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The quantum walk is a quantum counterpart of the classical random walk. On the other
hand, absolute zeta functions can be considered as zeta functions over F1. This study

presents a connection between quantum walks and absolute zeta functions. In this paper,
we focus on Hadamard walks and 3-state Grover walks on cycle graphs. The Hadamard

walks and the Grover walks are typical models of the quantum walks. We consider the

periods and zeta functions of such quantum walks. Moreover, we derive the explicit
forms of the absolute zeta functions of corresponding zeta functions. Also, it is shown

that our zeta functions of quantum walks are absolute automorphic forms.
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1 Introduction

This work is a continuation of [1, 2]. Quantum walks are considered to be the corresponding

model for random walks in quantum systems. Quantum walks play important roles in various

fields such as mathematics, quantum physics, and quantum information processing. Concern-

ing quantum walks, see [3, 4, 5, 6, 7], and as for random walks, see [8, 9], for instance. On

the other hand, absolute zeta functions are zeta functions over F1, where F1 can be viewed

as a kind of limit of Fp as p → 1. Here Fp = Z/pZ stands for the field of p elements for a

prime number p. This paper presents a connection between quantum walks and absolute zeta

functions. Concerning absolute zeta functions, see [10, 11, 12, 13, 14, 15, 16, 17].

In this study, we deal with Hadamard walks and 3-state Grover walks on cycle graphs.

More precisely, we study the periods and zeta functions of such quantum walks. We provide
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902 Absolute Zeta functions and periodicity of quantum walks on cycles

simple and unified proof to determine the periods, although some of the results are already

known. Moreover, we calculate the absolute zeta functions of Hadamard walks and Grover

walks in the case where the period is finite. The explicit forms of the absolute zeta functions

can be seen in this paper. It is also shown that the zeta functions of such quantum walks are

absolute automorphic forms.

The rest of this paper is organized as follows. Section 2 briefly describes absolute zeta

functions and its some related topics. In Section 3, we introduce cycle graphs and quantum

walks on them. Section 4 is a brief check of the notion of cycrotomic polynomial. Section 5

explains the period and zeta functions of Hadamard walks on cycle graphs, and also absolute

zeta function of them. In Section 6, we treat Grover walks with 3 states. Finally, Section 7 is

devoted to conclusion.

2 Absolute Zeta Function

First we introduce the following notation: Z is the set of integers, Z>0 = {1, 2, 3, . . .}, Q is the

set of rational numbers, R is the set of real numbers, and C is the set of complex numbers.

In this section, we briefly review the framework on absolute zeta functions, which can be

considered as zeta function over F1, and absolute automorphic forms (see [12, 13, 14, 15, 16]

and references therein, for example).

Let f(x) be a function f : R→ C∪ {∞}. We say that f is an absolute automorphic form

of weight D if f satisfies

f

(
1

x

)
= Cx−Df(x)

with C ∈ {−1, 1} and D ∈ Z. The absolute Hurwitz zeta function Zf (w, s) is defined by

Zf (w, s) =
1

Γ(w)

∫ ∞

1

f(x) x−s−1 (log x)
w−1

dx,

where Γ(x) is the gamma function (see [18], for instance). Then taking x = et, we see that

Zf (w, s) can be rewritten as the Mellin transform:

Zf (w, s) =
1

Γ(w)

∫ ∞

0

f(et) e−st tw−1dt.

Moreover, the absolute zeta function ζf (s) is defined by

ζf (s) = exp

(
∂

∂w
Zf (w, s)

∣∣∣
w=0

)
.

Here we introduce the multiple Hurwitz zeta function of order r, ζr(s, x, (ω1, . . . , ωr)), the

multiple gamma function of order r, Γr(x, (ω1, . . . , ωr)), and the multiple sine function of

order r, Sr(x, (ω1, . . . , ωr)), respectively (see [12, 13, 15], for example):

ζr(s, x, (ω1, . . . , ωr)) =

∞∑
n1=0

· · ·
∞∑

nr=0

(n1ω1 + · · ·+ nrωr + x)
−s

,

Γr(x, (ω1, . . . , ωr)) = exp

(
∂

∂s
ζr(s, x, (ω1, . . . , ωr))

∣∣∣
s=0

)
,

Sr(x, (ω1, . . . , ωr)) = Γr(x, (ω1, . . . , ωr))
−1 Γr(ω1 + · · ·+ ωr − x, (ω1, . . . , ωr))

(−1)r .
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Now we present the following key result derived from Theorem 4.2 and its proof in Ko-

rokawa [13] (see also Theorem 1 in Kurokawa and Tanaka [15]):

Theorem 1: If f has the form

f(x) = xl/2 (x
m(1) − 1) · · · (xm(a) − 1)

