
Quantum Information and Computation, Vol. 24, No. 1&2 (2024) 0001–0036
c© Rinton Press

CLIFFORD ORBITS FROM CAYLEY GRAPH QUOTIENTS

CYNTHIA KEELER WILLIAM MUNIZZI

Department of Physics, Arizona State University

Tempe, AZ 85281, USA

JASON POLLACK

Quantum Information Center, Department of Computer Science, The University of Texas at Austin
2317 Speedway, Austin, TX 78712, USA

Department of Electrical Engineering and Computer Science
Syracuse University, NY 13210, USA

Received November 15, 2023

Revised January 23, 2024

We describe the structure of the n-qubit Clifford group Cn via Cayley graphs, whose
vertices represent group elements and edges represent generators. In order to obtain the

action of Clifford gates on a given quantum state, we introduce a quotient procedure.

Quotienting the Cayley graph by the stabilizer subgroup of a state gives a reduced
graph which depicts the state’s Clifford orbit. Using this protocol for C2, we reproduce

and generalize the reachability graphs introduced in [1]. Since the procedure is state-
independent, we extend our study to non-stabilizer states, including the W and Dicke

states. Our new construction provides a more precise understanding of state evolution

under Clifford circuit action.
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1 Introduction

How can we track the evolution of information about a quantum state? In the general case, where

we’d like to obtain the outcome of arbitrary measurements under continuous time evolution, we can

do no better than to work with the state itself. For an n-qubit pure state |ψ〉 ∈ H ∼= C2n, tracking

the state requires knowing all of its overlaps 〈ai|ψ〉 with a given orthonormal basis {|ai〉}: that is,

4n − 2 real parameters, accounting for normalization and the unobservability of global phase. We can

do better, however, by restricting which information we want to keep track of, or restricting how the

state might evolve, or starting with a special initial state:

• We might only care about some particular properties of the state. If we only want to predict

the outcome of measurements on k < n of the qubits, we can trace out the remaining n − k
qubits and work with the reduced state ρ{n−k}, which requires only 4k − 1 real parameters. If

we want to understand the entanglement properties of the state, we can collect together the von

Neumann entropies of each independent reduced density matrix: 2n−1 − 1 real parameters.

• We might want to evolve the state through a quantum circuit with a limited set of possible

unitaries that can be applied, such as the Clifford gates: Hadamard, phase, and CNOT. It might

be that the multiplicative group spanned by the gate set is sufficient to approximate any unitary
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2 Clifford orbits from cayley graph quotients

acting on C2n, up to arbitrary accuracy, in which case the gate set is universal. But we might

instead find that the group acts on a smaller Hilbert space, for example if every gate in the gate

set conserves some charge. Or, as is the case for the Clifford gates [2, 3], the generated group

might be finite, in which case, for a given initial state, there are only a discrete set of possible

states which can be reached.

• We might have a special state that admits a reduced description. If we know our state has

decohered, we can describe it by a classical ensemble of pointer states, and classical observables

are independent of the relative phase between branches, requiring only 2n − 1 real parameters.

Or, if we know our state is an eigenstate of some specified observable, or a simultaneous eigenstate

of a group of observables, we can obtain a compact description. For example, the Pauli group

on n qubits comprises the 2 · 4n (signed) Pauli strings. All n-qubit states stabilize, i.e. are unit

eigenvectors of, the identity operator 1 (and none stabilize −1). But only a discrete set of states

stabilize any additional Pauli strings: a special set of states that can be specified by discrete

rather than continuous information.

One of the most famous results in the theory of quantum computation concerns a computational

setting where we allow ourselves such simplifications. Quantum circuits which take an initial stabi-

lizer statea, a simultaneous unit eigenvector of 2n Pauli strings, to any other stabilizer state can be

represented as “Clifford circuits”, which contain only Clifford gate applications. Unlike circuits made

from a universal quantum gate set, Clifford circuits are efficiently classically simulable [4–6].

In this paper, we exploit the finiteness of the Clifford group to reinterpret Clifford circuits graph-

ically. Our key tool is a group-theoretic notion: the Cayley graph [7], which, given a choice of

generators, graphically encodes the structure of the group. We’re interested in studying what states

can be reached if, instead of acting with arbitrary Clifford circuits, we restrict to only a subset of

the possible Clifford gates. In particular, following our previous paper [1], we’d like to understand

how the entanglement entropy evolves as we act on a state with a Clifford circuit. Because all of

the entanglement created in this way is bipartite—the result of a CNOT gate action—it suffices to

consider entangling operations acting on only 2 of the n qubits.

We are thus led to consider the actions of the 2-qubit Clifford group on n ≥ 2-qubit states, which

might themselves be stabilizer states, or might be more general. We previously considered a version

of this problem in [1], developing “reachability graphs” in which each vertex was a stabilizer state and

each edge a Clifford gate, and “restricted graphs” in which only certain types of edges were allowed.

We found that the complicated graphs encoding the action of Clifford circuits on stabilizer states

decomposed into highly structured subgraphs.

In this paper, using the technology of Cayley graphs, we are able to reproduce and generalize our

previous results. Rather than working with the action of Clifford gates on states, we are instead led to

work more directly with the abstract group elements themselves. We can then recover the action on

states via a quotienting procedure. By working group-theoretically, we can easily understand the full

diversity of subgraph structures that arise, as well as extend our results to the action of Clifford circuits

on other states — for example, states which stabilize a non-maximal number of Pauli group elements

aThis paper, unfortunately, will have to deal with two meanings of the word ‘stabilizer’: the group-theoretic meaning,

where a state stabilizes a group element if the group element acts trivially on the state, and the quantum-information-

theoretic, where it is standard to refer to those n-qubit states which stabilize 2n elements of the n-qubit Pauli group

simply as “stabilizer states”. We will have cause in this paper to refer to both the traditional stabilizer states and states

which stabilize elements of other groups, most notably the n-qubit Clifford group and its subgroups.
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— which allows for new structures to arise. Along the way, we will gain a better understanding of

the Clifford group itself, deriving a formal presentation for the group, as well as data on its subgroup

structure. While presentations and descriptions of the Clifford group exist in the literature [8, 9], our

reformulation gives insight into the circumstances in which seemingly entangling gate operations fail

to ultimately produce entanglement.

In [10] we use the relations of our presentation to examine and bound the dynamics of entangle-

ment entropy. Because holographic states, which have a classical geometric description, live inside

the stabilizer entropy cone [11], tracking the evolution of entanglement can give us insight into the

operations which move quantum states into and out of the holographic cone.

1.1 Summary of Results

We previously introduced, in [1], reachability graphs, in which each vertex is an n-qubit pure quantum

state, typically a stabilizer state, and each (directed) edge is a Clifford gate taking the state at the

initial vertex to the state at the final vertex, as well as restricted graphs, in which only some subset

of the Clifford gates, typically {H1, H2, C1,2, C2,1}, is allowed. (Here and throughout we abbreviate

CNOTi,j as Ci,j .) Reachability graphs graphically encode the result of performing Clifford circuits

on a given set of states; restricted graphs give a more refined picture which is often more useful for

understanding entropic evolution.

The main task accomplished in this paper is the reinterpretation of reachability graphs as certain

quotients of a group-theoretic object, the Cayley graph, a directed graph that encodes the structure of

a group by identifying a vertex for every group element and a set of edges for each group generator.b

Since finite groups have finite Cayley graphs, we can use group cosets to construct quotient spaces on

its Cayley graph.

The general protocol for quotienting a Cayley graph to yield a graph isomorphic to a reachability

graph is:

1. For a group G and chosen state |Ψ〉, we first identify the stabilizer subgroup of |Ψ〉 in G, denoted

StabG(|Ψ〉).

2. Since StabG(|Ψ〉) is a subgroup of G, all equivalence classes of the left coset space G/StabG(|Ψ〉)
can be generated by taking h · StabG(|Ψ〉) for all h ∈ G.

3. Each equivalence class of G/StabG(|Ψ〉) is assigned a vertex, and each vertex is connected by

the generator which maps each element of one equivalence class to exactly one element of the

other equivalence class.

This procedure takes as input a choice of group and a choice of state. To recover the reachability

graphs, we do not take G to be the Clifford group itself, because the group contains elements which

act as an (unobservable) global phase. Instead, we first quotient the Clifford group (or (HC)1,2, the

group generated by Hadamard and CNOT acting on the first two qubits) by such elements, resulting

in a smaller group whose elements are isomorphic to equivalence classes of the original group; only

bBecause the Cayley graph depends on a choice of generators, there are many different Cayley graphs which each

correspond to a given group. Each of these graphs has an isomorphic set of vertices, namely one vertex for every group

element, but in general inequivalent edges. For example, {H1, H2, C1,2, C2,1} and {H1, H2, C1,2} both generate the

two-qubit Clifford group; as seen in Table 1, the corresponding Cayley graphs have the same number of vertices, 2304,

but different properties such as graph diameter.
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then do we specify a state. Figure 1 illustrates this procedure, starting with the one-qubit Clifford

group and the chosen state |0〉 and producing a quotiented graph isomorphic to the one-qubit stabilizer

reachability graph. We could have started with any of the six one-qubit stabilizer states and gotten

the same result, but the precise mapping of initial group elements to vertices of the final Cayley graph

is state-dependent.

Out[ ]=
H1

P1

Fig. 1. There are 32 elements of the single-qubit Clifford group C1 which form the equivalence
class of stabilizers for |0〉, denoted Stab C1 (|0〉). We first build the quotient group C̄1 ≡ C1/〈ω〉 by

modding out global phase, then build the left coset space C̄1/Stab C̄1 (|0〉) to identify equivalent

vertices in the C1 Cayley graph. This process yields a quotient space of the Cayley graph which is
isomorphic to the one-qubit stabilizer reachability graph.

In the remainder of the paper, we build an understanding of the Clifford group detailed enough to

construct its Cayley graph and those of its subgroups. Then, with that task accomplished, we display

the diversity of structures which ensue from applying the procedure to various quantum states. In

Section 2, we recall the Pauli group, Clifford group, stabilizer states, and the reachability graphs defined

in our previous paper. In Section 3, we begin with the simple case of the one-qubit Clifford group C1,

writing down its presentation and displaying its Cayley graph. We accomplish the same task for the

two-qubit Clifford group C2 in Section 4, where both of these steps are considerably more complicated.

