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Qudit Dicke states are higher-dimensional analogues of an important class of highly-

entangled completely symmetric quantum states known as (qubit) Dicke states. A circuit
for preparing arbitrary qudit Dicke states deterministically is formulated. An explicit

decomposition of the circuit in terms of elementary gates is presented, and is implemented
in cirq for the qubit and qutrit cases.

Keywords: qudits, quantum state preparation, Dicke states, symmetric basis states

1 Introduction

The (qubit) Dicke state |Dn
k ⟩ is an equal-weight superposition of all n-qubit states with k |1⟩’s

and n− k |0⟩’s. For example,

|D4
2⟩ =

1√
6
(|1100⟩+ |1010⟩+ |1001⟩+ |0110⟩+ |0101⟩+ |0011⟩) ,

where the tensor product is understood, e.g. |1100⟩ = |1⟩ ⊗ |1⟩ ⊗ |0⟩ ⊗ |0⟩. These highly-

entangled states have long been studied and exploited in quantum information and com-

putation for such diverse tasks as quantum networking, quantum metrology, quantum to-

mography, quantum compression, and optimization, see e.g. [1–14]. These states have been

experimentally realized [7, 15, 16], and efficient quantum circuits for their preparation have

been found [17–20]. Such quantum circuits have recently been used as the starting point

for preparing exact eigenstates of the Heisenberg spin chain [21–23] via coordinate Bethe

ansatz [24, 25].c

There has been increasing interest in using qudits for quantum computing, see e.g. the

recent review [29] as well as [30–36] and references therein. Higher-dimensional analogues

of qubit Dicke states, namely qudit Dicke states (also called generalized Dicke states, or

symmetric basis states), have also received attention over many years, see e.g. [37–43]. Let

anepomechie@miami.edu
bdxr921@miami.edu
cAlternative approaches for preparing such eigenstates [26, 27] via algebraic Bethe ansatz [28] do not make
use of Dicke states.

37
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us consider d-dimensional qudits, with computational basis vectors |0⟩, |1⟩, . . . , |d − 1⟩ that

span a d-dimensional complex vector space V . In order to specify an n-qudit Dicke state, it

is convenient to introduce the notion of a multiset [44], namely, a set with repeated elements,

e.g. {0, 0, 1, 2} whose element 0 has multiplicity 2. In particular, we define the multiset M(k⃗)

by

M(k⃗) = {0, . . . , 0︸ ︷︷ ︸
k0

, 1, . . . , 1︸ ︷︷ ︸
k1

, . . . , d− 1, . . . , d− 1︸ ︷︷ ︸
kd−1

} , (1)

where kj is the multiplicity of j in M(k⃗), such that M(k⃗) has cardinality n. Hence, k⃗ is a

d-dimensional vector such that

k⃗ = (k0, k1, . . . , kd−1) with kj ∈ {0, 1, . . . , n} and

d−1∑
j=0

kj = n . (2)

The corresponding n-qudit Dicke state is defined (see [37–43]) by

|Dn(k⃗)⟩ = 1√(
n
k⃗

) ∑
w∈S

M(k⃗)

|w⟩ , (3)

where SM(k⃗) is the set of permutations of the multiset M(k⃗) (1), and |w⟩ is the n-qudit

state corresponding to the permutation w; for example, the n-qudit state corresponding to

the identity permutation is

|e(k⃗)⟩ = | 0 . . . 0︸ ︷︷ ︸
k0

1 . . . 1︸ ︷︷ ︸
k1

. . . (d− 1) . . . (d− 1)︸ ︷︷ ︸
kd−1

⟩ = |0⟩⊗k0 |1⟩⊗k1 . . . |d− 1⟩⊗kd−1 . (4)

Moreover,
(
n
k⃗

)
denotes the multinomial(

n

k⃗

)
=

(
n

k0, k1, . . . , kd−1

)
=

n!∏d−1
j=0 kj !

, (5)

which is the cardinality of SM(k⃗). An example with qutrits (d = 3) is

|D4(2, 1, 1)⟩ = 1√
12

(
|0012⟩+ |1002⟩+ |0102⟩+ |0021⟩+ |0201⟩+ |2001⟩

+ |0210⟩+ |0120⟩+ |1020⟩+ |1200⟩+ |2010⟩+ |2100⟩
)
. (6)

For the special case of qubits (d = 2), by setting k⃗ = (k0, k1) = (n−k, k), we see that |Dn(k⃗)⟩
reduces to the familiar Dicke state |Dn

k ⟩.
While properties of qudit Dicke states have been investigated [37–43], the preparation of

such states has not heretofore been considered. The main goal of this paper is to formulate

a circuit for preparing arbitrary qudit Dicke states deterministically. Such a quantum circuit

could be useful for generalizing the many applications of (qubit) Dicke states to qudits, such as

quantum networking [7], quantum metrology [9], quantum compression [17], and optimization

[11]. In particular, it will be needed in order to extend the algorithm [21] for the (rank-1)

Heisenberg spin chain to higher-rank (SU(d)) integrable spin chains [45, 46].
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The outline of the remainder of this paper is as follows. In Sec. 2, taking an approach

similar to Bärtschi and Eidenbenz [17] for the qubit case, we introduce a qudit Dicke operator

Un that generates an arbitrary qudit Dicke state (3) from the simple initial state (4), and

we obtain an expression (11) for this operator as a product of certain W operators (9). The

problem therefore reduces to constructing these W operators in terms of elementary gates.

The simplest case of qubits is considered in Sec. 3, followed by the case of qutrits in Sec.

