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It was recently suggested that a solution to the separability problem for states that

remain positive under partial transpose composed with realignment (the so-called sym-
metric with positive coefficients states or simply SPC states) could shed light on en-

tanglement in general. Here we show that such a solution would solve the problem

completely. Given a state inMk ⊗Mm, we build a SPC state inMk+m⊗Mk+m with
the same Schmidt number. It is known that this type of state can be put in the filter

normal form retaining its type. A solution to the separability problem in Mk ⊗Mm

could be obtained by solving the same problem for SPC states in the filter normal form
withinMk+m⊗Mk+m. This SPC state can be built arbitrarily close to the orthogonal

projection on the symmetric subspace of Ck+m ⊗ Ck+m. All the information required
to understand entanglement in Ms ⊗ Mt (s + t ≤ k + m) lies inside an arbitrarily

small ball around that projection. We also show that the Schmidt number of any state

γ ∈Mn⊗Mn which commutes with the flip operator and lies inside a small ball around
that projection cannot exceed bn

2
c.
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1 Introduction

A discussion on a series of coincidences regarding a triad of quantum states was presented

through the references [1, 2, 3, 4]. Let the right partial transpose of α ∈Mk⊗Mk be denoted

here by αΓ [5, 6] and the realignment map be denoted by R(α) [7, 8]. The triad mentioned

in these articles is formed by

• the states that remain positive under partial transpose (αΓ ≥ 0), the so-called positive

under partial transpose states or simply PPT states,

• the states that remain positive under partial transpose composed with realignment

(R(αΓ) ≥ 0), the so-called symmetric with positive coefficients states or simply SPC

states and

• the states that remain the same under realignment (α = R(α)), the so-called invariant

under realignment states.

These coincidences ultimately led to the claim that there is a triality pattern in entangle-

ment theory [4], where every proven result for one type of such states has counterparts for

the other two. It was also claimed that a solution to the separability problem [5, 6] for SPC
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58 A reduction of the separability problem to SPC states in the filter normal form

states or invariant under realignment states could provide insights for adapting to the most

important type: the positive under partial transpose states.

In this note, we prove that SPC states are indeed extremely important to entanglement

theory, since we can embed the entire set of states into SPC states and, therefore, reduce the

separability problem to them.

We begin with the notion of the Schmidt number of a bipartite mixed state γ ∈Mk⊗Mm

[9, 10]. Consider all the ways to express the state γ as
∑n
i=1 viv

∗
i , where vi ∈ Ck ⊗ Cm, and

define its Schmidt number by the following minimum over all these expressions

SN(γ) = min

{
max

i∈{1,...,n}
{SR(vi)} , γ =

n∑
i=1

viv
∗
i

}
,

where SR(vi) stands for the Schmidt rank of vi ∈ Ck ⊗Cm. Recall that γ is separable if and

only if SN(γ) = 1.

Then we recall another result proved in item b) of [3, Theorem 2]. It says that if β ∈
Mk⊗Mk is a state supported on the the anti-symmetric subspace of Ck⊗Ck (denoted here

by Ck ∧ Ck) then

SN

(
P k,2sym + ε

β

tr(β)

)
=

1

2
SN(β),

for every ε ∈
]
0, 1

6

]
, where P k,2sym stands for the orthogonal projection on the symmetric

subspace of Ck ⊗ Ck and tr(β) is the trace of β.

The idea is quite simple now, given any state γ ∈ Mk ⊗Mm, we must create a state

γ̃ ∈Mk+m ⊗Mk+m such that

Im(γ̃) ⊂ Ck+m ∧ Ck+m and SN(γ̃) = 2SN(γ).

Therefore, for every ε ∈
]
0, 1

6

]
,

SN

(
P k+m,2
sym + ε

γ̃

tr(γ̃)

)
=

1

2
SN(γ̃) = SN(γ).

Now, γ is separable (SN(γ) = 1) if and only if

P k+m,2
sym + ε γ̃

tr(γ̃)
is separable

(
SN

(
P k+m,2
sym + ε γ̃

tr(γ̃)

)
= 1
)

.

Next, consider the partial traces of γ =
∑n
i=1Ai ⊗Bi ∈Mk ⊗Mm as

trA(γ) =
∑n
i=1Bitr(Ai) and trB(γ) =

∑n
i=1Aitr(Bi).