We also discuss those subgroups of C2 generated by a proper subset of the Clifford gates, presenting in

Table 1 a comprehensive list of these subgroups and their properties, which might be of independent

interest, as well as discussing a number of the groups in more detail. With the needed group-theoretic

data obtained, we proceed in Section 5 to defining in detail the quotienting procedure summarized

above and applying it to various groups and states of interest. We summarize and discuss further

directions in Section 6. Appendices A-E provide further details of our derivations. All Mathematica

data and packages are publicly available [12, 13], and code for generating colorblind-accessible graphs

is available upon request.

2 Reminder: Clifford Group and Reachability Graphs

We begin with a brief review of background material discussed throughout this paper. Much of this

review was covered more extensively in Section 2 of [1], and we invite the interested reader to consult

it for additional details. Likewise, for a more pedagogical reference on the group-theoretic concepts

we recommend e.g. [14].
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2.1 The Clifford Group

The Pauli matrices are a set of unitary and Hermitian matrices with ±1 eigenvalues, defined

1 ≡

[
1 0

0 1

]
, σX ≡

[
0 1

1 0

]
, σY ≡

[
0 −i
i 0

]
, σZ ≡

[
1 0

0 −1

]
. (2.1)

These matrices act as operators on a Hilbert space C2 in the fixed measurement basis {|0〉, |1〉}. The

Pauli operators {σx, σy, σz} generate the algebra of all linear operators on C2, and define a 16-element

multiplicative matrix group, the one-qubit Pauli group:

Π1 ≡ 〈σX , σY , σZ〉, (2.2)

The set of unitary matrices that normalize the Pauli group is known as the (one-qubit) Clifford

group,

C1 ≡
{
U ∈ L(C2) | UgU† ∀g ∈ Π1

}
. (2.3)

Elements of C1 act as automorphisms on Π1 via conjugation by U . The single-qubit Clifford group C1
is generated by the Hadamard and phase quantum gates, defined in a matrix representation as

H ≡ 1√
2

[
1 1

1 −1

]
, P ≡

[
1 0

0 i

]
. (2.4)

We can extend the action of the Pauli group and Clifford groups to multiple qubits by composing

strings of operators. These “Pauli strings” generalize local Pauli group action to a selected qubit in

an n-qubit system, e.g. the operator which acts with σZ on only the kth qubit can be written

I1 ⊗ . . .⊗ Ik−1 ⊗ σkZ ⊗ Ik+1 ⊗ . . .⊗ In. (2.5)

The weight of a Pauli string refers to the number of non-identity insertions in its tensor product

representation. Eq. (2.5) shows a Pauli string of weight one, and the set of all weight-one Pauli strings

is sufficient to generatecthe n-qubit Pauli group Πn.

The construction of the Clifford group can likewise be extended to n > 1 qubits by adding CNOT

gates to the generating set. The CNOT gate Ci,j acts bi-locally on two qubits, performing a NOT

operation on the jth qubit depending on the state of the ith qubit. In our matrix representation, we

write Ci,j as

Ci,j =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , (2.6)

where i denotes the control bit and j the target bit. We emphasize the fact that Ci,j 6= Cj,i. The

group Cn is then

Cn ≡ 〈H1, ..., Hn, P1, ..., Pn, C1,2, C2,1, ..., Cn−1,n, Cn,n−1〉. (2.7)

cConstructing Pauli strings requires both a factorization of the 2n dimensional Hilbert space in some fixed basis, as

well as a chosen ordering of these factors {1, ..., n}. We choose the ordering |a1 . . . an〉 ≡ |a1〉1 ⊗ . . . |an〉n. Elements of

the n-qubit Pauli group are independent of any ordering choice, as are elements of the n-qubit Clifford group; however,

the matrix representation of specific gates will depend on this order. We often consider groups which act on an `-qubit

subsystem of an n-qubit state, fixed by a choice of ordered indices.
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We use a similar scheme when representing local gates, where the index denotes the qubit being acted

on, e.g. H1.

In this paper, we construct a presentation for the groups C1 and C2, and analyze subgroups which

are built by restricting the generating set. A presentation specifies a group by choosing a set of

generators and fixing a set of relations among those generators. Elements of the group are then

constructed by composing generators using the group operation, subject to the constraints set by the

relations.

Every element of a multiplicative group can be written as a product of generators, known as a

word. Words which independently equate to the same group element can be transformed into each

other using relations in the presentation. In this way, unique words composed of Clifford group

generators correspond to different constructible stabilizer circuits. We will present our set of relations

as equalities between words built from Clifford generators.

2.2 Stabilizer Formalism and Reachability Graphs

For a group G ⊂ L(H) acting on a Hilbert space we define the stabilizer subgroup StabG(|Ψ〉) ≤ G,

for some |Ψ〉 ∈ H, as the set of elements that leave |Ψ〉 unchanged,

StabG(|Ψ〉) ≡ {g ∈ G | g|Ψ〉 = |Ψ〉}. (2.8)

That is, StabG(|Ψ〉) contains only the elements of G for which |Ψ〉 is an eigenvector with eigenvalue

+1.

To make further use of this group-theoretic concept, we invoke two important theorems [14]. First,

given a finite group G and subgroup H ≤ G, Lagrange’s theorem states that the order of H gives an

integer partition of G, that is

|G| = [G : H] · |H|, ∀H ≤ G, (2.9)

where [G : H] denotes the index of H in G. Subsequently the Orbit-Stabilizer theorem says that,

when considering the action of G on a set X and H = StabG(x), the orbit of x ∈ X under G has size

[G · x] = [G : H] =
|G|
|H|

, ∀x ∈ X. (2.10)

Considering the action of Πn on H, it is clear that all states are trivially stabilized by 1. Certain

states, however, are stabilized by additional elements of Πn. The n-qubit “stabilizer states” are those

which are stabilized by a subgroup of Πn of size 2n, the largest allowed size for an n-qubit state [6, 15].

In general, the set of n-qubit stabilizer states contains

|Sn| = 2n
n−1∏
k=0

(2n−k + 1) (2.11)

states [16]. The set Sn can be generated by starting with a state in the measurement basis, typically

|0〉⊗n, and acting on that state with all elements of Cn. In this way Sn is the orbit
[
Cn · |0〉n

]
.

This method to generate Sn, by acting with Cn on |0〉⊗n, lends itself to a natural graph-theoretic

description. By assigning a vertex to each state in the orbit
[
Cn · |0〉n

]
, and an edge to every Cn

generator, the evolution of |0〉⊗n through H generates a discrete and finite graph. This structure,

introduced in [1], is known as a reachability graph, as we discussed further in Section 1 above. When

the action of a proper subgroup of Cn rather than the group itself is considered, we often use the term

“restricted graph” to describe the reachability graph.
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3 C1 Presentation and Cayley Graph

In this section we give a presentation for the one-qubit Clifford group C1 and construct its Cayley

graph. We will use this understanding of C1 to build a presentation for C2, as well as its subgroups,

in Section 4. We demonstrate that restricting the set of generators builds subgraphs of the C1 Cayley

graph. We show that quotienting by a global phase reduces C1 to the symmetric group S4.

The one-qubit Clifford group C1 is generated by {Hi, Pi}, whose matrix representations are given

in Eq. (2.4). Here i ∈ {1, n} is the qubit being acted on in an n-qubit system. Relations 3.1, 3.2, and

3.3 give a presentationdfor C1,

H2
i = 1, (3.1)

P 4
i = 1, (3.2)

(HiPi)
3 = (PiHi)

3 = ω, (3.3)

where ω8 = 1 acts as a global phaseefor the group. Eqs. (3.1)–(3.3) can be directly verified by

examining the matrix representations in Eq. (2.4). All elements of C1 act locally on qubits, and

therefore cannot generate or modify entanglement in a physical system.

A Cayley graph [7], for a group G, is built by assigning a vertex to every element in G, and an edge

for each generator of G. The structure of C1 can be visualized in the Cayley graph shown in Figure

2. Edges of this C1 Cayley graph represent Hi and Pi, while vertices indicate the 192 unique group

elements. Since H2
i = 1, we use a single undirected edge to represent Hi. Directed edges are used to

represent Pi, as P 2
i 6= 1. In this Cayley graph representation, sequential products of group elements

exist as graph paths. Different paths which start and end on the same pair of vertices represent

products whose action on the initial element is identical. Loops in the Cayley graph correspond to a

sequence of operations which act as the identity.

When we ignore global phase, i.e. distinguish group elements only up to the factor ω, C1 reduces

to a quotient group with 24 elements. This quotient group, is isomorphic to S4, the symmetric group

of degree 4; we give its Cayley graph later in the paper, in Figure 8. S4 describes the rotational

symmetries of an octahedron, like the well-known stabilizer octahedron shown in Figure 3.

In addition to modding by global phase, we can also construct subgroups of C1 by restricting our

set of generators. The single-generator subgroups 〈Hi〉 and 〈Pi〉 are completely described by relations

3.1 and 3.2 respectively. The Cayley graphs of 〈Hi〉 and 〈Pi〉 are shown in Figure 4.

We gave a presentation for C1 generated by H and P , and introduced ω ≡ (HiPi)
3 which acts as

a global phase on C1. We introduced the concept of a Cayley graph, and constructed specific Cayley

graphs for C1 and its single-generator subgroups 〈Hi〉 and 〈Pi〉. We described a quotient procedure

for groups, and use it to quotient C1 by ω to recover S4. Later, we will implement this quotient by ω,

and identification up to state stabilizer subgroup, to generate reachability graphs from Cayley graphs.

4 C2 Presentation and Cayley Graphs

In this section we give a presentation for the two-qubit Clifford group generated by H, P, and CNOT .

This presentation includes a set of operator-level relations, which serve as a set of state-independent

dAll presentations in this paper were verified using the Magma computer algebra system [17]. Additional details and

code can be found in Appendix D.
eThere exist additional relations involving Clifford gates and ω. Some notable ones which are used in Section 4 include

(HiPjCi,j)6 = (HiCi,jPj)6 = ω6.
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Out[ ]=
Hi

Pi

Fig. 2. Cayley graph of C1, with vertices representing group elements and edges representing the
generators Hi and Pi. We use undirected edges for Hi since H2

i = 1. The graph has 192 vertices

and 384 edges, and completely encodes the C1 group structure.

constraints on Clifford circuits. We use this presentation to construct all subgroups of C2 which are

generated by subsets of {Hi, Hj , Pi, Pj , Ci,j , Cj,i}. We give the order of each C2 subgroup and show

how each order is reduced after quotienting the group by ω. For several examples we explicitly build

up each element of a subgroup to demonstrate how our relations constrain combinations of Clifford

operators.