4. Code in cirq [47] for simulating these circuits is included in the Supplementary Material.

The generalization to general values of d is considered in Sec. 5. These results are briefly

discussed in Sec. 6. Matrix representations of the required gates and notational details are

presented in the Appendix.

2 Generalities

In order to formulate a circuit for preparing arbitrary qudit Dicke states deterministically,

similarly to [17] for the case d = 2, we begin by looking for a unitary operator Un (independent

of k⃗) acting on V ⊗n, which we call the qudit Dicke operator, that generates an arbitrary n-

qudit Dicke state |Dn(k⃗)⟩ (3) by acting on the identity permutation |e(k⃗)⟩ (4)

Un |e(k⃗)⟩ = |Dn(k⃗)⟩ (7)

for all k⃗. We observe that the qudit Dicke state (3) satisfies a recursion relation

|Dn(k⃗)⟩ =
d−1∑
s=0

√
ks
n

|Dn−1(k⃗ − ŝ)⟩ ⊗ |s⟩ , (8)

where ŝ is a d-dimensional unit vector that has components (ŝ)j = δs,j , with s = 0, 1, . . . , d−
1. This recursion relation is a straightforward generalization of the d = 2 result noted in

[10, 13, 17]. Let us define a corresponding operator Wn (independent of k⃗) that performs the

mapping

Wn|e(k⃗)⟩ =
d−1∑
s=0

√
ks
n

|e(k⃗ − ŝ)⟩ ⊗ |s⟩ (9)

for all k⃗. Substituting (7) into both sides of (8) and then using (9), we see that the qudit

Dicke operator satisfies a simple recursion in terms of the Wn operator

Un = (Un−1 ⊗ I)Wn . (10)

Using the initial condition U1 = I, we can telescope the recursion (10) into a product of Wm

operators

Un =

↷
n∏

m=2

(
Wm ⊗ I⊗(n−m)

)
, (11)

where the product goes from left to right with increasing m. The problem of constructing

qudit Dicke operators Un for any value of d therefore reduces to constructing quantum circuits

for the corresponding Wm operators.
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3 The case d = 2

We begin by considering the simplest case d = 2 (qubits), which we treat somewhat differently

than [17]. We set k⃗ = (k0, k1) = (n− l, l), so that (9) with n = m reduces to

Wm |0⟩⊗(m−l)|1⟩⊗l =

√
m− l

m
|0⟩⊗(m−l−1)|1⟩⊗l ⊗ |0⟩+

√
l

m
|0⟩⊗(m−l)|1⟩⊗(l−1) ⊗ |1⟩ . (12)

We introduce the operator Im,l acting on the lth, (l − 1)th, and 0th qubit, that performs

the transformation

Im,l : |0⟩l |1⟩l−1 |1⟩0 7→
√

m− l

m
|1⟩l |1⟩l−1 |0⟩0 +

√
l

m
|0⟩l |1⟩l−1 |1⟩0 , (13)

and otherwise acts as identity (as long as the 0th qubit is in the state |1⟩, which is always

the case for the input states in (12)). For l = 1, the middle qubits in (13) are omitted. The

corresponding circuit diagramd is given by Fig. 1, with one-qubit Ry-gates

R(θ) =

(
cos( θ2 ) − sin( θ2 )

sin( θ2 ) cos( θ2 )

)
, θ = −2 arccos

(√
l

m

)
. (14)

We label m-qubit vector spaces from 0 to m − 1, going from right to left; and in circuit

diagrams, the m vector spaces are represented by corresponding wires labeled from the top

(0) to the bottom (m− 1), see the Appendix for more details.

...

0 R(θ)

l = 1

m− 1

(a) Im,l with l = 1

...

...

0 R(θ)

1

l − 1

l

m− 1

(b) Im,l with l > 1

Figure 1: Circuit diagrams for Im,l, with R(θ) defined in (14)

We note that these operators satisfy

Im,l′ |e(m− l, l)⟩ = |e(m− l, l)⟩ if l′ ̸= l ,

Im,l′ [Im,l |e(m− l, l)⟩] = Im,l |e(m− l, l)⟩ if l′ > l . (15)

Hence, a quantum circuit that performs the transformation (12) for all l = 1, 2, . . . ,m− 1 is

given by an ordered product of such operators

Wm =

↶
m−1∏
l=1

Im,l , (16)

dThe circuit diagrams in this paper were generated using quantikz [48].
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where the product goes from right to left with increasing l.

The size and depth of the qubit circuit Un is O(n2), see (61) below.

As an example with n = 6, we see from (11) and (16) that

U6 =
(
W2 ⊗ I⊗4

) (
W3 ⊗ I⊗3

) (
W4 ⊗ I⊗2

)
(W5 ⊗ I)W6 , (17)

=
(
I2,1 ⊗ I⊗4

) [
(I3,2I3,1)⊗ I⊗3

] [
(I4,3I4,2I4,1)⊗ I⊗2

]
[(I5,4I5,3I5,2I5,1)⊗ I] (I6,5I6,4I6,3I6,2I6,1) .

This circuit can be used to prepare the 6-qubit Dicke state |D6(6− l, l)⟩ = U6 |e(6− l, l)⟩ from
the initial state |e(6− l, l)⟩ for any l ∈ {1, . . . , 5}. For the particular case l = 3, the gates in

red are redundant and can therefore be removed, as explained below.

3.1 Simplifying the circuit

For a Dicke state |Dn(n− l, l)⟩ with a given (fixed) value of l, some of the gates in the above

construction (7), (11), (16) are redundant, and can therefore be removed. We now prune

away these redundant gates in order to obtain a simplified operator Un(n − l, l) in terms of

corresponding simplified operators Wm(n− l, l), such that

Un(n− l, l) |e(n− l, l)⟩ = |Dn(n− l, l)⟩ , (18)

which are customized for a fixed value of l.

