In this model, in addition to the same previous weakness regarding the cascading

life cycle, the quality assurance process is included within one stage of the lifecycle.

Weder et al. [43] proposed an iterative model based on ”quantum data provenance”, which

serves in different phases of the life cycle such as error analysis or quantum hardware selection.

This model consists of ten phases: 1) quantum-classical splitting, 2) hardware-independent

implementation, 3) quantum circuit enrichment, 4) hardware-independent optimization, 5)

quantum hardware selection, 6) readout-error mitigation preparation, 7) compilation & hard-

ware dependent optimization, 8) integration, 9) execution, and 10) result analysis. The first

phase decides which parts of the problem are solved on a quantum computer and which parts

are solved on a classical computer based on the requirements of the problem description. This

is perhaps the life cycle model best suited to the specific characteristics of quantum software,

but this model does not manage risks and value-based decisions throughout the lifecycle very

well, losing some of the advantages of classical models, especially when developing hybrid

information systems.

As far as the main manufacturers of quantum software are concerned, they do not make

concrete proposals, limiting them to a few steps, for example, in the case of IBM Qiskit

saying that: “A basic workflow using Qiskit consists of two stages: Build and Execute. Build

allows you to make different quantum circuits that represent the problem you are solving and

execute that allows you to run them on different backends” [44]. The lifecycle presented by
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Amazon Braket is somewhat more elaborate distinguishing four phases: Build, Test, Run,

and Analyze [45]. QPath provides a toolchain supporting the development of hybrid software

systems in a technology-agnostic way [46], which considers four phases: design, construction,

testing, and execution of quantum software assets.

4 ICSM foundations and principles

The Incremental Commitment Spiral Model (ICSM) was proposed by [36]. ICSM defines “a

process model that extends the scope of the original spiral model for software development

to cover the definition, development, and evolution of cyber-physical-human systems” [37].

ICSM proposes a risk-based framework that is based on some principles and is aimed at

“defining and evolving project and corporate process assets, avoiding pitfalls and disruption,

and leveraging opportunities to increase value” [36].

ICSM uses four essential principles to determine whether, where, and when to use can-

didate common-case process elements (reuse-based, prototype-based, agile, architected agile,

plan-driven, product-line, systems of systems, legacy-based, etc.). The four essential princi-

ples are [37]:

• Stakeholder value-based system evolution: ICSM focuses on the value of the system to

stakeholders and the evolution of the system to meet their needs.

• Incremental commitment and accountability: ICSM emphasizes incremental commit-

ment and accountability to ensure that the system evolves in a controlled and manage-

able way.

• Concurrent multi-discipline engineering: ICSM promotes concurrent multi-discipline

engineering to ensure that all aspects of the system are considered and integrated.

• Evidence and risk-based decisions: ICSM uses evidence and risk-based decisions to

ensure that the system evolves in a way that is consistent with the needs of stakeholders

and the goals of the organization 1.

ICSM is not defined to be applied massively to any software development process or com-

pany. Instead of this, ICSM is designed to be tailored to the specific needs of an organization.

The overall lifecycle proposed in ICSM, as shown in Figure 1, comprises two major stages,

which in turn consider various activities [36]:

• State 1. Incremental Definition. It covers the up-front growth in system understanding,

definition, feasibility assurance, and stakeholder commitment. This stage considers

three main activities:

– Exploration, which defines the initial scope of the project.

– Valuation, devoted to specifying the initial concept of the software systems as well

as a viability analysis.

– Foundations, aimed at defining the architecture baseline and the main system

operations. This activity also focuses on specifying increment plans.
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• Stage 2. Incremental Development Operations and Production. This stage is aimed at

implementing a feasible set of specifications and plans for incremental development and

operations of the desired system. This stage iteratively considers increments with the

following activities:

– Development, that provides the software increment previously defined (i.e., explo-

ration, valuation, and foundations).

Production and Operation, aimed at making the developed increment accessible in

the production environment.

Fig. 1. Stages and activities defined in the incremental commitment spiral model. Adapted from

[36].

5 Quantum ICSM Guidelines Proposal

We propose a set of guidelines to adapt the usage of ICSM (Incremental Commitment Spiral

Model), proposed by Boehm et al. [36], to hybrid quantum software development. ICSM

is based on four principles: stakeholder value-based guidance, incremental commitment and

accountability, concurrent multidiscipline engineering, and evidence- and risk-based decisions.