Every group can be represented by a Cayley graph, which we build for all C2 subgroups. Since

Cayley graphs are state-independent structures, we can use them to study Clifford orbits of arbitrary

quantum states. We compute the graph diameter for each C2 subgroup Cayley graph, both before and

|0〉

|1〉

|+〉 |−〉

|i〉

|−i〉

Fig. 3. The stabilizer octahedron, with 6 single-qubit stabilizer states at the corners, is often shown
embedded in the Bloch sphere. The group C1, after quotienting by ω, gives the 24 orientation-

preserving maps of this octahedron to itself.
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Out[ ]=
H1

P1

Fig. 4. The Cayley graphs for C1 subgroups 〈Hi〉 and 〈Pi〉.

after quotienting by ω. We display the Cayley graphs for several example subgroups and highlight

group relations that can be visualized as graph paths. In later sections, we will use the quotient

procedure outlined here to construct reachability graphs as quotient spaces of Cayley graphs.

4.1 C2 Presentation

The two-qubit Clifford group C2 is generated by the set {Hi, Hj , Pi, Pj , Ci,j , Cj,i} which consists of the

local Hadamard and phase gates, as well as the bi-local CNOT gate. Relations 4.1-4.10, in addition

to the C1 relations 3.1-3.3, give a presentation for C2:

C2
i,j = 1, (4.1)

P−1
i PjPi = Pj , (4.2)

H−1
i HjHi = Hj , (4.3)

P−1
i HjPi = Hj , (4.4)

Ci,jHjCi,jPjCi,jP
3
j Hj = Pi, (4.5)

HiHjCj,iHiHj = Ci,j , (4.6)

(Ci,jPj)
4 = P 2

i , (4.7)

C−1
i,j Cj,iCi,j = C−1

j,i Ci,jCj,i, (4.8)

P 3
i Ci,jPi = Ci,j , (4.9)

(Ci,jHj)
4 = P 2

i . (4.10)

The relations 4.8–4.10, along with H2
i = 1 and P 4

i = 1, can be removed to furnish a more minimal

presentationfusing only relations 4.1–4.7. We have nevertheless retained a number of non-minimal

relations as they provide insight into the structure of C2 and will be useful for constructing subgroups

in the following subsection.

Every relation in Eqs. (4.1)–(4.10) is a cycle in the Cayley graph of C2. We especially note relation

4.10, (Ci,jHj)
4 = P 2

i , which allows us to build a phase operation using only Hadamard and CNOT.

Since P 2
i cannot modify entanglement, neither can the sequence (Ci,jHj)

4. This relation is critical for

fWe additionally note that C2 can be minimally generated from the set {Hi, Hj , Pi, Cj,i}, as can be seen from relations

4.5 and 4.6.
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demonstrating entropy bounds on reachability graphs in [10]. Relation (4.10) is derived explicitly in

B.4.

While our presentation for C2 does not depend on the choice of qubits 1 and 2, and describes

the action of C2 on an n-qubit system, it is not a presentation for Cn when n > 2. A presentation

for Cn requires additional generators for each increase in qubit number. One can, however, generalize

our C2 presentation to a presentation for C3 by adding only four relations. Each of these four new

relations pertain only to Hadamard and CNOT gates, and no new phase gate relations are needed.

The additional relations can be found in [8], where alternative presentationsgfor C1, C2, and C3 are

studied using Clifford circuit normal forms.

4.2 C2 Subgroups

We now give a complete description of all C2 subgroups built by restricting the generating set. First,

we list all such subgroups, as well as their group and Cayley graph properties, in Table 1. We

directly construct several subgroups as examples that highlight how our relations constrain strings

of Clifford gates at the operator level. We will use these state-independent relations in Section 5 to

build reachability graphs for non-stabilizer quantum states, and further in [10] to bound entanglement

entropy.

We can construct subgroups of C2 by restricting our set of generators to subsets of

{Hi, Hj , Pi, Pj , Ci,j , Cj,i}. One simple case is the subgroup C1, generated by only {Hi, Pi} and dis-

cussed in Section 3. Table 1 gives a list of all subgroups constructed in this way. The Table gives

the order of each subgroup, as well as the graph diameter (the maximum over all minimum distances

between vertices) of the Cayley graph for each subgroup. Since each subgroup below is isomorphic un-

der qubit exchange, we only list one example for each generating set. Subgroups in bold are explicitly

constructed in the following text.

Some subgroups have the same order and are isomorphic, e.g. 〈H1〉 ∼= 〈C1,2〉 and 〈H1, P1〉 ∼=
〈P1, C1,2〉. Other subgroups have the same order, but are not isomorphic; for example, subgroups

〈P1, P2〉, 〈H1, C1,2〉, and 〈H1, C2,1〉 all have order 16, but 〈P1, P2〉 � 〈H1, C1,2〉 ∼= 〈H1, C2,1〉. Even

when generated groups are isomorphic, as is the case for subgroups 〈H1, H2, C1,2〉, 〈H1, C1,2, C2,1〉,
and 〈H1, H2, C1,2, C2,1〉, we emphasize that they may not have isomorphic Cayley graphs, since the

Cayley graph depends on not just the group but a choice of generators: here, none of the three

descriptions do.

gThe presentation in [8] is given with generators Hi, Pi, and CZi,j , and offers a different set of relations. Additionally,

CZi,j = CZj,i while Ci,j 6= Cj,i.
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Generators Order Diam. (w/ phase) Factor (no phase)

{H1} 2† 1 - -

{C1,2} 2† 1 - -

{P1} 4 3 - -

{H1, H2} 4 2 - -

{C1,2, C2,1} 6 3 - -

{H1, P2} 8† 4 - -

{P1, C1,2} 8† 4 - -

{P1, P2} 16 6 - -

{H1, C2,1} 16† 8 - -

{H1, C1,2} 16† 8 - -

{H1, P2, C2,1} 32 6 - -

{P2, C1,2} 32 8 - -

{P1, P2, C2,1} 64 7 - -

{P1, C2,1, C1,2} 192 11 - -

{H1, P1} 192 16 8 6

{H1, H2, P1} 384 17 8 7

{P1, P2, H1} 768 19 8 9

{H1, C2,1, C1,2} 2304∗ 26 2 15

{H1, H2, C1,2} 2304∗ 27 2 17

{H1, H2, C1,2, C2,1} 2304∗ 25 2 15

{H1, P1, C2,1} 3072∗ 19 8 9

{H1, P1, C1,2} 3072 19 8 11

{H1, P1, P2, C2,1} 3072∗ 19 8 9

{H1, H2, P1, P2} 4608 17 8 12

{H1, P2, C1,2} 9216 24 8 13

{H1, H2, P1, C2,1} 92160∗ 21 8 13

{H1, H2, P1, C1,2} 92160∗ 21 8 16

{H1, P1, P2, C1,2} 92160∗ 21 8 14

{H1, H2, P1, P2, C1,2, C2,1} 92160∗ 19 8 11

Table 1. Subgroups generated by generator subsets are shown in the leftmost column. We give
the order of each subgroup and its Cayley graph diameter, both before and after modding by

global phase. The third column gives the factor reduction by removing global phase. An asterisk

indicates groups with the same elements, and a dagger indicates groups with isomorphic Cayley
graphs. Bolded subgroups are explicitly constructed in the text.

Subgroup 〈H1, H2, C1,2〉, which contains the same elements as 〈H1, C1,2, C2,1〉 and

〈H1, H2, C1,2, C2,1〉, has the Cayley graph of largest diameter. Adding C2,1 to the set 〈H1, H2, C1,2〉
generates no new group elements, and instead lowers the graph diameter by introducing additional

edges between the set of vertices. Adding P1 to the set 〈H1, H2, C1,2〉 does generate additional

elements—in fact 〈H1, H2, P1, C1,2〉 generates all of C2—but also lowers the Cayley graph diameter

by adding additional edges.

We now discuss in depth how several subgroups are constructed, offering an explanation for order
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of each group seen in Table 1. An extended version of Table 1, containing the relations needed to

present each subgroup, is given in Appendix A. Additional Cayley graph illustrations are given in

Appendix E.

Single-Generator Subgroups: The C2 subgroups generated by a single Clifford element, i.e.

〈Hi〉, 〈Pi〉, and 〈Ci,j〉, are completely described by Eqs. (3.1), (3.2), and (4.1) respectively. Groups

〈Hi〉 and 〈Pi〉 were discussed in Section 3, and their Cayley graphs shown in Figure 4. At two qubits

we have the possibility of bi-local gates, such as Ci,j . Since C2
i,j = 1, as shown by Eq. (4.1), the group

〈Ci,j〉 is isomorphic to 〈Hi〉.

Subgroups 〈Hi, Hj〉 and 〈Ci,j , Cj,i〉: The subgroup generated by {Hi, Hj} is completely described

by Eqs. (3.1) and (4.3). Since Hi and Hj commute for i 6= j, the group 〈Hi, Hj〉 has only 4 elements,

and its structure can be easily understood by examining the left image of Figure 5. Similarly, the

subgroup 〈Ci,j , Cj,i〉 is described by Eqs. (4.1) and (4.8). The elements Ci,j and Cj,i do not commute,

but instead form the hexagonal structure to the right of Figure 5.

Out[ ]=

H1

H2

C1,2

C2,1

Fig. 5. Cayley graphs for subgroups 〈H1, H2〉 and 〈C1,2, C2,1〉 arrange into square and hexagonal

structures respectively. All edges in these figures are undirected since both H and C are their own
inverse.

Subgroup 〈H1, P2, C2,1〉: The subgroup generated by {H1, P2, C2,1} can be presented using Eqs.

(3.1), (3.2), (3.3), (4.1), (4.4), (4.9), and (4.10). Since P2 commutes with both H1 and C2,1, all P2 in a

word can be pushed completely to one end, such that they occur either before or after all H1 and C2,1

operations. In this way, the elements of 〈H1, P2, C2,1〉 can be constructed as products of some element

from 〈H1, C2,1〉 with an element from the set {1, P2, P
2
2 , P

3
2 }. Initially, this generates 16 × 4 = 64

words, however Eq. (4.10) demonstrates how P 2
2 can be built from H1 and C2,1. Therefore, all words

containing P 2
2 or P 3

2 can be reduced to a shorter sequence, and the order 〈H1, P2, C2,1〉 becomes 32.