We begin by considering how the right-most factor in (11), Wn, acts on |e(n − l, l)⟩ for

a fixed l. The first property in (15) implies that n − 2 factors in the product (16) can be

removed, simplifying to Wn(n − l, l) = In,l. For example, for l = 3 in (17), we can remove

gates I6,1, I6,2, I6,4, I6,5 in W6.

We next consider how Wn−1 ⊗ I acts on In,l |e(n− l, l)⟩. Rewriting (16) as

Wn−1 =


↶

n−2∏
l′=l+1

In−1,l′

 In−1,l In−1,l−1


↶
l−2∏
l′=1

In−1,l′

 , (19)

we find that all the terms in the right product can be removed, as their controls are in qubit

positions between and including 1 and l−1, where the qubits take the value of |1⟩. The terms

in the left product can also be seen to leave the state invariant, and can therefore also be

removed. Thus, the factor Wn−1 in (11) can be simplified to Wn−1(n− l, l) = In−1,l In−1,l−1.

For example, for l = 3 in (17), the gates I5,1 and I5,4 in W5 can be removed.

Similar analysis can be done on the general Wm factors in the product (11), leading to

Un(n− l, l) =

↷
n∏

m=2

(
Wm(n− l, l)⊗ I⊗(n−m)

)
, (20)

where

Wm(n− l, l) =

↶
min(l,m−1)∏

l′=max(l+m−n,1)

Im,l′ . (21)

The number of I-gates in Un(n− l, l) is given by

N I
n(l) =

n∑
m=2

[1 + min(l,m− 1)−max(l +m− n, 1)] , (22)
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which satisfies N I
n(l) = N I

n(n − l), and N I
n(l) ∼ ln for l ≪ n. Hence, the circuit Un(n − l, l)

has size O(min(l, n− l) · n), as in [17].

Cirq code that implements the qubit Dicke state constructions given by (7), (11), (16) as

well as by (18)-(21) is included in the Supplementary Material.

4 The case d = 3

We now consider the case d = 3 (qutrits). The defining relation for the W operator (9) with

n = m now reduces to

Wm |0⟩⊗k0 |1⟩⊗k1 |2⟩⊗k2 =

√
k0
m

|0⟩⊗(k0−1)|1⟩⊗k1 |2⟩⊗k2 |0⟩ (23)

+

√
k1
m

|0⟩⊗k0 |1⟩⊗(k1−1)|2⟩⊗k2 |1⟩+
√

k2
m

|0⟩⊗k0 |1⟩⊗k1 |2⟩⊗k2 , k0 + k1 + k2 = m.

4.1 Elementary qutrit gates

We shall see that the W operators can be decomposed entirely in terms of certain NOT

gates, Ry rotation gates, and controlled versions thereof. Following [30]e, we denote by X(ij)

the (1-qutrit) NOT gate that performs the interchange |i⟩ ↔ |j⟩ and leaves unchanged the

remaining basis vector, where i, j ∈ {0, 1, 2} and i < j; that is,

X(01)|0⟩ = |1⟩ , X(01)|1⟩ = |0⟩ , X(01)|2⟩ = |2⟩ ,
X(02)|0⟩ = |2⟩ , X(02)|2⟩ = |0⟩ , X(02)|1⟩ = |1⟩ ,
X(12)|1⟩ = |2⟩ , X(12)|2⟩ = |1⟩ , X(12)|0⟩ = |0⟩ . (24)

We similarly denote by R(ij)(θ) the (1-qutrit) gate that performs an Ry(θ) rotation in the

subspace spanned by |i⟩ and |j⟩; hence,

R(ij)(θ)|i⟩ = cos(θ/2)|i⟩+ sin(θ/2)|j⟩ ,
R(ij)(θ)|j⟩ = − sin(θ/2)|i⟩+ cos(θ/2)|j⟩ , (25)

with (i, j) ∈ {(0, 1), (0, 2), (1, 2)}.
We denote by C

[n1]
q1 X

(ij)
q0 the (2-qutrit) controlled-X(ij) gate, which acts as X(ij) on the

“target” qutrit in vector space q0 if the “control” qutrit in vector space q1 is in the state |n1⟩,
and otherwise acts as the identity operator. That is,

C [n1]
q1 X(ij)

q0 |x1⟩q1 |x0⟩q0 =

{
|x1⟩q1X(ij)|x0⟩q0 if x1 = n1

|x1⟩q1 |x0⟩q0 if x1 ̸= n1

, (26)

where x0, x1, n1 ∈ {0, 1, 2}, and q0, q1 ∈ {0, 1, . . . , n− 1}. The corresponding circuit diagram

is shown in Fig. 2a.

Similarly, C
[n2 n1]
q2 q1 X

(ij)
q0 denotes the (3-qutrit) double-controlled-X(ij) gate, with control qutrits

in vector spaces q1 and q2, which must be in the states |n1⟩ and |n2⟩, respectively, in order

for the gate to act nontrivially on the target qutrit in vector space q0, see Fig. 2b; and simi-

larly for higher multiple-controlled-X(ij) gates. Controlled Ry rotation gates are defined in a

similar way, with X(ij) replaced by R(ij)(θ).

eSee also [29] and references therein.
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n1

q0 X(i,j)

q1

(a) C
[n1]
q1 X

(ij)
q0

n1

n2

q0 X(i,j)

q1

q2

(b) C
[n2 n1]
q2 q1 X

(ij)
q0

Figure 2: Circuit diagrams for qutrit controlled-X(ij) gates

Matrix representations of these gates and further notational details are presented in the

Appendix.