We say that γ ∈Mk⊗Mm is in the filter normal form if trA(γ) = Id
m and trB(γ) = Id

k . In

addition, γ ∈Mk ⊗Mm can be put in the filter normal form if there are invertible matrices

V ∈Mk and W ∈Mm such that (V ⊗W )γ(V ∗ ⊗W ∗) is in the filter normal form.

This filter normal form has been used to improve some separability criteria [11, 12], but

it is an open problem to determine which states can be put in the filter normal form or not.
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Although there are partial results, such as positive definite states which can always be put

in the filter normal form [13, 14]. Actually, even states with small nullity can be put in this

normal form [15, Theorem 4.3].

Recently, it was shown that SPC states and invariant under realignment states can also

be put in the filter normal form preserving their specific structures [4, Corollary 4.6].

Here, we show that the partial transpose of δ = P k+m,2
sym + ε γ̃

tr(γ̃)
is positive definite, i.e.

δΓ > 0, therefore δ can be put in the filter normal form (See theorem 4). Actually, in the

same theorem, we obtain a stronger result, we prove that the partial transpose composed with

realignment of this state is positive definite, i.e. R(δΓ) > 0. Hence δ is a SPC state for any

state γ ∈Mk ⊗Mm.

Notice that we embed the entire set of states of Mk ⊗Mm into the SPC states within a

ball of radius arbitrarily small around P k+m,2
sym ∈Mk+m ⊗Mk+m.

As mentioned three paragraphs above, it was proved in [4, Corollary 4.6] that there is an

invertible matrix U ∈Mk+m such that (U ⊗U)δ(U∗⊗U∗) is in the filter normal form. Now,

R((U ⊗ U)δ(U∗ ⊗ U∗)Γ) remains positive definite, as explained in our corollary 7. Hence

(U ⊗U)δ(U∗⊗U∗) is a SPC state in the filter normal form. Thus, we reduce the separability

problem to the SPC case in the filter normal form.

There is an existential argument that shows that the separability problem can be theoret-

ically reduced to states in the filter normal form, however it is unsatisfactory for a couple of

reasons. Here is the argument:

Given a state γ ∈Mk⊗Mm and ε ∈ ]0, 1[, there are two cases: or there is a small

positive ε such that δε = ε(Id/k)⊗ (Id/m) + (1− ε)γ is entangled and, therefore γ

is entangled or δε is separable for every ε and, therefore γ is separable. In addition

δε can always be put in the filter normal form, since it is positive definite [14,

Remark 5] or [15, Theorem 4.3].

There are two main issues with this argument: We do not know how small ε must be to

obtain an entangled state δε in the first case. Consequently, in order to detect the separability

of γ in the second case, we must show the separability of δε for infinitely many values of ε.

The uncertainty in the first case and the infinitely many states to be considered in the second

case are very problematic.

In contrast, the result we present here is explicit: given a state γ, in order to prove its

separability or disprove it, it is enough to do the same for δ = P k+m,2
sym + ε γ̃

tr(γ̃)
, where δ can

be put in the filter normal form.

Moreover, our argument provides a straightforward way to produce states δ around Pn,2sym

with Schmidt number varying from 1 to bn2 c, where n = k +m, k = bn2 c and m = dn2 e. The

reader may wonder if bn2 c is an optimal upper bound for the Schmidt number of states within

some small ball around Pn,2sym. In our final section we prove that this is indeed the case for

states that commute with the flip operator F ∈Mn ⊗Mn.



60 A reduction of the separability problem to SPC states in the filter normal form

This note is organized as follows: In section 2, we construct γ̃ ∈Mk+m⊗Mk+m described

above and in section 3, we reduce the separability problem to the SPC case. In section 4, we

show that the Schmidt number of any state γ ∈ Mn ⊗Mn which commutes with the flip

operator and lies inside a small ball around Pn,2sym cannot exceed bn2 c.

2 Preliminaries

In this section we construct γ̃ ∈ Mk+m ⊗ Mk+m supported on Ck+m ∧ Ck+m such that

SN(γ̃) = 2SN(γ) (See lemma 3), given a state γ ∈ Mk ⊗Mm, but first let us fix some

notation.