Subgroup 〈P2, C1,2〉: The subgroup generated by {P2, C1,2} can be built using Eqs. (3.2), (4.1),

and (4.7). Figure 6 shows the Cayley graph for 〈P2, C1,2〉. We construct this subgroup by building

words of alternating C1,2 and p, where

p ∈ {1, P2, P
2
2 , P

3
2 }. (4.11)
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For clarity, we introduce the notation p ∈ {P2, P
2
2 , P

3
2 }. We generate all words containing up to 2

CNOT operations, since the relation

Ci,jPjCi,jPj = PjCi,jPjCi,j , (4.12)

derived in Eq. (B.1), allows words with 3 or more C1,2 operations to be written as duplicates of words

containing fewer C1,2 operations.

1. For words containing 0 C1,2 operations, we have only the set p, containing 4 unique elements.

2. Words containing a 1 C1,2 operation have the form pC1,2p, with full choice of p on either side of

C1,2, giving 4× 4 = 16 possible new elements.

3. Words containing 2 or more C1,2 operations must alternate C1,2 and p operations, or could

otherwise be reduced by (C1,2)2 = 1. Thus all 2 C1,2 words have the form C1,2pC1,2p (note that

we never include 1 between C1,2 operations as it could be carried through a C1,2 to collapse the

C1,2 pair). We apply Eq. (4.12) to any word of the form pC1,2pC1,2p to move all p operations

as far to the right as possible. In this way, we generate 3× 4 = 12 new elements.

The above construction explicitly generates the 4 + 16 + 12 = 32 elements of 〈C1,2, P2〉, each having

one of the forms {p, pCp, CpCp}.

Out[ ]=
C1,2

P2

Fig. 6. Cayley graph of 〈P2, C1,2〉 subgroup, which is useful for visualizing relations such as
Ci,jPjCi,jPj = PjCi,jPjCi,j , highlighted in green.

Subgroup 〈H1, P2, C1,2〉: The subgroup generated by {H1, P2, C1,2} can be built using Eqs. (3.1)–

(3.3), (4.1), (4.2), (4.4), (4.5), (4.6), (4.8), (4.9), and (4.10). We will also use

(C1,2H1P
2
2 )2 = (P 2

2H1C1,2)2, (4.13)

which can be derived from the relations (4.1)–(4.10).

As with 〈P2, C1,2〉, we construct 〈H1, P2, C1,2〉 by building words of alternating H1 and one

element from {P2, C1,2}, since (H1)2 = 1. We only need to construct all words containing up to 5 H1
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operations, since words with 6 H1 operations can be reduced using (H1C1,2)8 = 1 or (H1C1,2P2)6 =

(P2H1C1,2)6 = ω6. The full construction of 〈H1, P2, C1,2〉 is given in Appendix C.

Appending H2 to the generating set {H1, P2, C1,2} results in a factor of 10 more elements, giving

the full group C2. Adding more generators to {H1, H2, P2, C1,2} does not add more group elements,

and instead lowers the graph diameter. In fact, the set {H1, H2, P2, C1,2} is a minimal generating seth

for C2 with the generators {H1, H2, P1, P2, C1,2, C2,1}.

Subgroup 〈H1, H2, C1,2, C2,1〉: The group generated by {H1, H2, C1,2, C2,1} can be understood

from Eqs. (3.1), (3.2), (3.3), (4.1), (4.8), and (4.10). We additionally make use of the identity,

Cj,iCi,jCj,iHiCj,iCi,jCj,i = Hj , (4.14)

which transforms a Hadamard using a sequence of CNOT operations. Initially, we might assume this

group is the direct productiof 〈H1, C1,2〉 and 〈H2, C2,1〉, thereby having 256 elements. However, Eq.

(4.10) importantly demonstrates how a sequence of H and C operations can create P 2
i . This generates

a factor of 9 more elements, for a total of 2304. Furthermore, since Eq. (4.6) offers a way to construct

C2,1 as the product of H1, H2, and C1,2, the subgroup 〈H1, H2, C1,2, C2,1〉 can be minimally generated

from sets {Hi, Hj , Ci,j} or {Hi, Ci,j , Cj,i}. Figure 7 shows the Cayley graph for 〈H1, H2, C1,2, C2,1〉.

Out[ ]=

H1

H2

C1,2

C2,1

Fig. 7. The Cayley graph for C2 subgroup 〈H1, H2, C1,2, C2,1〉. This graph has 2304 vertices,

and displays the orbit of an arbitrary quantum state under the action of 〈H1, H2, C1,2, C2,1〉.

Through building this presentation and constructing subgroups in detail, we have developed a

functional understanding of C2. We identified a collection of Clifford group relations which are inde-

hThere exist generating sets for C2 with fewer elements which involve composite Clifford operations e.g. the set

{H1P1, H2P2, C1,2}.
i While 〈H1, H2, C1,2, C2,1〉 is not a direct product, one example which is a direct product is 〈H1, H2, P1, P2〉 =

〈H1, P1〉 × 〈H2, P2〉, which has 1922/8 = 4608 elements.
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pendent of the state set being acted on. This state-independent description will allow us to extend

an analysis beyond the set of stabilizer states, and to explore action of the Clifford group on ar-

bitrary quantum states. By systematically constructing all words in a subgroup, we were able to

highlight exactly how our relations transform Clifford strings. We found additional relations, such

as Ci,jPjCi,jPj = PjCi,jPjCi,j and Cj,iCi,jCj,iHiCj,iCi,jCj,i = Hj , which are not included in our

presentation, but can be derived from relations (4.1)–(4.10). These auxiliary relations proved useful

for understanding why certain sequences of Clifford gates are non-trivially equivalent to others, as well

as how entanglement entropy evolves through Clifford circuits.

Constructing the Cayley graph for each subgroup further illustrated the structure of C2 and its

subgroups. These graphs enabled us to visualize the operator relations that were used to build each

subgroup. Computing the Cayley graph diameter, and observing its change after adding generators

or quotienting by ω, offered additional intuition for C2 subgroup connectivity. These Cayley graphs

will constitute a state-independent starting point for constructing reachability graphs in the following

section. By considering quotient spaces of this purely group-theoretic structure, we are able to analyze

the orbit of arbitrary quantum states under a selected gate set. Furthermore, by understanding how

this quotient protocol modifies a Cayley graph we are able to build alternative graphs that can track

and bound the evolution of certain system properties, such as entanglement entropy [10].

5 Reachability Graphs as Cayley Graph Quotients

We now generalize the notion of reachability graphs by constructing them as quotient spaces of Cayley

graphs. We define equivalence classes on group elements by their congruent action on a chosen state.

We demonstrate how identifying vertices in a Cayley graph collapses its structure to a state reachability

graph. Starting with the state-independent Cayley graph, we are able to strictly bound the orbits for

different states under select sets of gates.

In each example below, we first quotient Cayley graphs by global phase, then by the stabilizer

subgroup of a chosen state. We explicitly compute quotients of C1 and C2 Cayley graphs which

yield familiar reachability graphs for one and two qubit stabilizer states. Restricting to the subgroup

〈H1, H2, C1,2, C2,1〉 < C2, which we denote (HC)1,2 going forward, we recover the reachability graphs

studied in [1].

By adding P1 and P2 to the set {H1, H2, C1,2, C2,1}, we consider the full action of C2. We observe

how the addition of these two phase gates ties disconnected (HC)1,2 subgraphs together. Finally we

apply our generalized understanding of C2 operators to extend beyond the set of stabilizer states, and

generate (HC)1,2 orbits for non-stabilizer states.

5.1 Quotient by Global Phase

In this section, we define a procedure to quotientjby elements which act as a phase on the group.

When building reachability graphs from Cayley graphs we always quotient first by the group element

ω = (H1P1)3, as in Eq. (3.3), since quantum states can only be operationally distinguished up

to global phase. Accordingly, all graph quotients we construct going forward are quotients by the

product 〈ω〉 ×H.

jFormally we are building the map Q : G → G/N , which takes elements of a group G into a set of equivalence classes

G/N . The set of equivalence classes is fixed by choice of congruence relation, e.g. congruence up to action by ωn. When

the group N is normal in G, the set G/N is a formal quotient group of G.
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We begin by explicitly building the quotient of C1/〈ω〉. As discussed in Section 3, the group C1
is generated by {H1, P1} and contains 192 elements. When quotienting by ω, we identify together all

elements of C1 that are equivalent up to powers of ω. For g1, g2 ∈ C1,

g1 ≡ g2 if g1 = ωnmod 8g2. (5.1)

This identification defines the normal subgroup 〈ω〉C C1, where

〈ω〉 ≡ {1, ω, ω2, ω3, ω4, ω5, ω6, ω7}, (5.2)

and allows us to construct the quotient group C̄1 ≡ C1/〈ω〉.
The quotient C̄1 consists of 24 equivalence classes of 8 elements each. This is a factor of 8 reduction

in group order, from 192 to 24, as shown in the {H1, P1} row of Table 1. All elements of each class

are equivalent up to powers of ω. The 24 equivalence classes can be represented by elements of the

form

{p, pH1p, H1P
2
1H1p}, (5.3)

where p ∈ {1, P1, P
2
1 , P

3
1 } as defined in Eq. (4.11).

Quotienting C1 by 〈ω〉 likewise modifies the C1 Cayley graph by gluing together all vertices that

represent operators in the same equivalence class. Figure 8 shows the Cayley graph of C1 before and

after modding out by ω. Each vertex in the C̄1 graph represents 8 elements of C1, collapsing the 192

vertices of the C1 Cayley graph down to 24. Every H1 edge in the contracted graph represents the 8

operators ωnH1, and similarly for P1.

Out[ ]=
H1

P1

Fig. 8. Cayley graph of C1 before and after quotienting by ω. The 192 vertices in the C1 Cayley
graph collapse to 24 vertices in the C̄1 quotient graph. Every edge in the quotient graph represents

the 8 edges ωnH1 and ωnP1. One set of 8 vertices, which are identified to a single vertex under

this quotient, is highlighted in green.