We now proceed in Sections 4.2 and 4.3 to use these gates to explicitly construct a circuit

that implements the W operator (23).

4.2 Special case

Let us begin with the simpler special case that exactly one of the kj ’s is zero, i.e. either

k0 = 0 , or k1 = 0 , or k2 = 0 , (27)

in which case (23) takes the form

Wm |i0⟩(m−l)|i1⟩⊗l =

√
m− l

m
|i0⟩⊗(m−l−1)|i1⟩⊗l|i0⟩+

√
l

m
|i0⟩⊗(m−l)|i1⟩⊗l , (28)

where i0 < i1; there are 3 such possibilities, namely (i0, i1) ∈ {(0, 1), (0, 2), (1, 2)}. Let us

denote by W̃m the restriction of Wm to this special case (27), (28).

We observe that W̃m acts formally similarly to the qubit operator (12), except the latter

involves only the single possibility (i0, i1) = (0, 1). We therefore introduce a qutrit operator

V
(i0,i1)
m,l , similar to the qubit operator Im,l (13), that performs the mapping

V
(i0,i1)
m,l : |i0⟩l |i1⟩l−1 |i1⟩0 7→

√
m− l

m
|i1⟩l |i1⟩l−1 |i0⟩0 +

√
l

m
|i0⟩l |i1⟩l−1 |i1⟩0 , (29)

and otherwise acts as identity (as long as the 0th qutrit is in the state |i1⟩). For l = 1, the

middle qutrits in (29) are omitted. The operator W̃m is then given, similarly to (16), by

W̃m =

↶
m−1∏
l=1

Im,l , Im,l = V
(1,2)
m,l V

(0,2)
m,l V

(0,1)
m,l , (30)

where the order of the Vm,l’s in Im,l is arbitrary. The circuit diagram for V
(i0,i1)
m,l with 2 ≤

l ≤ m − 2 is given by Fig. 3, cf. Fig. 1. For the edge cases l = 1 and l = m − 1, the

corresponding circuit diagrams can be obtained from limits of Fig. 3, and are given by Figs.

4 and 5, respectively. The control with i0 > 0 is defined as an i0 control that is present only

if i0 > 0; its role is to ensure for the case (i0, i1) = (1, 2) that the input state indeed consists

only of |1⟩’s and |2⟩’s. Hence, Im,l leaves invariant any generic (i.e., not special) initial state,

Im,l

(
|0⟩⊗k0 |1⟩⊗k1 |2⟩⊗k2

)
=
(
|0⟩⊗k0 |1⟩⊗k1 |2⟩⊗k2

)
k0, k1, k2 ̸= 0 . (31)
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i1 i1

...

i1

i1

...

i0 > 0

0 R(i0,i1)(θ)

l − 1

l X(i0,i1) X(i0,i1)

m− 1

Figure 3: Circuit diagram for V
(i0,i1)
m,l with 2 ≤ l ≤ m− 2, m ≥ 4, and θ in (14)

i1 i1

i1

0 R(i0,i1)(θ)

l = 1 X(i0,i1) X(i0,i1)

(a) V
(i0,i1)
m,l with l = 1 and m = 2

i1 i1

i1

...

i0 > 0

0 R(i0,i1)(θ)

l = 1 X(i0,i1) X(i0,i1)

m− 1

(b) V
(i0,i1)
m,l with l = 1 and m > 2

Figure 4: Circuit diagrams for V
(i0,i1)
m,l with l = 1 and θ in (14)

4.3 Generic case

In Sec. 4.2 we focused on the special case that exactly one of the kj ’s is zero (27), for which

case Wm generates only 2 terms (28), and therefore only one rotation angle (θ) is necessary.

Let us now consider the generic case that all of the kj’s are nonzero, for which case Wm

generates 3 terms (23), and therefore two rotation angles (θ1, θ2) are necessary. Let us denote

by
˜̃
Wm the restriction of Wm to this generic case. We will see that

˜̃
Wm is given by a product

of operators II depending on wire labels l2 ∈ {1, 2, . . .} and l1 ∈ {l2 + 1 , l2 + 2 , . . .}, where

l2 = k2 , l1 = k1 + k2 . (32)

Thus, l2 − 1 is the wire in the initial state |e(k⃗)⟩ with the “last” |2⟩, and l1 − 1 is the wire

with the “last” |1⟩, going from right to left:

|0⟩m−1 · · · |0⟩l1 |1⟩l1−1 · · · |1⟩l2 |2⟩l2−1 · · · |2⟩0 . (33)

We introduce the operator IIm,l1,l2 acting on the l1th, (l1 − 1)th, l2th, (l2 − 1)th, and 0th
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i1 i1

...

i1

i1

0 R(i0,i1)(θ)

m− 2

l = m− 1 X(i0,i1) X(i0,i1)

Figure 5: Circuit diagram for V
(i0,i1)
m,l with l = m− 1, m ≥ 3, and θ in (14)

qutrit, which performs the transformation

IIm,l1,l2 : |0⟩l1 |1⟩l1−1|1⟩l2 |2⟩l2−1|2⟩0 7→ cos(θ1/2)|0⟩l1 |1⟩l1−1|1⟩l2 |2⟩l2−1|2⟩0
− sin(θ1/2) cos(θ2/2)|0⟩l1 |1⟩l1−1|2⟩l2 |2⟩l2−1|1⟩0
+ sin(θ1/2) sin(θ2/2)|1⟩l1 |1⟩l1−1|2⟩l2 |2⟩l2−1|0⟩0 , (34)

and otherwise acts as identity (as long as the 0th qutrit is in the state |2⟩, which is always

the case for generic input states in (23)). For l2 = 1, the next-to-rightmost qutrits in (34) are

omitted; and for l1 = l2 + 1, the next-to-leftmost qutrits in (34) are omitted. We demand

cos(θ1/2) =

√
l2
m

, sin(θ1/2) cos(θ2/2) = −
√

l1 − l2
m

,

sin(θ1/2) sin(θ2/2) =

√
m− l1
m

, (35)

in order to match with (23) and (32). We therefore assign to the rotation angles the values