The rationale for considering ICSM as the basis for the proposed lifecycle model lies in

the fact that challenges that attempt to address ICSM [36] are almost the same that hybrid

quantum software development projects face:

Multi-owner, multi-mission systems of systems (SoS). The nature of hybrid software sys-

tems can be considered in that way since new quantum software algorithms have to be inte-

grated with numerous independently evolving legacy or external systems. On the one hand,

quantum algorithms could be dynamically built regarding data produced by classical soft-

ware systems. On the other hand, outputs of quantum software components are used by

other existing software systems that probably need to accomplish some adaptations.

• Emergence and human intensiveness with many requirements not pre-specifiable, bud-

gets and schedules not pre-specifiable which lead to a need to manage uncertainty and
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risk. Quantum software development project has specific success factors in compari-

son with classical software. Thus, [21] points out that resources and specialized skills

are some of the most critical success factors. Hybrid software development has, gen-

erally, genuine risks that classical software does not have. For example, lack of tools

for covering specific software development tasks like debugging and testing, the need

for involving multidisciplinary teams, and well-founded architectural software patterns,

among others.

• Rapid pace of change that claims for incremental developments and adaptability to avoid

technology obsolescence and changes in mission priorities. Although classical software

development experienced those challenges, hybrid software development must deal with

a higher pace of changes in quantum software technology [18]. On the one hand, there

is a race with the major quantum hardware vendors developing scalable machines with

more and better qubits [47], which in some cases can constrain and impact how quantum

software is designed and developed. On the other hand, quantum software technology

is in a big-bang approach with plenty of programming languages, and tools that change

every day [11].

Figure 2 shows the overview of the ICSM model. It proposes working in iterations that

incrementally add activities of the next phases. At the end of each iteration, a new increment

is provided, and an evidence- and risk-based commitment review is done. The result of the

assessment can determine a risk to be: i) negligible, then the process continues with a new

increment and new phases of the process; ii) acceptable, then the process stays working in

the same increment, same phases; iii) high, but addressable, then the process backtracks

and works in an increment involving past phases; or iv) too high or unaddressable, then the

decision could be to discontinue the project.

ICSM differentiates between two stages: i) incremental definition (cf. section 5.1), and

ii) incremental development operations & production (cf. section 5.2). Each stage, in turn,

defines various phases.

5.1 Incremental Definition Stage

The first stage consists of three phases: exploration, valuation, and foundations. [36] advise

that these three phases may be combined in simple cases and depending on the risk assessment.

However, we think that in hybrid/quantum information systems is important to keep these

three phases separated and get a management and technical foundation to develop a robust

and flexible architecture stable and predictable.

5.1.1 Exploration Phase

This phase groups 5 activities: clarify and assess need/potential benefits, conduct a gap

analysis against existing capabilities, develop initial concept description, identify potentially

feasible alternatives for further analysis, and capture risks and develop mitigation plans. This

phase starts with a proposal explaining the need and context for the need and produces

several outputs: initial concept description, business case for need, list of feasible alternatives

for further analysis, key risks and mitigation plans, and guidelines/need budget for further

analysis.
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Fig. 2. The incremental commitment spiral model. Adapted from [36].

In our case, it will be necessary to explore and determine the different alternatives. ICSM

suggests using decision tables or trees. In this case, these decisions could be:

• Solve the problem with classical software.

• Solve the problem with hybrid systems, i.e., classical and some quantum routines. Then,

it must be explored both quantum computing paradigms: (i) gate-based quantum com-

puting; and (ii) annealing quantum computing.

There are some proposals [48] that attempt to determine what functionalities make sense

to be developed as quantum software. Similarly, [49] provides a decision-making framework

for use cases of quantum and quantum-inspired algorithms. This work focuses on the method-

ological part to decide if a use case should, or should not, be developed as quantum software.

Apart from considering the different technological alternatives, it is necessary –in the case

of using quantum computing– to explore if there is already a quantum algorithm that could

be reused to solve the problem, or if it is necessary (and feasible) to create a new one adapted

to the problem.

Given that quantum computing is a rather new technology, more detailed feasibility evi-

dence must be required to support the commitment review to proceed further.

5.1.2 Valuation Phase

This phase groups 6 activities: refine and implement the valuation plan developed in the

Exploration Phase, monitor changes in needs/opportunities/risks, adapt plans to address
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identified changes, evaluate results of valuation activities, develop foundations strategy and

plans, and update risks and mitigation risks plans. This phase takes as inputs the outputs

of the previous phase and produces the following outputs: analysis of any prototypes, up-

dated risks and mitigation plans, approved foundations strategy plan, and key stakeholder

commitments/MOAs (memorandums of agreement).