Let P k,2anti ∈ Mk ⊗Mk, P k,2sym ∈ Mk ⊗Mk be the orthogonal projections onto the anti-

symmetric and symmetric subspaces of Ck ⊗ Ck. In addition, let V,W be subspaces of Ck

and consider V ∧W as the subspace of Ck⊗Ck generated by all v∧w = v⊗w−w⊗v, where

v ∈ V and w ∈W .

Definition 1: Let C =

(
Idk×k
0m×k

)
⊗
(

0k×m
Idm×m

)
and Q = P k+m,2

anti C.

Remark 2: Notice that SR(Cv) = SR(v) and SR(Qv) = 2SR(v), for every v ∈ Ck ⊗ Cm.

The next lemma fill in the details to construct the aforementioned γ̃ ∈Mk+m ⊗Mk+m.

Lemma 3: Let C,Q be as in definition 1. Then

(i) C∗Q = 1
2Id ∈Mk ⊗Mm

(ii) SR(C∗v) = 1
2SR(v), for every v ∈ (Ck ×~0m) ∧ (~0k × Cm).

(iii) SN(QγQ∗) = 2SN(γ) and Im(QγQ∗) ⊂ Ck+m∧Ck+m, for every state γ ∈Mk⊗Mm.

Proof: (i) Let F ∈Mk+m ⊗Mk+m be the flip operator and recall that

P k+m,2
anti =

1

2
(Id− F ) ∈Mk+m ⊗Mk+m.

Now, let a⊗ b ∈ Ck ⊗ Cm and consider

C∗FC(a⊗ b) = C∗F

(
a

0m

)
⊗
(

0k
b

)
= C∗

(
0k
b

)
⊗
(

a
0m

)
= 0k ⊗ 0m.

Hence C∗FC = 0 and

C∗P k+m,2
anti C =

1

2
(C∗C + C∗FC) =

1

2
C∗C =

1

2
Id ∈Mk ⊗Mm.

(ii) If v ∈ (Ck ×~0m)∧ (~0k ×Cm) then there are linearly independent vectors a1, . . . , an of Ck

and linearly independent vectors b1, . . . , bn of Cm such that

v =

n∑
i=1

(
ai
0m

)
∧
(

0k
bi

)
.
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Hence

(
a1

0m

)
, . . . ,

(
an
0m

)
,

(
0k
b1

)
, . . . ,

(
0k
bn

)
are linearly independent and SR(v) =

2n.

Finally, notice that C∗v =
∑n
i=1 ai ⊗ bi andt is Schmidt rank is n = 1

2SR(v).

(iii) First, by remark 2, SN(QγQ∗) ≤ 2SN(γ).

Next, by item (i), C∗QγQ∗C = 1
4γ and, by item (ii), SN(C∗QγQ∗C) ≤ 1

2SN(QγQ∗).

These three pieces of information together imply

SN(γ) = SN(C∗QγQ∗C) ≤ 1

2
SN(QγQ∗) ≤ SN(γ).

Finally, since Im(Q) ⊂ Ck+m ∧ Ck+m, we get Im(QγQ∗) ⊂ Ck+m ∧ Ck+m .

3 The Embedding and The Reduction

The next theorem is the key to reduce the separability problem to SPC states in the filter

normal form (See corollary 7).

Theorem 4: Given ε ∈
]
0, 1

6

]
and Q as in definition 1, consider the positive map T :

Mk ⊗Mm →Mk+m ⊗Mk+m defined by

T (γ) =
tr(γ)

2
P k+m,2
sym + εQγQ∗.

This linear map possesses the following properties:

(i) SN(T (γ)) = SN(γ) for every state γ ∈Mk ⊗Mm.

(ii) T (γ)Γ and R(T (γ)Γ) are positive definite. Hence T (γ) is a PPT/SPC state.

Proof: First, by lemma 3, SN(QγQ∗) = 2SN(γ).