We have described a procedure for quotienting by ω, which acts as a global phase. In the following

sections, we will first quotient by ω when constructing reachability graphs. Quotienting a group by ω

contracts the Cayley graph, by identifying vertices which represent elements equivalent up to ω. As we

highlight below, a similar graph contraction will yield reachability graphs as Cayley graph quotients,

which we will highlight further in the following sections.
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5.2 Quotient by Stabilizer Subgroup

In this section we show how to generate cosets by the stabilizer subgroup of a chosen state, and how to

construct the state’s reachability graph as a quotient space of the group Cayley graph. While Cayley

graphs offer a state-independent description of a group, the orbit of a particular state under that group

action is state-dependent. Our quotient procedure defines the collapse of a group Cayley graph into a

subgraph which gives the reachability graph for a chosen state.

A state’s reachability graph displays the evolution of that state under some chosen set of quantum

gates. Since we are deriving each reachability graph from the Cayley graph of a group, this procedure

can be applied to anykchosen quantum state on which the group acts.

The general procedure is to identify a group G which acts on a Hilbert space H, as well as a choice

of generators for G. We first quotient G by the global phaselω, giving the quotient group Ḡ = G/〈ω〉.
Each element of Ḡ is isomorphic to the equivalence class ωng ∈ G, for some g ∈ G. We then identify

a state |ψ〉 ∈ H, which selects the stabilizer subgroup Stab Ḡ(|ψ〉) that we will use to build left cosets

of Ḡ. Since Stab Ḡ(|ψ〉) is a subgroup, we generate the left coset space Ḡ/Stab Ḡ(|ψ〉) by computing

all

g · Stab Ḡ(|ψ〉) ∀g ∈ Ḡ. (5.4)

Constructing the above coset space generates a set of equivalence classes on G, with elements of

each class congruent in their action on |ψ〉. To map elements between different equivalence classes we

define the function f : Stab Ḡ(|ψ〉)→ Stab Ḡ(|φ〉), where

f(g) = hg−1, ∀ g ∈ G|ψ〉, h ∈ G|φ〉. (5.5)

For example, to transform P1 ∈ Stab C̄2(|00〉) to H1P
2
1H2P

2
2 ∈ Stab C̄2(|GHZ〉2) we apply the sequence

H1P
2
1H2P

2
2P
−1
1 .

As an illustration of this procedure, we construct the left cosets of C1 by 〈ω〉 × Stab C1(|0〉). We

first build the quotient group C̄1 = C1/〈ω〉 as detailed in Section 5.1. We then identify the stabilizer

group Stab C1(|0〉) < C̄1, which comprises the 4 elements that stabilize |0〉, i.e.

Stab C1(|0〉) = {1, P1, P
2
1 , P

3
1 }. (5.6)

Build all left cosets of C̄1 by Stab C1(|0〉) then gives a set of 6 equivalence classes, with a representative

element from each class being

{1, pH1, H1P
2
1H1}, (5.7)

with p ∈ {1, P1, P
2
1 , P

3
1 } as before. The elements of each equivalence class are identified by multiplying

each representative in Eq. (5.7) by the 4 elements of Stab C1(|0〉).
We build the graph corresponding to C̄1/ Stab C1(|0〉) by assigning a vertex to each of the 6 equiva-

lence classes. Figure 9 shows the C1 Cayley graph before and after modding by 〈ω〉× Stab C1(|0〉). The

192-vertex C1 Cayley graph is reduced to a graph with 6 vertices, which is isomorphic to the complete

reachability graph for single-qubit stabilizer states.

We have demonstrated a procedure for building the left coset space of Clifford groups and sub-

groups for the stabilizer subgroup of a quantum state. We illustrated how Cayley graphs quotient

kWe do require that the state should be thought of as a state on n qubits, i.e. with a fixed factorization in a fixed

2n-dimensional Hilbert space.
l For the general G, ω can be any element that acts as a root of unity times the identity operator. For the Clifford

subgroups we study here, ω will be an eighth root of unity.
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P1

|0〉 ↘

↖ |−i〉

Fig. 9. Left cosets of C1 by Stab C1 (|0〉), the stabilizer subgroup of |0〉. The C1 Cayley graph

on the left collapses to a 6-vertex reachability graph on the right. Four green vertices identify to

a single vertex representing the equivalence class of Stab C1 (|0〉), while four red vertices likewise
identify to a vertex for Stab C1 (|−i〉).

to state reachability graphs under this equivalence relation. We will now use this protocol to explore

subgroups of C2.

5.3 Stabilizer Restricted Graphs from 〈Hi, Hj , Ci,j , Cj,i〉 Quotients

In [1] we constructed and analyzed reachability graphs under the action of C2 subgroups. We termed

these restricted graphs, and focused on the subgroup

(HC)1,2 ≡ 〈H1, H2, C1,2, C2,1〉. Since entanglement entropy among stabilizer states is modified by, at

most, bi-local action, this subgroup gives useful insight into stabilizer entanglement. We now generalize

the construction of restricted graphs in [1] by constructing the reachability graphs as quotient spaces of

Cayley graphs. We specifically reproduce all (HC)1,2 restricted graphs that arise for stabilizer states,

then use our model to explore the orbit of non-stabilizer states as well.

The quotiented Cayley graphs we construct, in addition to representing a particular left coset

space, are isomorphic to state reachability graphs. As defined in [1], the vertices of reachability graphs

represent states in a Hilbert space, while edges represent gates acting which transform these states.

Vertices in the quotient space of a Cayley graph represent equivalence classes of group elements,

defined by their orbit with respect to a chosen subgroup, while edges represent sets of generators.

Going forward, we refer to Cayley graph quotients as reachability graphs and note the distinction

when necessary.

All stabilizer states can reached by acting on |0〉⊗n with Cn. Acting on |0〉⊗n with the subgroup

(HC)1,2 generates 24 stabilizer states, including all measurement states of the computational basis.

Every state in the orbit of |0〉⊗n is stabilized by 48 elements of (HC)1,2.

Figure 10 shows the (HC)1,2 Cayley graph after quotienting by the stabilizer subgroup for |0〉⊗n,

specifically for the 2-qubit example |00〉. Since the stabilizer subgroup is preserved when tensoring

on additional qubits to the system, this 24-vertex graph likewise displays the orbit for any product of

|00〉 with any (n− 2)-qubit state. Each vertex in Figure 10 represents the stabilizer subgroup for one

state in the orbit of |00〉 under (HC)1,2.

In general any product state, as well as states with no entanglement between the first two qubits

and the other n − 2, will have either the 24-vertex reachability graph in Figure 10 or the 36-vertex

reachability graph, also defined in [1], that appears below in Figure 14.
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C1,2

C2,1

↙ |00〉

↖ |GHZ〉2

Fig. 10. Quotient space of (HC)1,2 Cayley graph after modding out by the stabilizer subgroup of

|00〉. The equivalence class of Stab (HC)1,2 (|00〉) is highlighted in red, while the equivalence class
of Stab (HC)1,2 (|GHZ〉2) is highlighted in green.

For additional entangled states which arise at higher qubit number, new reachability graph struc-

tures appear when acting with (HC)1,2. Figure 11 shows a quotient space of the (HC)1,2 Cayley

graph after modding out by the stabilizer subgroup for |GHZ〉3 ≡ |000〉+ |111〉. The orbit of |GHZ〉3
under (HC)1,2 reaches 144 states, each of which is stabilized by 8 elements of (HC)1,2.

Out[ ]=
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C1,2

C2,1

← |GHZ〉3

Fig. 11. Quotient of (HC)1,2 Cayley graph after modding by stabilizer subgroup for |GHZ〉3. Red

vertex gives the equivalence class of (HC)1,2 elements that stabilize |GHZ〉3.

Also at three qubits, there exist stabilizer states which are stabilized by only 4 elements of (HC)1,2.

In Section 4 of [1], we defined a lifting procedure which allows us to find an example state in each

stabilizer reachability graph. To identify a state that is stabilized by 4 elements of (HC)1,2, we act

with C3,2 on the product state |i〉 ⊗ |1〉 ⊗ |+〉. The resultant state |010〉 + i|011〉 + |100〉 + i|101〉 is

stabilized by the elements

{1, H2(C1,2H1)4, (C1,2H1)4H2,
(

(C1,2H1)3C1,2H2

)2

}. (5.8)

Figure 12 shows the quotient space of (HC)1,2 after modding out by the stabilizer subgroup for

C3,2|i1+〉 ≡ |010〉+ i|011〉+ |100〉+ i|101〉.
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C1,2

C2,1

← C3,2|i1+〉

Fig. 12. Orbit of stabilizer states which are stabilized by 4 elements of (HC)1,2. This graph has
different topology from the 288-vertex graph in Figure 17. Elements of (HC)1,2 that stabilize

C3,2|i1+〉 ≡ |010〉+ i|011〉+ |100〉+ i|101〉 are represented by the red vertex.

Finally, there are stabilizer states which are only stabilized by 1 in (HC)1,2. Figure 13 illustrates

the 1152-vertex reachability graph for such states. This graph represents the largest possible orbit

of any quantum state under (HC)1,2, since all states are trivially stabilized by 1. Figure 13 is first

observed at four qubits.

By taking quotients of the (HC)1,2 Cayley graph, we have reproduced all stabilizer reachability

graphs found in [1] under the action of this subgroup. We demonstrated that the largest such subgraph

contains 1152 vertices, by representing the orbit of states which are stabilized by only the identity in

(HC)1,2, in agreement with [1]. In the following subsection we add P1 and P2 back into our generating

set, and study the action of the full group C2. We will show how the addition of these two phase gates

does not generate any additional graphs, but instead connects the existent structures above. We

also discover new reachability graphs that arise from quotienting (HC)1,2 Cayley graphs by stabilizer

subgroups of non-stabilizer states.

5.4 Full C2 Action

Adding P1 and P2 to the set {H1, H2, C1,2, C2,1} generates the full group C2, which contains 92160

elements. The Cayley graph for C2 after quotienting by 〈ω〉 will accordingly have 11520 vertices, as

seen in the last four lines of Table 1. Similarly the reachability graph for any n-qubit state stabilized

by only 1 in C2 will have 11520 vertices. By first considering the action of 〈H1, H2, C1,2, C2,1〉 on a

set of states, followed by the action of P1 and P2, we observe how the reachability graphs from Section

5.3 are connected.
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H1

H2

C1,2

C2,1

Fig. 13. Orbit for states stabilized by only 1 in (HC)1,2. This 1152-vertex graph gives the orbit

of a generic quantum state under action of (HC)1,2.