One of the big issues for quantum software is that it must operate in cooperation with

classical software. So, in this phase it is very important to analyze if there exists:

• Any existing information system which could be “reengineered” (totally or partially) to

the quantum world. If any, a modernization software approach could be followed in the

next stage [16].

• Any existing quantum library that could be used, usually in a specific domain such as

Chemistry, Physics, etc.

• Any specific need for the quantum system to interoperate with the classical software

counterpart. If any, there are proposals for modeling the integration of quantum software

[50], oriented to the orchestration of classical and quantum software computations [43],

oriented to the architectural design [14, 15], or graph-based modeling [51]. Such models

could help in this phase to comprehend and evaluate the target system.

Regarding the valuation, it should be noted that quantum systems are costly, so perhaps

it should be considered a first prototyping and testing phase using a simulator and later the

final implementation in a real quantum computer. Analyzing potential quantum simulators

is one activity that might be accomplished within the third point discussed.

5.1.3 Foundation Phase

This phase groups 7 activities: ensure technology readiness for needed capabilities, monitor

changes in needs/opportunities/risks, prototype and evaluate various alternatives, select ac-

quisition development strategies, prioritize features requirements for development, develop

a plan for the development based upon prioritization, and update risks and mitigation risk

plans. As outputs of this phase: list of approved features/requirements allocated to compo-

nents of configuration items, approved development plan, feature allocation to increments,

updated risks, and mitigation plans, updated key stakeholder commitments/MOAs, requests

for proposals for outsourced development.

Perhaps the most difficult task will be the definition of a hybrid fully developed system

architecture, with the planning of all the needed connections between classical and quantum

systems and the tailoring needed in quantum algorithms and software libraries. According

to the current service-orientation trend, quantum software can be also delivered and con-

sumed as a service. There are preliminary approaches to developing quantum software as

a service [52]. Service orientation provides many advantages, but also comes up with addi-

tional risks/challenges to be considered, e.g., service composition, configuration management,

monitoring, and security, among others.

As current quantum computers are NISQ (Noisy Intermediate-Scale Quantum), i.e., lim-

ited with quantum computations disturbed by errors [53], the “quality” tolerance levels needed

by the problem must be considered. Another issue is the stability of the quantum vendors,
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which (even in the case of the main one) is not guaranteed due to the lack of maturity of the

technology.

Another important risk in this stage is the outsourcing contracts with specialized quantum

developers and researchers. Due to the lack of workforce in this field [54, 55, 56], this challenge

should be managed as well.

5.2 Incremental Development Operations & Production Stage

The second stage consists of two phases, the development and production stages.

5.2.1 Development Phase

This phase takes as inputs: a list of approved features/requirements, problems reported

against the currently deployed system, approved changes, approved development plan, feature

allocation to increments, updated risks and mitigation plans, updated stakeholder commit-

ments/MOAs, and proposals for outsourced development. As the output of this phase, the

model proposed the “system ready for production/deployment”. This phase is divided into

two types of increments: initial with 4 activities, and follow-up increments with 7 activities.

The initial increment, with 4 activities, sets up development environments; develops de-

tailed design; selects hardware, COTS (Commercial Off-the-Shelf) products, and outsources

vendors; and updates foundations as needed based on selections.

Regarding quantum software, the previously explored and evaluated quantum platforms

and other needs are eventually selected, and an initial architectural design is provided. Also,

a draft of the communications schema between classical and quantum software is defined.

All the subsequent increments have the following 7 activities:

• Update detailed design. In this activity, the design of classical and quantum modules

is completed. At this point, “hardware-software co-design approaches offer the potential

to efficiently and effectively achieve the best mappings of challenging applications onto

constrained hardware” [57]. Co-design is important because of the current NISQ devices,

and changes in quantum hardware may require revisiting previous phases of ICSM life

cycle. Co-design and abstractions between layers of the technological stack (hardware-

software) must be used in combination to deliver a detailed design.

• Procure/develop/ integrate hardware components. In this activity is especially

important to ensure availability and compatibility of all the quantum resources involved

in the target system.

• Develop/procure/integrate software features/requirements according to the

development plan. This activity includes coding tasks to get executable software

artifacts, both classical and quantum. At this point, the integration between classical

and quantum software is detailed. There exist some design techniques to manage this,

for example, the density matrix for classical and quantum software proposed by [58].