Notice that

tr(QγQ∗) = tr(γQ∗Q) =
tr(γ)

2
,

since Q∗Q = C∗Q = Id
2 by item (i) of lemma 3. Hence, by [3, Theorem 2],

we have SN(T (γ)) = SN
(

2
tr(γ)T (γ)

)
= SN

(
P k+m,2
sym +

ε

tr(QγQ∗)
QγQ∗

)
=

1

2
SN(QγQ∗) = SN(γ).

This completes the proof of item (i). Let us prove item (ii).

Recall that P k+m,2
sym = 1

2 (Id+ F ), where F ∈Mk+m ⊗Mk+m is the flip operator.
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Since FΓ = uut, where u =
∑k+m
i=1 ei ⊗ ei and {e1, . . . , ek+m} is the canonical basis of

Ck+m,

(P k+m
sym )Γ =

1

2
(Id+ uut)

and its smallest eigenvalue is 1
2 .

It is known, by [4, Lemma 3.1], that

ε

tr(QγQ∗)
‖(QγQ∗)Γ‖∞ ≤

ε

tr(QγQ∗)
‖trA(QγQ∗)‖∞ =

ε

tr(trA(QγQ∗))
‖trA(QγQ∗)‖∞ ≤ ε.

(1)

Hence

T (γ)Γ =
tr(γ)

2

(
1

2
(Id+ uut) +

ε

tr(QγQ∗)
(QγQ∗)Γ

)
is positive definite. Now let us prove the second assertion of item (ii).

Since R(Id+ uut) = uut + Id,

R

((
P k+m
sym +

ε QγQ∗

tr(QγQ∗)

)Γ
)

=
1

2
(Id+ uut) +R

((
ε QγQ∗

tr(QγQ∗)

)Γ
)
.

Finally, for every state δ such that δF = −δ, we have

−δΓ = (δF )Γ = R(δΓ), (2)

by item (7) of [4, Lemma 2.3].

By item (iii) of lemma 3, Im(QγQ∗) ⊂ Ck+m ∧ Ck+m, hence

ε QγQ∗

tr(QγQ∗)
F = − ε QγQ∗

tr(QγQ∗)
.

Thus, by Eq. (2),

R

((
P k+m
sym +

ε QγQ∗

tr(QγQ∗)

)Γ
)

=
1

2
(Id+ uut)−

(
ε

QγQ∗

tr(QγQ∗)

)Γ

.

By Eq. (1), this matrix is positive definite. .

Remark 5: Notice that 2
tr(γ)T (γ) belongs to a small ball around P k+m,2

sym for every state

γ ∈ Mk ⊗Mm. It is an easy task to modify our matrices C and Q in order to embed every

state of Ms ⊗Mt (s + t ≤ k + m) inside the same ball. Hence all the information required
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to understand entanglement in Ms ⊗Mt (s + t ≤ k + m) lies inside this small ball around

P k+m,2
sym .

Remark 6: Besides its Schmidt number, the spectrum of γ is another characteristic preserved

in T (γ) as 2
εP

k+m,2
anti T (γ)P k+m,2

anti and γ have the same spectrum. So all these known results

that relate spectrum with separability, for example [16], can still be adapted for T (γ).

The next corollary is the reduction.

Corollary 7: The separability problem in Mk ⊗Mm can be reduced to states in the filter

normal form, more specifically to SPC states in the filter normal form.

Proof: By the previous theorem, it is obvious that γ is separable (SN(γ) = 1), if and only,

if T (γ) is separable (SN(T (γ)) = 1).

We also noticed there that T (γ)Γ is positive definite. So there are invertible matrices

R,S ∈ Mk+m such that φ = (R ⊗ S)T (γ)Γ(R ⊗ S)∗ is in the filter normal form. Hence

(R⊗ S)T (γ)(R∗ ⊗ St) is in the filter normal form as well.

Actually, since R(T (γ)Γ) is positive definite, we can do better. By [4, Corollary 4.6], we

can find an invertible matrix O ∈Mk+m such that δ = (O⊗O)T (γ)(O∗⊗O∗) is in the filter

normal form. Notice that

R(δΓ) = (O ⊗O)R(T (γ)Γ)(O∗ ⊗Ot),

by item 3 of [4, Lemma 2.3]. Therefore, R(δΓ) is also positive definite. Hence δ is a SPC

state in the filter normal form.

So we can solve the separability inMk⊗Mm by solving the separability problem for SPC

states in the filter normal form in Mk+m ⊗Mk+m .