To illustrate how phase gates tie 〈H1, H2, C1,2, C2,1〉 reachability graphs together, we first consider

the orbit of |0〉⊗n shown in Figure 10. Acting with P1 and P2 on all states in this orbit connects the

24-vertex reachability graph to a 36-vertex graph, as in Figure 14. These two graphs combine to give

the orbit of any pure state under the action of C2, as well as any statemwith only entanglement among

its first two qubits. In both Figure 14 and Figure 15 we have removed all “trivial loops”, that is all

edges which map a vertex back to itself, as these loops represent a stabilizing action on the vertex.

Similarly at higher qubit number, phase gates on the first two qubits tie together the larger

〈H1, H2, C1,2, C2,1〉 reachability graphs. Acting with P1 and P2 on states in the stabilizer 288-vertex

graph, seen in Figure 12, will sometimes act trivially, sometimes map the state to another in the

288-vertex graph, and sometimes map it to one of three 144-vertex graphs. Figure 15 depicts how

these four graphs are connected via phase operations, where again trivial loops have been removed.

The largest reachability graph under the action of (HC)1,2 contains 1152 vertices, and is depicted

in Figure 13. This reachability graph, which we term g1152, gives the orbit of states which are stabilized

by only the identity in (HC)1,2. Acting with P1 and P2 on every state in g1152 either connects the

1152-vertex graph to itself, or maps to one of its 9 isomorphic copies. Figure 16 shows how these

10 copies of g1152 are symmetrically attached via phase operations. Upon acting with P1 and P2

the resulting structure forms a completely-connected graph of 10 vertices, where each vertex actually

represents a g1152 graph.

mFigure 14 actually shows the orbit of any n-qubit state with no entanglement between one pair of qubits and the

remaining n− 2 qubits, since qubits 1 and 2 can be exchanged, without loss of generality, with any qubits in both the

state and the Clifford subgroup.
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Out[ ]=

H1

H2

C1,2

C2,1

P1

P2

↙ |00〉⊗n

Fig. 14. Acting with P1 and P2 on all states in the (HC)1,2 orbit of |00〉 ⊗ |ψ〉n−2 connects the

24-vertex reachability graph from Figure 10 to a graph of 36 vertices. Together these two graphs

show the C2 orbit of any product state, and all states with no entanglement between the first two
qubits and the remaining n− 2 qubits.

Out[ ]=
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H2

C1,2

C2,1

P1

P2

Fig. 15. Three copies of the 144-vertex reachability graph in Figure 11 connect to a single copy of

the 288-vertex graph in Figure 12, after acting with P1 and P2.

We have examined the full action of C2 by acting with P1 and P2 on states in (HC)1,2 orbits.

We demonstrated how the addition of these two phase gates ties together the (HC)1,2 reachability

graphs shown in Section 5.3. Specifically we observed how the 24-vertex reachability graph in Figure

10 connects to another graph of 36 vertices. Meanwhile, three copies of the 144-vertex graph in Figure
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P1

P2

g1152

Fig. 16. Acting P1 and P2 on states in g1152 attaches the graph to 9 isomorphic copies of itself,

forming a completely-connected 10-vertex graph. Each vertex represents one copy of g1152 (Figure
13) and every edge is a set of phase gates which connect g1152 graphs.

11 connect to a single copy of the 288-vertex graph in Figure 12. Finally, the largest 1152-vertex reach-

ability graph connects to 9 isomorphic copies of itself under the action of P1 and P2. In the following

section, we move beyond the set of stabilizer states and consider the action of 〈H1, H2, C1,2, C2,1〉 on

some notable non-stabilizer states.

5.5 Non-Stabilizer Quotients

Our state-independent description of the Clifford group allows us to examine the action of Cn on

states which are not stabilizer states. For a quantum information theorist, the term “stabilizer states”

typically refers to the set of n-qubit quantum states which are stabilized by a 2n-element subset of

the Pauli group. There exist, however, states which are not stabilizer states, but are stabilized by

additional Clifford group elements besides 1. These states likewise admit reachability graphs through

our quotient procedure, and their graph properties reflect their distinction from the set of stabilizer

states. Below we give a few examples of reachability graphs for notable non-stabilizer states, under

the action of 〈H1, H2, C1,2, C2,1〉, and contrast their structure with the stabilizer state graphs.

The n-qubit W -state holds particular interest as a highly-entangled, non-biseparable quantum

state [18, 19]. Defined as

|W 〉n ≡
(
|100...00〉+ |010...00〉+ ...+ |000...01〉

)
, (5.9)

|W 〉n is famously not a stabilizer state when n ≥ 3. However, |W 〉n is stabilized by more than just 1
in Cn. Even considering just the action of (HC)1,2, |W 〉n is stabilized by the four elements

{1, H2C1,2H2, H1C1,2H2C2,1, H2C1,2C2,1C1,2H1}. (5.10)

Figure 17 shows the orbit of |W 〉n under the action of (HC)1,2. The stabilizer subgroup of |W 〉n,

in Eq. (5.10), is isomorphic to all other stabilizer subgroups in the orbit seen in Figure 17. The

stabilizer group of |W 〉n is not, however, isomorphic to any subgroup in the orbit of the stabilizer
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state group in Eq. (5.8). Consequently, while the reachability graph of |W 〉n under (HC)1,2 contains

288 vertices, its structure is distinctly different from the stabilizer state graph seen in Figure 12.

Out[ ]=

H1

H2

C1,2

C2,1

↙ |W 〉3

Fig. 17. Quotient space of (HC)1,2 Cayley graph after modding by |W 〉n stabilizer subgroup.

This reachability graph is not isomorphic to the 288-vertex subgraph seen for stabilizer states in

Figure 12.

Another notable set of non-stabilizer states are the n-qubit Dicke states [20, 21]. Dicke states are

equal superpositions of n-qubit basis states with Hamming weight k, defined

|Dn
k 〉 ≡

(
n

k

)−1/2 ∑
b∈{0,1}n, h(b)=k

|b〉, (5.11)

where h(b) is the standard Hamming weight for binary stings.

While |Dn
k 〉 is not a stabilizer statenfor all n 6= k and n > 2, every |Dn

k 〉 is stabilized by more than

1 in (HC)1,2. States |Dn
k 〉 where 1 < k < n − 1 are stabilized by exactly two elements of (HC)1,2,

namely

{1, H2C1,2C2,1C1,2H1}. (5.12)

Figure 18 shows an example reachability graph for the state |D4
2〉. Since |D4

2〉 is only stabilized by

the two elements in Eq. (5.12), its orbit under (HC)1,2 reaches 576 states. Graphs with 576 vertices

are never observed among stabilizer states at any qubit number.

We have displayed the orbits of non-stabilizer states under the action of (HC)1,2, specifically for

certain states which are stabilized by more than just the identity. We observed reachability graphs

with vertex count not seen among the set of stabilizer states. Additionally, we identified graphs with

vertex count shared with stabilizer states, but possessing a different topology. The orbits of Dicke

states and their entanglement properties are studied in detail in [22].

nThe state |Dn
n〉 = |1〉⊗n is a stabilizer state and its reachability graph is given in Figure 10. Additionally, states

|Dn
1 〉 = |W 〉n and |Dn

n−1〉 have reachability graphs as shown in Figure 17.
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H1

H2

C1,2

C2,1

|D4
2〉 →

Fig. 18. Quotient space of (HC)1,2 Cayley graph after modding by the stabilizer subgroup of |Dn
k 〉,

where 1 < k < n − 1. This reachability graph contains 576 vertices, an orbit size not observed

among the set of stabilizer states.

6 Discussion

In this work we have presented a generalized construction for reachability graphs, defining them as

quotient spaces of Cayley graphs. We began by constructing a presentation for C1 and C2, which we

used to highlight the non-trivial relations among Clifford group elements. These relations allowed

us to understand the structure of C1 and C2, and to explicitly construct all subgroups built from a

restricted set of generators. Our operator-level, state-independent construction allowed us to obtain

constraints on the evolution of any state through Clifford circuits.

Extending our construction to higher qubit Clifford groups would require the definition of new

relations with each increase in qubit number. Intriguingly, extending our presentation for C2 to a

presentation for C3 only requires the addition of 4 relations [8], none of which involve the phase gate.

After building their presentations, we studied Cayley graphs for C1 and C2, as well as all C2 sub-

groups generated by a subset of Hadamard, phase, and CNOT gates. Our protocol contracts the

Cayley graph, yielding a quotient graph that is isomorphic to a state’s reachability graph. Specifically,

we quotient by the stabilizer subgroup for a particular state, ensuring only non-trivial action is rep-

resented by remaining edges. Using this procedure, we can analyze the evolution of a state through

circuits comprised of the given gate set. Since we begin with the state-independent Cayley graph, this

quotient protocol and analysis can be applied to any quantum state.

We emphasize that the techniques put forth in this paper are not limited to Clifford circuits. Any

finite gate set can be represented by a discrete Cayley graph. The Cayley graph can then be made

finite by imposing a cutoff on graph distance, which constrains the depth of a circuit. Accordingly,

the program established in this paper could be used to study even universal gate sets in quantum
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computation, up to a fixed circuit depth. Our techniques could furthermore be straightforwardly

extended to computation with qutrits or qudits.

Access to a graph-theoretic description of evolution through quantum circuits allows for direct

calculation of some interesting circuit properties. For example, the gate complexity of a given circuit

which transforms one state into another is precisely the minimum graph distance separating the two

vertices that represent each state. The Cayley graph diameter hence immediately bounds the maximal

change in complexity that can be observed under the constituent gate set. Additionally, given a

fixed set of universal generators, one could compute complexity growth for circuits of varying depths.

Conversely, one could fix a circuit depth and consider the growth of complexity under alternative sets

of universal generators [23]. It would be interesting to relate the discrete picture of gate complexity

obtained here to a more continuous picture, as in [24].

The graph analysis in this paper might be useful to better understand circuit architecture and

reduce resource overhead in a quantum computation framework. The relations in our presentation

often describe non-trivial, and sometimes unexpected, equivalences between sequences of quantum

gates. In many cases, large-depth circuits containing strings of gates which are difficult to implement

can be reduced to sequences of shorter depth, and simpler gate composition. One such example is

Ci,jHjCi,jPjCi,jP
3
j Hj = Pi, where a circuit of 9 gates, including numerous (and resource-expensive)

CNOT insertions, can be optimized to a single phase gate. Similarly, in the context of state prepa-

ration, an optimal circuit to transform an initial state into some desired final state can be identified

by the appropriate extremal graph path. If computational or experimental constraints exist that limit

the set of viable gates, corresponding edges in the graph can be modified or removed to accommodate

this restriction. This analysis could be particularly interesting in the context of near-term quantum

computing, where it is often easier to implement some specified set of gates than arbitrary two-body

couplings.