θ1 = −2 arccos

(√
l2
m

)
, θ2 = −2 arccos

(√
l1 − l2
m− l2

)
. (36)

The operator IIm,l1,l2 in (34) (with l2+1 < l1 ≤ m−1, l2 > 1, m > 4) can be implemented

by the circuit in Fig. 6. We note that IIm,l1,l2 does not require the control i0 > 0 on the

(m − 1)th wire (as is required for V
(i0,i1)
m,l ) since IIm,l1,l2 becomes activated only when the

(m− 1)th wire is in the state |0⟩.
For the three types of edge cases:

(i) l2 = 1, l1 = 2, m > 2

(ii) l2 = 1, 2 < l1 ≤ m− 1, m > 3

(iii) l2 > 1, l1 = l2 + 1 ≤ m− 1, m > 3

the corresponding circuit diagrams for IIm,l1,l2 can be obtained from limits of Fig. 6, see Figs.

7, 8, 9, respectively.
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2 2 1 1

...

2 2

2 2

...

1 1

0 1

...

0 R(1,2)(θ1) R(0,1)(θ2)

l2 − 1

l2 X(1,2) X(1,2)

l1 − 1

l1 X(0,1) X(0,1)

m− 1

Figure 6: Circuit diagram for IIm,l1,l2 with l2 + 1 < l1 ≤ m− 1, l2 > 1, m > 4, and θ1 , θ2 in
(36)

2 2 1 1

2 2

0 1

...

0 R(1,2)(θ1) R(0,1)(θ2)

l2 = 1 X(1,2) X(1,2)

l1 = 2 X(0,1) X(0,1)

m− 1

Figure 7: Circuit diagram for IIm,l1,l2 with l2 = 1, l1 = 2, m > 2, and θ1 , θ2 in (36)

We note that these operators satisfy the following properties

IIm,l′1,l
′
2
|e(m− l1, l1 − l2, l2)⟩ = |e(m− l1, l1 − l2, l2)⟩

if l′1 ̸= l1 or l′2 ̸= l2 ,

IIm,l′1,l
′
2
[IIm,l1,l2 |e(m− l1, l1 − l2, l2)⟩] = IIm,l1,l2 |e(m− l1, l1 − l2, l2)⟩

if l′1 > l1 or l′2 > l2 ,

IIm,l1,l2

[
Im,l

(
|i⟩⊗(m−l)|j⟩⊗l

)]
= Im,l

(
|i⟩⊗(m−l)|j⟩⊗l

)
if l1 > l2 and i < j . (37)

The desired
˜̃
Wm operator is therefore given by an ordered product of all possible II-operators

˜̃
Wm =

↶
m−2∏
l2=1

m−1∏
l1=l2+1

IIm,l1,l2 , (38)
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2 2 1 1

2 2

...

1 1

0 1

...

0 R(1,2)(θ1) R(0,1)(θ2)

l2 = 1 X(1,2) X(1,2)

l1 − 1

l1 X(0,1) X(0,1)

m− 1

Figure 8: Circuit diagram for IIm,l1,l2 with l2 = 1, 2 < l1 ≤ m− 1, m > 3, and θ1 , θ2 in (36)

2 2 1 1

...

2 2

2 2

0 1

...

0 R(1,2)(θ1) R(0,1)(θ2)

l2 − 1

l2 X(1,2) X(1,2)

l1 = l2 + 1 X(0,1) X(0,1)

m− 1

Figure 9: Circuit diagram for IIm,l1,l2 with l2 > 1, l1 = l2 + 1 ≤ m− 1, m > 3, and θ1 , θ2 in
(36)

where either l2 or l1 increases from right to left. For example,

˜̃
W 4 = II4,3,2 II4,3,1 II4,2,1 . (39)

4.4 Summarizing

For the general d = 3 case (with no conditions on k⃗, apart from k0 + k1 + k2 = m), we obtain

our result for an operator Wm (independent of k⃗) that satisfies (23), namely

Wm =
˜̃
Wm W̃m , (40)

where W̃m is given by (30), and
˜̃
Wm is given by (38).

The size and depth of the qutrit circuit Un is O(n3), see (61) below. We note that the

multi-controlled qutrit Ry gates in this circuit can be decomposed into elementary 1-qutrit

and 2-qutrit gates in the same way as for corresponding multi-controlled qubit Ry gates, since

we use the naive embeddings SU(2) ⊂ SU(3) (A.3). The number of 2-qubit gates in the
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decomposition of multi-controlled qubit Ry gates, as provided by cirq, is displayed in Table

1.

number of controls number of 2-qubit gates
1 2
2 8
3 22
4 50

Table 1: The number of 2-qubit gates in the decomposition of multi-controlled qubit Ry gates

The initial state |e(k⃗)⟩ (recall Eqs. (4) and (7)) with d = 3 is readily constructed by

applying X(01) and X(02) gates to the all-|0⟩ n-qutrit state

|e(k⃗)⟩ = |0⟩⊗k0 |1⟩⊗k1 |2⟩⊗k2 = I⊗k0 ⊗ (X(01))⊗k1 ⊗ (X(02))⊗k2 |0⟩⊗n . (41)

As a simple example, the 3-qutrit Dicke state |D3(1, 1, 1)⟩ is obtained by

|D3(1, 1, 1)⟩ = U3 |0⟩|1⟩|2⟩ , (42)

where

U3 = (W2 ⊗ I)W3 = (I2,1 ⊗ I) (II3,2,1 I3,2 I3,1) , (43)

see Eqs. (7), (11), (30), (38), (40). The Im,l’s are given in terms of V
(i0,i1)
m,l ’s, see Eq. (30),

where the latter are given by Figs. 3 and 4; and II3,2,1 is given by Fig. 7.