The reader may wonder if it is really necessary to add tr(QγQ∗)P k+m
sym to QγQ∗ in order to

obtain a state that can be put in the filter normal form. The answer to this question is given

in the next proposition, but it requires one simple definition: If δ =
∑n
i=1Ai⊗Bi ∈Mk⊗Mk,

define Gδ :Mk →Mk as Gδ(X) =
∑n
i=1 tr(AiX)Bi.

Proposition 8: If γ ∈Mk ⊗Mm is a state such that k 6= m then QγQ∗ ∈Mk+m ⊗Mk+m

cannot be put in the filter normal form.

Proof: Let C and Q be as in definition 1 and define P = P k+m
sym C. Assume without loss of

generality that k > m.

Notice that

δ =
1

2
(CγC∗ + F (CγC∗)F ) = PγP ∗ +QγQ∗,

where F ∈Mk+m ⊗Mk+m is the flip operator.
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Now, Gδ :Mk+m →Mk+m, as defined just before this proposition, satisfies

Gδ

((
Idk×k 0

0 0

))
=

1

2
GCγC∗

((
Idk×k 0

0 0

))
+

1

2

= 0︷ ︸︸ ︷
GFCγC∗F

((
Idk×k 0

0 0

))

= 1
2

(
0 0
0 trA(γ)

)
.

Since δ − QγQ∗ is positive semidefinite, the map Gδ − GQγQ∗ = Gδ−QγQ∗ is positive.

Hence

rank

(
GQγQ∗

(
Idk×k 0

0 0

))
≤ rank

(
Gδ

(
Idk×k 0

0 0

))
= rank(trA(γ)) ≤ m < k.

Notice that the image of a rank k positive semidefinite Hermitian matrix by GQγQ∗ has

rank smaller than k. So GQγQ∗ is not a rank non-decreasing map. The rank non-decreasing

property for GQγQ∗ is necessary for the state QγQ∗ to be put in the filter normal form [15, 13].

Hence QγQ∗ cannot be put in the filter normal form .

4 The behaviour of the Schmidt number around the projection on the symmetric

subspace

Our Theorem 4 provides a straightforward way to produce states T (γ) around Pn,2sym with

Schmidt number varying from 1 to bn2 c by choosing the proper γ ∈Mbn2 c⊗Mdn2 e (n = k+m,

k = bn2 c and m = dn2 e).

The reader may wonder if bn2 c is an optimal upper bound for the Schmidt number of

states within some small ball around Pn,2sym. In this section we prove that this is indeed the

case for states that commute with the flip operator F ∈ Mn ⊗Mn, i.e., for states such that

an orthonormal basis of Cn⊗Cn formed by symmetric and antisymmetric eigenvectors exist.

For states close to Pn,2sym, but not commuting with F , we cannot say anything.

First, we must extend a couple of results proved in [3, Lemma 2] and [3, Lemma 3].

Lemma 9: Let a1, a2 be orthonormal vectors of Cn and s = a1 ⊗ a2 + a2 ⊗ a1. Then

Pn,2sym ± εa1a
∗
1 ⊗ a1a

∗
1 is separable for ε ∈

[
0, 1

2

]
and Pn,2sym ± εss∗ is separable for ε ∈

[
0, 1

12

]
.

Proof: The state Pn,2sym − εa1a
∗
1 ⊗ a1a

∗
1 was proved to be separable when ε ≤ 1

2 in [3, Lemma

2] and Pn,2sym − εss∗ was proved to be separable when ε ∈
[
0, 1

12

]
in [3, Lemma 3].

So it remains to show that Pn,2sym + εss∗ is separable when ε ∈
[
0, 1

12

]
.

Notice that

w = a1 ⊗ a1 + a2 ⊗ a2 =
a1 + ia2√

2
⊗ a1 − ia2√

2
+
a1 − ia2√

2
⊗ a1 + ia2√

2
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and a1+ia2√
2
, a1−ia2√

2
are orthonormal. So by the case already proved Pn,2sym − εww∗ is sepa-

rable when ε ∈
[
0, 1

12

]
.