In this work we focused on the group (HC)1,2 = 〈H1, H2, C1,2, C2,1〉 < C2, which offered useful

insight into the bipartite entanglement generated by Clifford circuits. Using our quotient procedure

for the (HC)1,2 we were able to recover all stabilizer reachability graphs from our last paper, Figures

10–13, as well as reachability graphs for some non-stabilizer states. In particular, we showed that the

1152-vertex graph is the largest reachability graph for any state, stabilizer or otherwise. We believe we

have exhibited all reachability graphs involving C2 for stabilizer states, but proving so would require a

deeper understanding of the relation between the Pauli stabilizer groups and Clifford stabilizer groups

for a given state.

Instead of (HC)1,2, we could consider state orbits under alternative C2 subgroups. Orbits under

different C2 subgroups should also decompose the full C2 reachability graph into disconnected pieces,

similarly to the situation for (HC)1,2.

Additional stabilizer subgroups exist which quotient Cn and (HC)1,2 Cayley graphs, distinct from

the stabilizer subgroups of individual stabilizer states. A 2-element subgroup of (HC)1,2 stabilizes all

Dicke states with a certain structure, building the reachability graph seen in Figure 18. Furthermore,

all states we examined from which magic can be fault-tolerantly distilled [25, 26] are stabilized by

more than just 1 in Cn. We conjecture that some measure of “non-stabilizerness”, such as stabilizer

Renyi entropy [27] or mana [28], can be defined using the order of state’s stabilizer subgroup in Cn.

We initiated this study to explore the evolution of entanglement entropy through Clifford circuits.

Since entanglement in Clifford circuits can only be modified through CNOT action, the number

of Ci,j edges in a reachability graph, which we term the “CNOT diameter”, weakly bounds the
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number of times the entropy vector can change. However, our deeper exploration of the Clifford group

revealed that not every Ci,j gate modifies entropic structure, since relations like (H1C2,1)4 = P 2
1

demonstrate that some circuits with CNOT gates nonetheless never modify entanglement. In [10], we

build “contracted graphs” which exhibit how entropy vectors can change within a given reachability

graph.
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Appendix A C2 Table with Relations

Complete version of Table 1 with relations needed to generate each subgroup.

Generators Order Diam. Fact. Diam.* Relation

{H1} 2† 1 - - 3.1

{C1,2} 2† 1 - - 4.1

{P1} 4 3 - - 3.2

{H1, H2} 4 2 - - 3.1, 4.3

{C1,2, C2,1} 6 3 - - 4.1, 4.8

{H1, P2} 8† 4 - - 3.1, 3.2, 4.4

{P1, C1,2} 8† 4 - - 3.2, 4.1, 4.9

{P1, P2} 16 6 - - 3.2, 4.2

{H1, C2,1} 16† 8 - - 3.1, 4.1, 4.10

{H1, C1,2} 16† 8 - - 3.1, 4.1, 4.6, 4.10

{H1, P2, C2,1} 32 6 - - 3.1, 3.2, 4.1, 4.4, 4.9, 4.10

{P1, C2,1} 32 8 - - 3.2, 4.1, 4.7

{P1, P2, C2,1} 64 7 - - 3.2, 4.1, 4.2, 4.7, 4.9

{P1, C2,1, C1,2} 192 11 - - 3.2, 4.1, 4.2, 4.4–4.6, 4.8–4.10

{H1, P1} 192 16 8 6 3.1–3.3

{H1, H2, P1} 384 17 8 7 3.1–3.3, 4.3, 4.4

{P1, P2, H1} 768 19 8 9 3.1–3.3, 4.3, 4.4

{H1, C2,1, C1,2} 2304∗ 26 2 15 3.1–3.3, 4.1, 4.8, 4.10

{H1, H2, C1,2} 2304∗ 27 2 17 3.1–3.3, 4.1, 4.8, 4.10

{H1, H2, C1,2, C2,1} 2304∗ 25 2 15 3.1–3.3, 4.1, 4.8, 4.10

{H1, P1, C2,1} 3072∗ 19 8 9 3.1–3.3, 4.1, 4.2, 4.4, 4.5, 4.7, 4.9

{H1, P1, C1,2} 3072 19 8 11 3.1–3.3, 4.2, 4.12, 4.13

{H1, P1, P2, C2,1} 3072∗ 19 8 9 3.2, 3.3, 4.1, 4.2, 4.4–4.6, 4.8–4.10

{H1, H2, P1, P2} 4608 17 8 12 3.1–3.3, 4.2, 4.4

{H1, P2, C1,2} 9216 24 8 13 3.1, 3.2, 4.1, 4.2, 4.4–4.6, 4.9, 4.10

{H1, H2, P1, C2,1} 92160∗ 21 8 13 3.3, 4.2–4.8

{H1, H2, P1, C1,2} 92160∗ 21 8 16 3.3, 4.2–4.8

{H1, P1, P2, C1,2} 92160∗ 21 8 14 3.3, 4.2–4.8

All 92160∗ 19 8 11 3.3, 4.2–4.8
Table A.1. C2 subgroups built by restricting generating set. Asterisk indicates two subgroups which

contain the same elements, and a dagger indicates subgroups with isomorphic Cayley graphs. The
relations needed to present each subgroup are given in the rightmost column.

Appendix B Derivation of Additional Relations

In this Appendix, we provide a derivation of additional relations useful for subgroup construction,

but not explicitly included in our presentation. Each of the relations below can be derived from Eqs.

(3.1)–(4.10).
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Using relations 3.2, 4.2, 4.4, 4.9, 4.10, 4.5, and 4.6, we can construct the useful identity,

Ci,jPjCi,jPj = PjCi,jPjCi,j . (B.1)

A derivation of this identity is provided below for C2,1 and P1. For simplicity, let H = H1, h =

H2, C = C1,2, c = C2,1, P = P1, and p = P2. We then derive,

HcH = HcH,

HcHP = HcHP,

hChP = HcHP,

PhCh = HcHP,

PHcH = HcHP,

cPHcH = cHcHP,

cPHcH = p2HcHcP,

p2cPHcH = HcHcP,

pcPHcpH = HcHcP,

pcPccHcpH = HcHcP,

pcPcPcP 3 = HcHcP,

pcPcPcP 2 = HcHc,

cPcPcP 2p = HcHc,

cPcPcP 2cHcpH = 1,
∗ cPcPcP 3cP 3 = 1,

cPcP = PcPc,

where 4.5 was used to show cP 3cP 3 = cP 2cHcpH, and acquire the starred line from the one above it.

A useful identity, derivable from relations 3.2, 4.6 and, 4.10, is the following,

(Ci,jHiP
2
j )2 = (P 2

j HiCi,j)
2. (B.2)

A derivation of (B.2) is given below using H1, C1,2 and P2. For simplicity, we again let H = H1, h =

H2, C = C1,2, c = C2,1, and p = P2. We have,

p4 = (p2)2 = (Ch)8 = 1,

ChChChChChChChCh = 1,

CHcHCHcHCHcHCHcH = 1,

(CH(cH)4)4 = 1,

(CHp2)4 = 1,

(C1,2H1P
2
2 )2 = (P 2

2H1C1,2)2,

A useful identity for constructing 〈Hi, Hj , Ci,j〉 is the following,

Cj,iCi,jCj,iHiCj,iCi,jCj,i = Hj . (B.3)
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A useful identity for constraining entropy in 〈Hi, Hj , Ci,j〉 reachability graphs is (Ci,jHj)
4 = P 2

i .

This relation can be proved using other relations in our presentation, beginning with the fact that Ci,j
and Pi commute,

Ci,jPi = PiCi,j ,

Ci,jPiHj = PiCi,jHj ,

Ci,jHjPi = PiCi,jHj ,

Ci,jHjCi,jPiCi,j = Ci,jPiHj ,

Ci,jHjCi,jPi = Ci,jPiHjCi,j ,

PjCi,jP
3
j Hj = HjP

3
j Ci,jPj ,

Ci,jP
3
j HjP

3
j = P 3

j HjP
3
j Ci,j ,

Hj = PjCi,jP
3
j HjP

3
j Ci,jPj ,

Hj = PjCi,jP
3
j Ci,jPiHjCi,j ,

Ci,jHjCi,jHj = Ci,jHjCi,jPjCi,jP
3
j HjHjCi,jPiHjCi,j ,

Ci,jHjCi,jHj = PiHjCi,jPiHjCi,j ,

(Ci,jHj)
4 = P 2

i .

(B.4)

Appendix C Detailed Subgroup Presentations

The details of building 〈H1, P2, C1,2〉 are given below.

1. For words containing 0H1 operations, we have the 32 elements b ∈ 〈C1,2, P2〉 = {p, pC1,2p, C1,2pC1,2p},
with p defined as in Eq. (4.11).

2. Words containing 1 H1 have the form bH1b. Since H1 and P2 commute, we can push all P2 oper-

ations to the right until they reach a C1,2. This action corresponds to multiplying all 0 H1 words

on the left by H1, pC1,2H1, and C1,2pC1,2H1, giving the set {H1b, pC1,2H1b, C1,2pC1,2H1b},
which has 32 + (4× 32) + (3× 32) = 256 elements.

3. To generate words with 2 H1 operations, we left-multiply all 1 H1 words that do not begin with

H1, by the set {H1, pC1,2H1, C1,2pC1,2H1} (since otherwise we would collapse resulting H1 pair).

This procedure generates 1792 elements, with 512 duplicates such as

H1C1,2H1 = P 2
2C1,2H1P

2
2C1,2H1P

2
2C1,2P

2
2 , (C.1)

as well as,

C1,2H1C1,2H1 = C1,2P
2
2C1,2H1P

2
2C1,2H1P

2
2C1,2P

2
2 , (C.2)

both reducible by Eq. (4.13). After removing duplicates, there are 1280 unique 2 H1 words

added to our set.

4. For words containing 3 H1 operations, we again left-multiply all 2 H1 words which do not begin

with H1, by {H1, pC1,2H1, and C1,2pC1,2H1}, generating 12544 elements.
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Of these 12544 elements, 9152 are duplicates of other 3 H1 words, e.g.