• Monitor changes in needs/opportunities/risks. Before completing every incre-

ment, quantum functionality should be evaluated. At some point, the development of

some functionalities, that were decided to be supported by quantum computing, can

experience some troubles, or get unexpected results. Or the other way around, new
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opportunities can suggest shifting some classical functionalities to quantum. Potential

risks should be also analyzed, most of them are related to the current volatility of today’s

quantum software development technology.

• Update foundations as needed. Similar to the previous activity, quantum software

development is a boiling field of research.

• Conduct continuous verification and validation (V&V). This is an important

activity. The ordinary testing and verification efforts must be done individually for

both, classical and quantum software. Of course, quantum software testing is a field to

be explored yet [59]. Testing quantum software (gate-based or quantum annealing) is not

trivial due to the non-deterministic and probabilistic nature of quantum software. Even

so, there are some preliminary testing approaches [60, 61]. Together with unitary testing,

integrating and system testing deserve a lot of attention. Here, how quantum software

computes results and how these are returned and interpreted by classical software is

critical. Another important challenge within this activity is the optimization of quantum

software. For example, there are various works for optimizing quantum circuits in gate-

based platforms (i.e., reducing the number of operations or qubits), while in quantum

annealers the weights and factors of the underlying Hamiltonians can be also optimized.

Finally, it is important to conduct acceptance tests that cover whole workflows, i.e.,

those that include classical and quantum software.

• Update approved features, risks, and mitigations at the end of each incre-

ment.

5.2.2 Production and Operations Phase

This phase is divided into two types of increments:

• Production. It takes as inputs the approved production plans and consists of 5 activ-

ities: acquire/establish production or manufacturing facilities and resources, produce

systems units under approved production plans/orders, develop maintenance strategies

and plans for the system, produce user information/training materials, and produce help

desk support materials. We can find outputs like system units ready for operations, user

information/training materials, help desk materials and training, and maintenance and

logistics plans.

When quantum software is released and deployed to production, specific concerns about

the quantum computers that will run routines of quantum software must be taken into

account. As we introduced, most of today’s quantum computers are operated in the

cloud. Thus, various alternatives for services and billing should be considered. Since,

quantum software may have been developed with quantum simulators or emulators,

compatibility of the developed software and the target quantum computers should be

managed.

• Operations. It takes as inputs; approved operations and support plans, system up-

dates, and help desk updates. It consists of 4 activities: distribute and support system

units and components under approved plans, distribute and support approved system

changes under approved plans, operate system help desk and provide user assistance as



82 Guidelines to use the ICSM for developing quantum-classical systems

requested, and triage user problem reports and change requests and forward to Develop-

ment as needed. We have two kinds of outputs: support (problem reports to be resolved

and change requests for implementation consideration); and end-of-life (authorization

to replace, retire, or dispose of system).

For quantum software development, the operation increment should be aware of quan-

tum computing noise, regarding the current NISQ devices. Every time quantum software

is performed, results could slightly vary. During the operation phase, these limitations

should be considered. Any change in quantum hardware or software platforms should

be considered as well.

6 Key Decision Input and Risk Patterns

As it was introduced, the usage of ICSM implies (re)evaluating risks at the end of each

iteration and making four possible decisions according to the risk evaluation: (i) negligible

and continue with a new increment and new phases of ICSM; (ii) acceptable, then it stays

working in the same increment, same phases; (iii) high, but addressable, then the process

backtracks and works in an increment involving past phases; (iv) too high or unaddressable,

then the decision could be to discontinue the project. In ICSM, the common key decision

inputs are aspects like (i) product and project size and complexity; (ii) requirements volatility;

(iii) mission criticality; (iv) nature of commercial off-the-shelf (COTS), services support, etc.;

(v) commercial, open source, reused components; (vi) organizational and personnel capability.

When ICSM is applied for developing quantum-classical software systems, there are specific,

additional decision points to be considered during risk assessments. Table 1 summarizes

common decision inputs that can be used as an initial checklist to evaluate risks in each

ICSM phase for managing the development life cycle of hybrid software systems.

Although the available stages and phases are the same for all the software development

processes that follow ICSM, there could be various risk patterns that can be distinguished.

As a result, different risk patterns yield different software development processes. The actual

lifecycle can therefore be slightly different in each case. Figure 3 illustrates such different

processes in four different scenarios (examples A to D) throughout the first 5 increments.