Finally notice that

Pn,2sym + εss∗ = Pn,2sym − εww∗ + ε(ww∗ + ss∗). (3)

and ww∗ + ss∗ = 1
2 (w + s)(w + s)∗ + 1

2 (w − s)(w − s)∗ and w ± s both have Schmidt rank

equal to 1. So ww∗ + ss∗ is separable and Pn,2sym + εss∗ is a sum of two separable states when

ε ∈
[
0, 1

12

]
by Eq. (3) .

Corollary 10: Let m1, . . . ,mt, s1, . . . , sl be non-null vectors of Cn ⊗ Cn satisfying

• mi = vi ⊗ wi + wi ⊗ vi, where vi and wi are orthogonal vectors of Cn

• si = ci ⊗ ci, where ci ∈ Cn.

Then

(i) tr(
∑t
i=1mim

∗
i )P

n,2
sym ± ε(

∑t
i=1mim

∗
i ) is separable when ε ∈

[
0, 1

6

]
and

(ii) tr(
∑l
i=1 sis

∗
i )P

n,2
sym ± ε(

∑l
i=1 sis

∗
i ) is separable when ε ∈

[
0, 1

2

]
.

Proof: Notice that mi

‖vi‖‖wi‖ = vi
‖vi‖⊗

wi

‖wi‖+ wi

‖wi‖⊗
vi
‖vi‖ , where vi

‖vi‖ and wi

‖wi‖ are orthonormal.

Therefore, by lemma 9,

Pn,2sym ± ε
mi

‖vi‖‖wi‖
m∗i

‖vi‖‖wi‖
= Pn,2sym ± ε2

mim
∗
i

tr(mim∗i )

is separable when ε ∈
[
0, 1

12

]
. Thus,

tr(mim
∗
i )P

n,2
sym ± εmim

∗
i

is separable when ε ∈
[
0, 1

6

]
.

The other case is similar. Notice that si
‖ci‖2 = ci

‖ci‖ ⊗
ci
‖ci‖ . Therefore, by lemma 9,

Pn,2sym ± ε
si
‖ci‖2

s∗i
‖ci‖2

= Pn,2sym ± ε
sis
∗
i

tr(sis∗i )

is separable when ε ∈
[
0, 1

2

]
.Thus,

tr(sis
∗
i )P

n,2
sym ± εsis∗i

is separable when ε ∈
[
0, 1

2

]
.

Lemma 11: Let v =
∑t
i=1 λiai⊗ai where λi > 0, for every i, and a1, . . . , at are orthonormal

vectors of Cn. There are m1, . . . ,m2t−1−1, s1, . . . , s2t−1 non-null vectors of Cn⊗Cn satisfying
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(i) mi = vi ⊗ wi + wi ⊗ vi, where vi and wi are orthogonal vectors of Cn

(ii) si = ci ⊗ ci, where ci ∈ Cn

(iii) A = vv∗ +
∑2t−1−1
i=1 mim

∗
i =

∑2t−1

i=1 sis
∗
i

(iv) tr(A) = (λ1 + . . .+ λt)
2

Proof: It is an induction on t.

If t = 2 then v = λ1a1 ⊗ a1 + λ2a2 ⊗ a2. Set m1 =
√
λ1λ2(a1 ⊗ a2 + a2 ⊗ a1).

Notice that

vv∗ +m1m
∗
1 =

(
v +m1√

2

)(
v +m1√

2

)∗
+

(
v −m1√

2

)(
v −m1√

2

)∗
.

Since

s1 =
v +m1√

2
=
λ1 + λ2√

2

(√
λ1a1 +

√
λ2a2√

λ1 + λ2

)
⊗
(√

λ1a1 +
√
λ2a2√

λ1 + λ2

)
and

s2 =
v −m1√

2
=
λ1 + λ2√

2

(√
λ1a1 −

√
λ2a2√

λ1 + λ2

)
⊗
(√

λ1a1 −
√
λ2a2√

λ1 + λ2

)
,

tr(sis
∗
i ) = (λ1+λ2)2

2 for i = 1, 2. Therefore

tr(vv∗ +m1m
∗
1) = tr(s1s

∗
1 + s2s

∗
2) = (λ1 + λ2)2.

The proof of the case t = 2 is complete. Suppose the result holds for t = l.