(xn(1) − 1) · · · (xn(b) − 1)

for some l ∈ Z, a, b ∈ Z>0, m(i), n(j) ∈ Z>0 (i = 1, . . . , a, j = 1, . . . , b), then the following

holds:

Zf (w, s) =
∑

I⊂{1,...,a}

(−1)|I|ζb(w, s− deg(f) +m(I),n),

ζf (s) =
∏

I⊂{1,...,a}

Γb(s− deg(f) +m(I),n)(−1)|I| ,

ζf (D − s)C = εf (s)ζf (s),

where

deg(f) = l/2 +

a∑
i=1

m(i)−
b∑

j=1

n(j), m(I) =
∑
i∈I

m(i),

n = (n(1), . . . , n(j)), D = l +

a∑
i=1

m(i)−
b∑

j=1

n(j),

C = (−1)a−b, εf =
∏

I⊂{1,...,a}

Sb(s− deg(f) +m(I), n ).

3 Quantum walks on cycle graphs

For N ≥ 2, undirected cycle graph with N vertices is an undirected graph which has N vertices

and each vertex connecting to exactly 2 edges. We write this graph by CN . Formally, CN is

defined in the following way:

Definition 2: The set of vertices of CN is {0, 1, . . . , N − 1} and the set of edges of CN is

{{k, k + 1} | k = 0, . . . , N − 1}, where the numbers are identified modulo N .

A quantum walk is the time-evolving sequence of states consisting of position and chirality.

Formally, a state is a vector which is an element of a tensor product of two Hilbert spaces over

C, HP and HC . In this paper, HP is a vector space over C in which {|x⟩ | x ∈ V (CN )} is

orthonormal basis, where V (CN ) is the set of vertices of CN . Also, HC is a vector space overC

in which {|←⟩ , |→⟩} is an orthonormal basis for Hadamard walks, and in which {|←⟩ , |·⟩ , |→⟩}
is an orthonormal basis for Grover walks with 3 states. Note that the elements of HP and HC

are considered to be the orthonormal basis of each space. Then, each state can be represented

like the following: ∑
x∈V (CN )

|x⟩ ⊗ s, s ∈ HC .
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Usually, we assume that the initial state Ψ0 satisfies ∥Ψ0∥ = 1. Moreover, we consider the

case where the time-evolution operator U is decomposed as U = SC. Here, S is called shift

operator and defined by the following formulas:

S(|x⟩ ⊗ |←⟩) := |x− 1⟩ ⊗ |←⟩ ,
S(|x⟩ ⊗ |→⟩) := |x+ 1⟩ ⊗ |→⟩ ,
S(|x⟩ ⊗ |·⟩) := |x⟩ ⊗ |·⟩ .

Furthermore, C is called coin operator and defined by the following:

C :=
∑

x∈V (CN )

|x⟩⟨x| ⊗A

for some unitary operator A on HC . We call this operator A the local coin operator. In this

case, S and C are both unitary, and then U is also unitary. Now, the time-evolution is defined

as usual:

Ψn+1 := UΨn.

Of course, we have Ψn = UnΨ0. We are interested in this time-evolution operator U . In

each of the subsequent subsections, matrix representations of U are shown. Moreover, we

introduce the period of quantum walk.

Definition 3: For a quantum walk whose time-evolution operater is U , the period of the

quantum walk is defined as the infimum:

inf{n ≥ 1 | Un = 1}.

If the set in the above formula is empty, then the period is defined to be ∞.

Of course, if T is the period of a quantum walk, it holds that

ΨT = Ψ0

for any initial state Ψ0.

Also, we define the zeta function of a quantum walk on a cycle graph:

Definition 4: For a quantum walk on a cycle graph where the matrix representation of the

time-evolution operator is U , the zeta function of the quantum walk ζ is defined as follows:

ζ(u) := det(I − uU)
−1

,

where I is the identity matrix.

This definition can be seen in [1] for example.
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4 Cyclotomic polynomials

Also, we treat polynomial rings and cyclotomic polynomials in this paper.

Definition 5: Z[x] and Q[x] denote the polynomial rings with integer and rational coeffi-

cients, respectively.

Then cyclotomic polynomials are defined as follows:

Definition 6: For n ∈ Z>0, cyclotomic polynomial Φn(x) is defined by the following formula:

Φn(x) :=
∏

1≤k≤n−1
gcd(k,n)=1

(
x− exp

(
2πik

n

))
.

Note that Φn(x) ∈ Z[x] for all n. Now, the subsequent proposition is the key of this paper.

Proposition 7: (See e.g. [19].) If all of the roots of a monic polynomial with rational

coefficients f(x) are roots of unity, then f(x) ∈ Z[x].