The processes presented for each scenario should be understood as examples that could vary

depending on the different risk assessments in each increment.

Example A (see Figure 3) represents the common software development project for a

classic information system without any quantum software. Except for the exploration phase,

the next phases (valuation and foundations) have a negligible technological risk. Then during

the subsequent development and operation phases, the possible risk is acceptable. This is due

to the technology stack for building classical software is certainly mature with a low level of

uncertainty.

Example B (see Figure 3) provides an exemplar process for the integration of new quantum

software (gate-based) into a hybrid information system (probably by following a moderniza-

tion/reengineering approach). In this example, the exploration phase could even be discarded

to develop this project, and the valuation phase could detect a high risk that could lead

to exploring other alternative solutions. The same happens in the foundations phase. As

we explained before, different vendor solutions suffer from certain limitations (number of

qubits, error tolerance, kind of quantum algorithm, etc.) that could lead to a rethink of the
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Fig. 3. Examples of different software processes framed in ICSM for different risk patterns.
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Table 1. Common decision inputs during risk assessment in ICSM phases for hybrid software.

Stage Phase Key Decision Inputs & Risks As-
sessment
Solve the problem with classical soft-
ware

Exploration Solve the problem with some quantum
software components
Existing algorithms to used/adapted
New algorithms to be developed

Definition Existing information system to be re-
engineered (totally or partially) to
quantum paradigm

Valuation Specific quantum toolkits for specific
domains/sectors
Needs for workflow operations between
classical and quantum
Service-Orientation challenges: ser-
vice composition, configuration man-
agement, monitoring, security

Foundation Exploration using simulators instead of
actual quantum computers (which are
more expensive)
Error tolerance and power (e.g., num-
ber of qubits) of quantum hardware
Quantum technology stability
Available quantum software workforce
Co-design quantum software-hardware
Unitary testing for quantum software

Development Integration testing for quantum algo-
rithms and classical software drivers

Development
Operations &
Production

New opportunities can suggest shifting
some classical functionalities to quan-
tum
Volatility of the today’s quantum soft-
ware development technology

Operation Error tolerance and power (e.g., num-
ber of qubits) of quantum hardware
Scalability (requests, users, etc.)

exploration and/or valuation phase. After the incremental definition has been passed, the

incremental development and operations could be conducted with a controllable risk as the

development of classical software found.

Example C (see Figure 3) alternatively shows the development of a simple optimization

application based on quantum annealing. In a similar way to example B, exploration and

valuation phases could deal with uncertain risk levels. However, the risk found in the foun-
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dations and development phase should be negligible since the adiabatic quantum computing

technology seems to be stable and helps to solve a narrow set of problems with well-known

methods and tools. Then, the risk in the following phases could be higher but, due to the

operation phase’s challenges, but acceptable in any way.

Finally, Example D (see Figure 3) illustrates a possible issue that could happen during

the life cycle of a hybrid information system. Let us imagine that a new, superior (fault

tolerance) quantum computing or software platform service is available in the market with

clear advantages. This fact could lead to high risk because of a specific commitment review

at any phase, due to the technology obsolescence. In that case, if the risk is too high and it

is not affordable (from a point of view of the cost, time-to-market, or any other) the project

could be discontinued.

Although these risk pattern examples are suitable for many of the common quantum

software development scenarios, our proposal is not limited to these examples. Further risk

patterns could be considered according to the ICSM.

7 Conclusions

Quantum computing has progressed in the last years beyond academia or research labs and

has been embraced by large organizations looking for financial returns and a competitive

edge [2]. But to boost large-scale production of high-quality quantum software we need a

novel “Quantum Software Engineering” [41, 62, 63, 64], including critical software engineering

techniques, such as lifecycle models.

As the evolution of software engineering teaches us, each paradigm shift (structured pro-

gramming, object-oriented programming, DevOps, etc.) has made new lifecycle models and

software development techniques necessary. When defining models for quantum reality, we

must be aware that the new software world will be composed of both classical and quantum

software interacting with each other.

Software engineers must be aware that classical lifecycle models may not be as effective

with the new quantum technology, so they must create models that are best suited to their

environment: hybrid information systems, gate-based systems, annealing systems, or a mix

of both.

Given this new revolution in software and the need for new quantum/hybrid software

development life cycles, our main lines of future research will focus on completing those

phases of the life cycle that vary substantially concerning classical computing, such as the

development of new algorithms, reuse of quantum algorithms, testing of quantum code or

reengineering of classical systems.
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