Similarly, the 4-qutrit state |D4(2, 1, 1)⟩ (6) is obtained by

|D4(2, 1, 1)⟩ = U4 |0⟩⊗2|1⟩|2⟩ , (44)

with

U4 =
(
W2 ⊗ I⊗2

)
(W3 ⊗ I)W4

=
(
I2,1 ⊗ I⊗2

)
(II3,2,1 I3,2 I3,1 ⊗ I) (II4,3,2 II4,3,1 II4,2,1 I4,3 I4,2 I4,1) . (45)

The gates in red in Eqs. (43) and (45) are redundant (for generating the states |D3(1, 1, 1)⟩
and |D4(2, 1, 1)⟩, respectively) and can therefore be removed, as explained below.

4.5 Simplifying the circuit

The operator Un (11), with the W operators given by (40), generates the qutrit Dicke state

|Dn(k⃗)⟩ for any k⃗, see (7). For a fixed k⃗, it is possible to prune away redundant gates, and

therefore reduce the circuit size, as we did in Sec. 3.1 for d = 2. We therefore now look for

simplified operators Un(n− l1, l1− l2, l2) and Wm(n− l1, l1− l2, l2), depending on given values

l1 and l2 (which are related to k⃗ by (32)), such that

Un(n− l1, l1 − l2, l2) |e(n− l1, l1 − l2, l2)⟩ = |Dn(n− l1, l1 − l2, l2)⟩ ,

Un(n− l1, l1 − l2, l2) =

↷
n∏

m=2

(
Wm(n− l1, l1 − l2, l2)⊗ I⊗(n−m)

)
. (46)
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Setting as in (40)

Wm(n− l1, l1 − l2, l2) =
˜̃Wm(n− l1, l1 − l2, l2) W̃m(n− l1, l1 − l2, l2) , (47)

we conjecture that, similarly to the d = 2 case (21),

˜̃Wm(n− l1, l1 − l2, l2) =

↶
min(l2,m−2)∏

l′2=max(l2+m−n,1)

min(l1,m−1)∏
l′1=max(l1+m−n,l′2+1)

IIm,l′1,l
′
2
, (48)

and

W̃m(n− l1, l1 − l2, l2) =

↶
min(k̃,m−1)∏

l=max(k̃+m−n,1)

Im,l , (49)

where Im,l is defined in (30), and k̃ is defined (in terms of k0 = n − l1, k1 = l1 − l2, and

k2 = l2) by

k̃ =

{
k2 if k0 = 0

max(k1, k2) if k0 ̸= 0
. (50)

We have not yet succeeded to prove the result (48)-(50), which we found through experimen-

tation.

Cirq code that implements the qutrit Dicke state constructions given by (7), (11), (40) as

well as by (46)-(50) is included in the Supplementary Material.

The number of I-gates and II-gates in Un(n− l1, l1 − l2, l2) is given by

N I
n(l1, l2) =

n∑
m=2

[
1 + min(k̃,m− 1)−max(k̃ +m− n, 1)

]
,

N II
n (l1, l2) =

n∑
m=2

min(l2,m−2)∑
l′2=max(l2+m−n,1)

[1 + min(l1,m− 1)−max(l1 +m− n, l′2 + 1)] , (51)

respectively. For l1 ∼ l2 ≡ l ≪ n, we see that N I
n(l1, l2) ∼ ln and N II

n (l1, l2) ∼ l2n. The size

and depth of the simplified circuit Un(n− l1, l1 − l2, l2) is therefore O(l2n).

5 General d

We now consider the decomposition of the W operator (9) for general values of d in terms of

elementary qudit gates, which are defined similarly to the qutrit gates reviewed in Sec. 4.1.

Exhibiting the d-dependence explicitly, Eqs. (7) and (11) become

U (d)
n |e(k⃗)⟩ = |Dn(k⃗)⟩ , (52)

and

U (d)
n =

↷
n∏

m=2

(
W (d)

m ⊗ I⊗(n−m)
)
. (53)
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We find that W
(d)
m is given by

W (d)
m =

↶
d∏

j=2

W (d,j)
m , (54)

where

W (d,j)
m =

↶
m−j+1∏
lj−1=1

m−j+2∏
lj−2=lj−1+1

· · ·
m−2∏

l2=l3+1

m−1∏
l1=l2+1

 ∏
0≤i0<i1<···<ij−1≤d−1

V
(i0,i1,...,ij−1)
m,l1,...,lj−1

 , (55)

and the circuit diagram for the operator V
(i0,i1,...,ij−1)
m,l1,...,lj−1

, with 0 ≤ i0 < i1 < · · · < ij−1 ≤ d− 1

and 1 ≤ lj−1 < lj−2 < · · · < l1 ≤ m− 1, is given by Fig. 10. This operator has j − 1 rotation

angles θ1, . . . , θj−1, which can be determined in terms of the l’s and m from the relations

cos(θ1/2) =

√
lj−1

m
,

cos(θj−i/2)

j−i−1∏
i′=1

(− sin(θi′/2)) =

√
li − li+1

m
, i = 1, . . . , j − 2 ,

j−1∏
i′=1

(− sin(θi′/2)) =

√
m− l1
m

. (56)

Circuit diagrams for edge cases can be obtained from suitable limits of Fig. 10, as for d = 3.