Here, monic means “the nonzero coefficient of highest degree is equal to 1,” and root of unity

means a complex number z which satisfies

zn = 1

for some n ∈ Z>0. This proposition is a consequence of the fact that the minimal polynomial

over Q of any root of unity is cyclotonomic polynomial, in particular, integer coefficient

polynomial.

In this paper, this proposition is used in the following manner. First, note that for any

square matrix A and positive integer n, if λ is an eigenvalue of A, then λn is an eigenvalue of

An. Therefore, if A has a complex number which is not root of unity as its eigenvalue, then

every An has a complex number which is not equal to 1 as its eigenvalue. This implies that

An is not the identity matrix.

5 Hadamard walks

Hadamard walks are a well-studied class of quantum walks. There are two types of Hadamard

walks: M type and F type. They are characterized by local coin operators as usual. First, we

introduce the definition:

Definition 8: M-type (respectively F-type) Hadamard walks on CN are the quantum walks

whose local coin operators with respect to the ordered basis (|←⟩ , |→⟩) are as follows respec-

tively:

AH,M =
1√
2

[
1 1
1 −1

]
, AH,F =

1√
2

[
1 −1
1 1

]
.
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In this paper, UH,M
N (respectively UH,F

N ) denotes the time-evolution operator of an M-type

(respectively F-type) Hadamard walk on CN . With respect to the ordered basis of HP ⊗HC

(|0⟩ ⊗ |←⟩ , |0⟩ ⊗ |→⟩ , |1⟩ ⊗ |←⟩ , . . . , |N − 1⟩ ⊗ |→⟩), the matrix representation of UH,F
N and

UH,F
N are as follows:

UH,X
2 =

[
O AH,X

AH,X O

]
, X = M,F

and

UH,X
N =



O LH,X O · · · O RH,X

RH,X O LH,X · · · O O
O RH,X O · · · O O
...

...
...

. . .
...

...
O O O · · · O LH,X

LH,X O O · · · RH,X O


, X = M,F

for N ≥ 3, where O represents the zero matrix, and RH,X and LH,X (X = M,F ) are the

following matrices:

LH,X :=

[
1 0
0 0

]
AH,X , RH,X :=

[
0 0
0 1

]
AH,X , X = M,F.

Furthermore, let fH,X
N be the characteristic polynomial of UH,X

N (X = M,F ), that is,

fH,X
N (x) := det

(
xI2N − UH,X

N

)
, X = M,F.

We can obtain the factorization of fH,M
N (x) and fH,F

N (x) by commonly used technique:

Proposition 9: For N ≥ 2, it holds that

fH,M
N (x) =

N−1∏
k=0

(x2 +
√
2i sin(2πk/N)x− 1),

fH,F
N (x) =

N−1∏
k=0

(x2 −
√
2 cos(2πk/N)x+ 1).

Proof: UH,X
N (X = M,F ) is a circulant matrix in the sense of a block matrix, so we use the

following Fourier matrix:

TN =



I I I · · · I I

I ωNI ω2
NI · · · ωN−2

N I ωN−1
N I

I ω2
NI ω4

NI · · · ω
2(N−2)
N I ω

2(N−1)
N I

...
...

...
. . .

...
...

I ωN−2
N I ω

(N−2)·2
N I · · · ω

(N−2)(N−2)
N I ω

(N−2)(N−1)
N I

I ωN−1
N I ω

(N−1)·2
N I · · · ω

(N−1)(N−2)
N I ω

(N−1)(N−1)
N I


,
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where ωN := e2πi/N and I is the 2× 2 identity matrix. Note that

T−1
N =

1

N



I I I · · · I I
I ω−1

N I (ω−1
N )2I · · · (ω−1

N )N−2I (ω−1
N )N−1I

I (ω−1
N )2I (ω−1

N )4I · · · (ω−1
N )2(N−2)I (ω−1

N )2(N−1)I
...

...
...

. . .
...

...
I (ω−1

N )N−2I (ω−1
N )(N−2)·2I · · · (ω−1

N )(N−2)(N−2)I (ω−1
N )(N−2)(N−1)I

I (ω−1
N )N−1I (ω−1

N )(N−1)·2I · · · (ω−1
N )(N−1)(N−2)I (ω−1

N )(N−1)(N−1)I


holds. Then

T−1
N UH,X

N TN =


B0

B1 O
. . .

O BN−2

BN−1

 , where Bk := ωk
NLH,X + ω−k

N RH,X

(X = M,F )

holds and a simple calculation shows us that the characteristic polynomial of this matrix is

the one in the statement of the proposition. □

5.1 Periods of F-type Hadamard walks

The periods of M-type Hadamard walks are already known by Dukes [20] and Konno et al.