H1C1,2H1C1,2H1 = H1C1,2P
2
2C1,2H1P

2
2C1,2H1P

2
2C1,2P

2
2 , (C.3)

described by Eq. (4.13). An additional 256 are duplicates of 1 H1 words, e.g.

H1C1,2H1P
2
2C1,2H1 = P 2

2C1,2H1P
2
2C1,2P

2
2 , (C.4)

also described by Eq. (4.13), leaving only 3136 new contributions to the subgroup.

5. Words with 4 H1 operations are likewise built by left-multiplying all 3 H1 words that do not

begin with H1, by {H1, pC1,2H1, and C1,2pC1,2H1}. This process generates 87808 elements,

83200 of which are duplicates of other 4 H1 words, e.g.

H1C1,2H1C1,2H1C1,2H1 = C1,2H1C1,2H1C1,2H1C1,2H1C1,2, (C.5)

which can be reduced by (H1C1,2)8 = 1. Another 1280 are duplicates of 2 H1 words, such as

H1C1,2H1C1,2H1P
2
2C1,2H1 = H1C1,2P

2
2C1,2H1P

2
2C1,2P

2
2 , (C.6)

described by Eqs. (4.13) and (4.12). A final 32 elements are duplicates of 0 H1 words, e.g.

H1C1,2H1P
2
2C1,2H1P

2
2C1,2H1 = P 2

2C1,2P
2
2 , (C.7)

explained using Eq. (4.13). Removing duplicates adds 3296 new 4 H1 words to our subgroup.

6. Finally we construct words with 5 H1 operations, multiplying all 4 H1 words that do not begin

with H1 by H1, pC1,2H1, and C1,2pC1,2H1, and generating 614656 words. Of these 614656 words,

609792 are duplicates of other 5 H1 words, e.g.

H1P2C1,2H1P
3
2C1,2H1P

3
2C1,2H1P2C1,2H1P2C1,2P

3
2

= C1,2H1C1,2H1C1,2H1C1,2H1C1,2H1,
(C.8)

described by Eq. (4.13) using relations 3.2, 4.1, and 4.7. Another 3392 are duplicates of 3 H1

words, e.g.

C1,2H1C1,2H1C1,2H1C1,2 = H1C1,2H1C1,2H1C1,2H1C1,2H1, (C.9)

described by (H1C1,2)8 = 1, and a final 256 are duplicates of 1 H1 words, e.g.

H1 = H1C1,2H1C1,2H1P
2
2C1,2H1P

2
2C1,2H1C1,2P

2
2C1,2P

2
2 , (C.10)

by Eqs. (4.13) and (4.12). Upon removing duplicates, there are 1216 unique 5 H1 words added

to our subgroup, giving an order of 9216.

Appendix D Magma Algebra System

The Magma Computer Algebra system [17] was used to validate many of the subgroup constructions

in this paper. This program, which can be downloaded to a local device or accessed via a browser at

http://magma.maths.usyd.edu.au/magma/, offers a powerful suite of group-theoretic calculators. We

http://magma.maths.usyd.edu.au/magma/
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have included below a few examples of code input and output that demonstrate some functionality,

and provide the interested reader a coarse template for using the software.

We formally construct subgroups of C1 and C2 by taking quotient groups of the free group generated

by a select set of operations. For example, the group 〈Hi, Pi〉 can be built as

Input: F 〈H,P 〉 := FreeGroup(2);

G〈x, y〉,phi := quo〈F |H2 = P 4 = 1, (H ∗ P )3 = (P ∗H)3〉;
G

Output: Finitely presented group G on 2 generators

Relations

x2 = Id(G)

y4 = Id(G)

(x ∗ y)3 = (y ∗ x)3

Further calculations can be used to yield desired group properties such as order, number of defining

generators, checks for abelianess, cyclicity, and many more. Some simple examples are included below.

Input: F 〈P,C〉 := FreeGroup(2);

G〈x, y〉,phi := quo〈F |C2 = P 4 = 1, C ∗ P ∗ C = P 〉;
Order(G)

Output: 8

Input: F 〈H, c〉 := FreeGroup(2);

G〈x, y〉,phi := quo〈F |c2 = H2 = (H ∗ c)8 = 1;

Parent(G)

Output: Power Structure of GrpFP

To generate the complete two-qubit Clifford group C2, we include all generators and the relations

of our presentation. We can subsequently simplify the presentation with the following code.

Input: F < H, h, C, c, P, p >:= FreeGroup(6);

G < u, v, w, x, y, z >, phi := quo〈F |P 4 = p4 = H2 = h2 = C2 = c2 = (H ∗ C ∗ p2)4 = (c ∗ C)3 =

(c∗H)8 = 1, H∗h∗H = h, H∗p∗H = p, h∗P∗h = P, P 3∗p∗P = p, C∗P∗C = P, c∗p∗c = p, (H∗P )3 =

(P ∗H)3, (p∗h)3 = (h∗p)3, P ∗H ∗P = (c∗p∗h)3, C ∗h∗C ∗p∗C ∗(p3)∗h = P, c∗C ∗c∗H ∗c∗C ∗c =

h, H ∗h∗c∗H ∗h = C, c∗C ∗p2∗C ∗c = P 2, p∗C ∗p∗C = C ∗p∗C ∗p, P 2 = (C ∗h)4, P 2 = (C ∗p)4 >;

Order(G);

Simplify(G)
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Output: 92160

Finitely presented group on 4 generators

Generators as words in group G

$.1 = u

$.2 = v

$.3 = w

$.4 = z

Relations

$.3∧2 = Id($)

$.1∧2 = Id($)

$.2∧2 = Id($)

($.1 * $.2)∧2 = Id($)

$.4∧4 = Id($)

$.1 * $.4 * $.1 * $.4∧-1 = Id($)

$.2 * $.4∧-1 * $.3 * $.4 * $.2 * $.4 * $.3 * $.4∧-1 = Id($)

$.2 * $.3 * $.2 * $.4∧-1 * $.2 * $.3 * $.2 * $.4 = Id($)

$.4 * $.3 * $.4 * $.3 * $.4∧-1 * $.3 * $.4∧-1 * $.3 = Id($)

($.4∧-1 * $.3 * $.4∧2 * $.3 * $.4∧-1)∧2 = Id($)

$.2 * $.4 * $.3 * $.4∧-1 * $.2 * $.3 * $.2 * $.4∧-1 * $.3 * $.4 * $.2* $.3 = Id($)

$.3 * $.4∧-1 * $.3 * $.2 * $.3 * $.2 * $.3 * $.4 * $.3 * $.2 * $.3 * $.2 = Id($)

$.4 * $.2 * $.4 * $.2 * $.4 * $.2 * $.4∧-1 * $.2 * $.4∧-1 * $.2 * $.4∧-1 * $.2 = Id($)

$.2 * $.1 * $.3 * $.2 * $.1 * $.4 * $.2 * $.1 * $.3 * $.2 * $.1 * $.4∧-1 =Id($)

$.1 * $.3 * $.4∧2 * $.1 * $.3 * $.4∧-2 * $.1 * $.3 * $.4∧-2 * $.1 * $.3 * $.4∧-2 = Id($)

$.3 * $.2 * $.1 * $.3 * $.2 * $.1 * $.3 * $.1 * $.3 * $.2 * $.1 * $.3 * $.2 * $.1 * $.3 * $.2 = Id($)

($.3 * $.1)∧8 = Id($)

$.4∧-1 * $.1 * $.3 * $.2 * $.1 * $.3 * $.4∧-2 * $.3 * $.4 * $.1 * $.2 * $.3*

$.1 * $.2 * $.3 * $.4∧-1 * $.2 * $.4 * $.3 = Id($)

$.2 * $.3 * $.2 * $.4∧-1 * $.3 * $.1 * $.3 * $.4 * $.3 * $.2 * $.3 * $.2*

$.4∧-1 * $.1 * $.2 * $.3 * $.4∧-1 * $.2

* $.3 * $.4∧-1 * $.2 * $.3 * $.1 *$.3 = Id($)

$.3 * $.4 * $.3 * $.2 * $.3 * $.1 * $.4 * $.3 * $.4∧-1 * $.2 * $.3 * $.2

*$.3 * $.1 * $.4 * $.3 * $.4∧-1 * $.2 * $.3 * $.2 * $.3 * $.1 * $.3 * $.2 *$.3 * $.4∧-1 * $.3 * $.4 * $.1 *

$.2 * $.3 * $.2 * $.3 * $.4∧-1 * $.3 * $.4* $.1 * $.2 * $.3 * $.2 * $.3 * $.4∧-1 * $.3 * $.1 = Id($)

Appendix E Additional Graphs

In this section we include several additional graphs, not included in the main text. Each figure below

offers further visualization for relations (3.1)–(4.10).

Figure E.1 shows the Cayley graph for 〈H1, P2〉, containing 8 vertices. Since H1 and P2 commute,

the group 〈H1, P2〉 is the direct product of 〈H1〉×〈P2〉, which is manifest in the Cayley graph structure.

Figure E.2 shows the Cayley graph of 〈P1, P2〉. The graph has 16 vertices, and corresponds to the
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Out[ ]=
H1

P2

Fig. E.1. Cayley graph for 〈H1, P2〉, the direct product 〈H1〉 × 〈P2〉, with 8 vertices. Individual

group structures for 〈H1〉 and 〈P2〉 are easily verified.

direct product 〈P1〉 × 〈P2〉.

Out[ ]=
P1

P2

Fig. E.2. Cayley graph of 〈P1, P2〉, the direct product 〈P1〉 × 〈P2〉, containing 16 vertices.
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The group 〈H1, P2, C1,2〉 is represented by the Cayley graph in Figure E.3. The graph contains

32 vertices, and the relation (H1C1,2)4 = P 2
2 can be directly visualized.

Out[ ]=

H1

P2

C1,2

Fig. E.3. Cayley graph of 〈H1, P2, C1,2〉, with 32 vertices, where we note the non-trivial relation

(H1C1,2)4 = P 2
2 . Sequence (H1C1,2)4 is highlighted in green, and P 2

2 in magenta.

Figure E.4 gives the Cayley graph for 〈P1, P2, H1〉. While the graph is large, the symmetric

structure of stacked P1 and P2 boxes connected by H1 can be observed.

Out[ ]=

P1

P2

H1

Fig. E.4. Cayley graph of 〈P1, P2, H1〉 with 768 vertices. The graph contains directed P1 and P2

boxes connected by H1 edges.
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