Let t = l + 1. So v =
∑l+1
i=1 λiai ⊗ ai. Set w =

√
λ1λ2(a1 ⊗ a2 + a2 ⊗ a1). Again notice

that

vv∗ + ww∗ =

(
v + w√

2

)(
v + w√

2

)∗
+

(
v − w√

2

)(
v − w√

2

)∗
,

but now

v ± w√
2

=
λ1 + λ2√

2

(√
λ1a1 ±

√
λ2a2√

λ1 + λ2

)
⊗
(√

λ1a1 ±
√
λ2a2√

λ1 + λ2

)
+

l+1∑
i=3

λi√
2
ai ⊗ ai.

By induction hypothesis, there are m±1 , . . . ,m
±
2l−1−1

, s±1 , . . . , s
±
2l−1 non-null vectors of Cn⊗

Cn satisfying the first two hypothesis and

A± =

(
v ± w√

2

)(
v ± w√

2

)∗
+

2l−1−1∑
i=1

(m±i )(m±i )∗ =

2l−1∑
i=1

(s±i )(s±i )∗.

In addition tr(A±) =
(
λ1+λ2√

2
+
∑l+1
i=3

λi√
2

)2

= (λ1+...+λl+1)2

2 .

So tr(A+ +A−) = (λ1 . . .+ λl+1)2 and A+ +A− =

vv∗+

2l−1 terms︷ ︸︸ ︷
ww∗ +

2l−1−1∑
i=1

(m+
i )(m+

i )∗ +

2l−1−1∑
i=1

(m−i )(m−i )∗=

2l terms︷ ︸︸ ︷
2l−1∑
i=1

(s+
i )(s+

i )∗ +

2l−1∑
i=1

(s−i )(s−i )∗ .
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Lemma 12: Let v be a unit symmetric vector of Cn ⊗ Cn with Schmidt rank equal to t. If

ε ∈
[
0, 1

6(2t−1)

]
then Pn,2sym ± εvv∗ is separable.

Proof: Let ε = ε1ε2, where ε1 = 1
6 and ε2 ≤ 1

2t−1 . Then

Pn,2sym ± εvv∗ = Pn,2sym ± ε1v1v
∗
1 ,

where v1 =
√
ε2v.

By item c) of [17, Corollary 4.4.4], there are orthonormal vectors a1, . . . , at of Cn and

positive numbers λ1, . . . , λt such that v1 =
∑t
i=1 λiai ⊗ ai. Notice that λ2

1 + . . . + λ2
t =

‖v1‖2 = ε2‖v‖2 = ε2.

Now, by lemma 11, for this v1, there are m1, . . . ,m2t−1−1, s1, . . . , s2t−1 non-null vectors

of Cn ⊗ Cn satisfying the hypothesis of that lemma. Hence A =
∑2t−1−1
i=1 mim

∗
i + v1v

∗
1 =∑2t−1

i=1 sis
∗
i and

Pn,2sym ± ε1v1v
∗
1 = Pn,2sym ∓ ε1

2t−1−1∑
i=1

mim
∗
i

± ε1
2t−1−1∑

i=1

mim
∗
i + v1v

∗
1


= Pn,2sym ∓ ε1

2t−1−1∑
i=1

mim
∗
i

± ε1
2t−1∑
i=1

sis
∗
i

 . (4)

Rewriting Eq. (4) we get Pn,2sym ± ε1v1v
∗
1 =

=

1− tr

2t−1−1∑
i=1

mim
∗
i

− tr
2t−1∑
i=1

sis
∗
i

Pn,2sym+ (5)

tr

2t−1−1∑
i=1

mim
∗
i

Pn,2sym ∓ ε1

2t−1−1∑
i=1

mim
∗
i

+ (6)

tr

2t−1∑
i=1

sis
∗
i

Pn,2sym ± ε1

2t−1∑
i=1

sis
∗
i

 . (7)

Notice the matrices in Eq. (6) and Eq. (7) are separable, since ε1 = 1
6 and by corollary 10.