For a given value of j, the operators V
(i0,i1,...,ij−1)
m,l1,...,lj−1

act nontrivially on states |e(k⃗)⟩ for which
the number of nonzero ki’s is j (i.e., j = d−

∑d−1
i=0 δki,0).

As a check on this result, let us count the number of V operators inW
(d)
m (54). The number

of V operators in the product within square brackets in (55) is given by
(
d
j

)
(namely, the

number of ways of choosing the j integers i0, i1, . . . , ij−1 from the set of d integers {0, 1, . . . , d−
1}.) Moreover, the number of possible values of l1, . . . , lj−1 in (55) is given by

(
m−1
j−1

)
. The

number of V operators in W
(d,j)
m is therefore

(
d
j

)(
m−1
j−1

)
. We conclude that the number of V

operators in W
(d)
m is given byf

d∑
j=1

(
d

j

)(
m− 1

j − 1

)
=

(
m+ d− 1

d− 1

)
. (57)

The result (57) is the number of weak d-compositions of m [44], i.e. the number of ways

of writing m as
∑d−1

i=0 ki with ki ∈ {0, 1, . . . ,m}, which in turn is the number of possible

m-qudit initial states |e(k⃗)⟩; and, since W
(d)
m is defined (9) by its action on |e(k⃗)⟩, one can

indeed naively expect to implement W
(d)
m by using one V operator for each possible state

|e(k⃗)⟩.
As a further check, let us verify that we can recover our previous results for the qubit and

qutrit cases. For the case d = 2, Eqs. (54) and (55) reduce to

W (2)
m = W (2,2)

m =

↶
m−1∏
l=1

V
(0,1)
m,l , (58)

fFor j = 1, we have W
(d,1)
m = I, the identity operator.
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with V
(0,1)
m,l = Im,l in Fig. 1, which coincides with (16). For the case d = 3, Eqs. (54) and

(55) reduce to

W (3)
m = W (3,3)

m W (3,2)
m , (59)

and

W (3,2)
m =

↶
m−1∏
l=1

(
V

(1,2)
m,l V

(0,2)
m,l V

(0,1)
m,l

)
,

W (3,3)
m =

↶
m−2∏
l2=1

m−1∏
l1=l2+1

V
(0,1,2)
m,l1,l2

, (60)

with V
(0,1,2)
m,l1,l2

= IIm,l1,l2 , which coincide with Eqs. (40), (30), (38), respectively, since W
(3,2)
m =

W̃m and W
(3,3)
m =

˜̃
Wm.

We observe that the number of V operators in U
(d)
n is given by

n∑
m=2

(
m+ d− 1

d− 1

)
=

n+ 1

d

(
n+ d

d− 1

)
− d− 1 = O(nd) , (61)

see Eqs. (53), (57). Each V
(i0,i1,...,ij−1)
m,l1,...,lj−1

operator consists of 2(j − 1) CNOT gates, and j − 1

(2j− 1)-fold controlled Ry gates, as can be seen from Fig. 10; the total number of such gates

in U
(d)
n is also O(nd), as is the circuit depth. As previously noted, multi-controlled qudit Ry

gates can be decomposed into elementary 1-qudit and 2-qudit gates in the same way as for

corresponding multi-controlled qubit (d = 2) Ry gates.

The operator U
(d)
n generates the qudit Dicke state |Dn(k⃗)⟩ for any k⃗, see (52). For a fixed

k⃗, we expect that it should be possible to prune away redundant V operators and lower the

circuit size, perhaps to O(ld−1n) for l1 ∼ l2 ∼ . . . ∼ ld−1 ≡ l ≪ n, as we have done for the

cases d = 2 and d = 3. However, we shall not pursue here such simplification for general

values of d.

6 Discussion

We have formulated an algorithm for preparing qudit Dicke states. Our main results are

the expression (11) for the qudit Dicke operator Un as a product of W operators (9), and

the decomposition of the W operators in terms of elementary gates (16), (40), (54). For the

qubit and qutrit cases, we have found simplified versions of these circuits, see (18)-(21) and

(46)-(50); and we have implemented these circuits in cirq. The algorithm is deterministic,

and does not use ancillary qudits.

Whereas the preparation of arbitrary qubit Dicke states has been considered in a number

of works (see [17–20] and references therein), ours is the first work (to our knowledge) to

consider the preparation of arbitrary qudit Dicke states. We have seen that, already for

the qutrit case, the algorithm entails a nontrivial generalization of [17]. For the explicit gate

implementation of the W operators, we have aimed primarily for clarity rather than economy;

it is likely that alternative implementations with reduced gate counts can be found.