Next, by the hypothesis of lemma 11, tr(A) = tr
(∑2t−1

i=1 sis
∗
i

)
= (λ1 + . . .+ λt)

2, so

tr

2t−1−1∑
i=1

mim
∗
i

 = (λ1 + . . .+ λt)
2 − tr(v1v

∗
1) = (λ1 + . . .+ λt)

2 − λ2
1 − . . .− λ2

t .
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Hence1− tr

2t−1−1∑
i=1

mim
∗
i

− tr
2t−1∑
i=1

sis
∗
i

 = 1 + λ2
1 + . . .+ λ2

t − 2(λ1 + . . .+ λt)
2.

Since (λ1 + . . .+ λt)
2 ≤ (λ2

1 + . . .+ λ2
t )t and λ2

1 + . . .+ λ2
t = ε2 ≤ 1

2t−1 ,

1− tr

2t−1−1∑
i=1

mim
∗
i

− tr
2t−1∑
i=1

sis
∗
i

 ≥ 1− (2t− 1)(λ2
1 + . . .+ λ2

t ) ≥ 0.

So the matrix in Eq. (5) is separable, which completes the proof .

In order to describe the next results, we must use the trace norm of a matrix P , denoted

here by ‖P‖1. This norm is defined as the sum of its singular values.

Corollary 13: Let P ∈Mn⊗Mn be Hermitian and Im(P ) be a subspace of the symmetric

subspace of Cn ⊗ Cn. If ε ∈
[
0, 1

6(2n−1)

]
and ‖P‖1 = 1 then Pn,2sym ± εP is separable.

Proof: Let P = P1 − P2, where each Pi is positive semidefinite, its image is a subspace of

the symmetric subspace of Cn ⊗ Cn and ‖P‖1 = ‖P1‖1 + ‖P2‖1.

Consider the spectral decompositions of P1 and P2:

P1 =
∑s
i=1 λiviv

∗
i and P2 =

∑l
j=1mjrjr

∗
j ,

where λi > 0 and mj > 0, for every i, j, and v1, . . . , vs are orthonormal symmetric vectors

and the same is valid for r1, . . . , rl. Thus, ‖P‖1 =
∑s
i=1 λi +

∑l
j=1mj = 1.

Therefore, Pn,2sym ± εP = Pn,2sym ± ε(P1 − P2) =

=

s∑
i=1

λi(P
n,2
sym ± εviv∗i ) +

l∑
j=1

mj(P
n,2
sym ∓ εrjr∗j ). (8)

Finally, since the Schmidt rank of each vi and rj is less or equal to n and ε ∈
[
0, 1

6(2n−1)

]
,

each matrix inside parenthesis of the Eq. (8) is separable by Lemma 12 .

We can finally prove the main result of this section.

Theorem 14: Let γ ∈ Mn ⊗Mn be a state that commutes with the flip operator F ∈
Mn ⊗Mn. If

∥∥Pn,2sym − γ
∥∥

1
≤ 1

6(2n−1) then SN(γ) ≤ bn2 c.

Proof: We can write γ = Pn,2sym + εP , where ‖P‖1 = 1 and ε ∈
[
0, 1

6(2n−1)

]
.
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Since γ is a state and both γ and Pn,2sym commute with flip operator F ∈ Mn ⊗Mn, P

is Hermitian and commutes with F . Hence P = A+ B, where A is Hermitian and its image

is a subspace of the symmetric subspace of Cn ⊗ Cn and B is Hermitian and its image is a

subspace of the anti-symmetric subspace of Cn ⊗ Cn. In addition, 1 = ‖P‖1 = ‖A‖1 + ‖B‖1
and, without loss of generality, we can assume that ‖A‖1, ‖B‖1 are not zero.

As γ = Pn,2sym + εA+ εB is positive semidefinite and the images of A and Pn,2sym are inside

the symmetric subspace of Cn ⊗ Cn, the matrix B is positive semidefinite.

Now,

γ = ‖A‖1
(
Pn,2sym + ε

A

‖A‖1

)
+ ‖B‖1

(
Pn,2sym + ε

B

‖B‖1

)
.

Finally, SN
(
Pn,2sym + ε A

‖A‖1

)
= 1 by corollary 13 and SN

(
Pn,2sym + ε B

‖B‖1

)
= SN(B)

2 ≤ bn2 c
by [3, Theorem 2]. So the equation above implies SN(γ) ≤ bn2 c .
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