Having in hand a way to prepare qudit Dicke states, one can begin to investigate their

potential applications, such as those noted in the Introduction. In particular, it would be
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ij−1 ij−1 ij−2 ij−2 · · · ik ik · · · i1 i1

...

ij−1 ij−1 · · · ij−1 · · · ij−1

ij−1 ij−1 · · · ij−1 · · · ij−1

...

ij−2 ij−2 · · · ij−2 · · · ij−2

ij−3 ij−2 · · · ij−2 · · · ij−2

...

ik ik · · · ik · · · ik

ik−1 ik−1 · · · ik · · · ik

...

i1 i1 · · · i1 · · · i1

i0 i0 · · · i0 · · · i1

...

i0 > 0 i0 > 0 · · · i0 > 0 · · · i0 > 0

0 R(ij−2,ij−1)(θ1) R(ij−3,ij−2)(θ2) R(ik−1,ik)(θj−k) R(i0,i1)(θj−1)

lj−1 − 1

lj−1 X(ij−2,ij−1) X(ij−2,ij−1)

lj−2 − 1

lj−2 X(ij−3,ij−2) X(ij−3,ij−2)

lk − 1

lk X(ik−1,ik) X(ik−1,ik)

l1 − 1

l1 X(i0,i1) X(i0,i1)

m− 1

Figure 10: Circuit diagram for V
(i0,i1,...,ij−1)
m,l1,...,lj−1

interesting to formulate an algorithm for preparing eigenstates of higher-rank integrable spin

chains based on coordinate Bethe ansatz [45, 46], thereby extending the approach [21] for

preparing eigenstates of the Heisenberg spin chain.

Significant progress has recently been achieved on building quantum computers based on

qutrits and even higher-dimensional qudits, see e.g. [32–36] and references therein. Since

high-fidelity single-qutrit operations are already available [34], the initial (separable) state

(41) can presumably already be implemented for a small number of qutrits. The generation

of the simplest generic qutrit Dicke state |D3(1, 1, 1)⟩ (42) requires up to double-controlled-

rotation gates. Since high-fidelity single-controlled gates are already available [32, 33, 35, 36],

it may be possible to implement this Dicke state in the near future.

Supplementary material

Cirq code simulating the circuits for the cases d = 2 and d = 3 can be found at https:

//arxiv.org/abs/2301.04989.
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Appendix A Matrix representations of qutrit gates

A 1-qutrit state lives in the 3-dimensional complex vector space V spanned by |0⟩, |1⟩, |2⟩.
Let us set

|0⟩ =

1
0
0

 , |1⟩ =

0
1
0

 , |2⟩ =

0
0
1

 . (A.1)

The NOT gates X(ij) (24) are represented by the 3× 3 matrices [30]

X(01) =

0 1 0
1 0 0
0 0 1

 , X(02) =

0 0 1
0 1 0
1 0 0

 , X(12) =

1 0 0
0 0 1
0 1 0

 . (A.2)

Similarly, the rotation gates R(ij)(θ) (25) are represented by

R(01)(θ) =

cos( θ2 ) − sin( θ2 ) 0

sin( θ2 ) cos( θ2 ) 0
0 0 1

 , R(02)(θ) =

cos( θ2 ) 0 − sin( θ2 )
0 1 0

sin( θ2 ) 0 cos( θ2 )

 ,

R(12)(θ) =

1 0 0
0 cos( θ2 ) − sin( θ2 )

0 sin( θ2 ) cos( θ2 )

 . (A.3)

An n-qutrit state lives in V ⊗n. We label these vector spaces from 0 to n− 1, going from

right to left
n−1

↓
V ⊗ · · ·⊗

1

↓
V ⊗

0

↓
V . (A.4)

In circuit diagrams, the n vector spaces are represented by n horizontal wires, which are

labeled from 0 to n− 1, going from top (0) to bottom (n− 1). We use subscripts to indicate

the vector spaces on which operators act nontrivially. For example, if A is a 1-qutrit operator,

then

Aq = I⊗(n−1−q) ⊗A⊗ I⊗q (A.5)

is an operator on V ⊗n acting nontrivially on the qth vector space q ∈ {0, 1, . . . , n − 1}. The

vector space on which an operator acts nontrivially can be changed using the permutation

operator Pqq′ , for example

Aq′ = Pq q′ Aq Pq q′ , (A.6)
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where

Pq q′ =

3∑
i,j=1

ei,jq ej,iq′ , (A.7)

and ei,j is the elementary 3× 3 matrix whose (i, j) matrix element is 1, and all others are 0;

that is, (ei,j)a,b = δi,a δj,b.

For the controlled-X(ij) gates (26), we have the 9× 9 block-diagonal matrices

C
[2]
1 X

(ij)
0 =

(
16

X(ij)

)
, C

[1]
1 X

(ij)
0 =

13

X(ij)

13

 , C
[0]
1 X

(ij)
0 =

(
X(ij)

16

)
,

(A.8)

where 1n denotes the n× n identity matrix. The controlled gates are related by NOT gates

on the controls, for example

C
[1]
1 X

(ij)
0 = X

(12)
1

(
C

[2]
1 X

(ij)
0

)
X

(12)
1 , C

[0]
1 X

(ij)
0 = X

(02)
1

(
C

[2]
1 X

(ij)
0

)
X

(02)
1 . (A.9)

In terms of circuit diagrams, these identities are shown in Figs. A.1a and A.1b, respectively.

1

0 X(i,j)

1

=

2

0 X(i,j)

1 X(1,2) X(1,2)

(a) Identity for C
[1]
1 X

(ij)
0

0

0 X(i,j)

1

=

2

0 X(i,j)

1 X(0,2) X(0,2)

(b) Identity for C
[0]
1 X

(ij)
0

Figure A.1: Circuit diagrams for identities (A.9)

Double-controlled-X(ij) gates are given by 33 × 33 block-diagonal matrices

C
[22]
21 X

(ij)
0 =

(
124

X(ij)

)
, C

[11]
21 X

(ij)
0 =

112

X(ij)

112

 , C
[00]
21 X

(ij)
0 =

(
X(ij)

124

)
,

(A.10)

and similarly for higher-controlled-X(ij) gates. Matrices corresponding to controlled Ry ro-

tation gates are defined in a similar way, with X(ij) replaced by R(ij)(θ).