[21]. The result is as follows:

Theorem 10: Let TH,M
N be the period of M-type Hadamard walk on CN (N ≥ 2). Then the

following holds:

TH,M
N =


2, (N = 2),

8, (N = 4),

24, (N = 8),

∞, (otherwise).

In this paper, we point out that the same approach as for M type is effective for F type

and give the proof below. Now, let TH,F
N be the period of F-type Hadamard walk on CN

(N ≥ 2).

Theorem 11: The periods of F-type Hadamard walk on CN (N ≥ 2) are as follows:

TH,F
N =


8, (N = 2),

8, (N = 4),

24, (N = 8),

∞, (otherwise).
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Proof: First, by Proposition 9, we know

fH,F
2 (x) = Φ8(x),

fH,F
4 (x) = Φ4(x)

2Φ8(x),

fH,F
8 (x) = Φ3(x)

2Φ4(x)
2Φ6(x)

2Φ8(x).

Thus, TH,F
2 = 8, TH,F

4 = 8, and TH,F
8 = 24 hold.

Then, ifN has odd prime as its factor, the same argument in [21] can be applied. Therefore,

the remainder is the case where N is a power of 2 which is greater than 24.

Let N = 2n. First, we consider the case where n = 4. We get

fH,F
24 (x) = x32 + 8x30 + 34x28 + 100x26 +

901

4
x24 + 409x22 +

2465

4
x20 +

1567

2
x18

+ 848x16 +
1567

2
x14 +

2465

4
x12 + 409x10 +

901

4
x8 + 100x6 + 34x4 + 8x2 + 1.

Thus fH,F
24 (x) is monic and in Q[x] but not in Z[x]. Then, by Proposition 7, we see that

fH,F
24 (x) has a root which is not a root of unity. Therefore, we get TH,F

24 =∞.

For n > 4, fH,F
2n (x) has fH,F

24 (x) as a factor. More explicitly, Proposition 9 implies

fH,F
2n (x) =

2n−1∏
k=0

(x2 −
√
2 cos(2πk/2n)x+ 1)

=
∏

0≤k≤2n−1
2n−4|k

(x2 −
√
2 cos(2πk/2n)x+ 1)

∏
0≤k≤2n−1

2n−4∤k

(x2 −
√
2 cos(2πk/2n)x+ 1)

=

24−1∏
l=0

(x2 −
√
2 cos

(
2π · 2n−4l/2n

)
x+ 1)

∏
0≤k≤2n−1

2n−4∤k

(x2 −
√
2 cos(2πk/2n)x+ 1)

= fH,F
24 (x)

∏
0≤k≤2n−1

2n−4∤k

(x2 −
√
2 cos(2πk/2n)x+ 1).

Therefore, also fH,F
2n (x) has a root which is not a root of unity. Thus, we have that TH,F

2n =∞
holds. □

We should remark that the corresponding equation to fH,M
24 (x) for M-type case is given

by

fH,M
24 (x) =x32 − 8x30 +

69

2
x28 − 103x26 +

3761

16
x24 − 1725

4
x22 +

10473

16
x20 − 6687

8
x18

+ 906x16 − 6687

8
x14 +

10473

16
x12 − 1725

4
x10 +

3761

16
x8 − 103x6 +

69

2
x4 − 8x2 + 1.

5.2 Absolute zeta functions of zeta functions of Hadamard walks

Denote the zata functions of M- and F-type Hadamard walks on CN by ζH,M
CN

and ζH,F
CN

,

respectively (N ≥ 2). For the case where N = 2, 4, 8, we have the explicit forms of the zeta
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functions:

ζH,M
C2

(u) =
1

(1− u2)2
,

ζH,M
C4

(u) =
u4 − 1

(u2 − 1)2(u8 − 1)
,

ζH,M
C8

(u) =
(u4 − 1)3(u6 − 1)2

(u2 − 1)4(u8 − 1)(u12 − 1)2
,

ζH,F
C2

(u) =
u4 − 1

u8 − 1
,

ζH,F
C4

(u) =
(u2 − 1)2

(u4 − 1)(u8 − 1)
,

ζH,F
C8

(u) =
(u2 − 1)4

(u4 − 1)(u6 − 1)2(u8 − 1)
.

Note that these are absolute automorphic forms of weight −4, −8, −16, −4, −8, and −16,
respectively.

From the discussion so far, we can deduce the next theorem about these functions. In

particular, we can get explicit expressions of the absolute zeta functions of these zeta functions.

Theorem 12: We have the following explicit expressions of absolute zeta functions and their

functional equations.

M type: For N = 2,

ZζH,M
C2

(w, s) = ζ2 (w, s+ 4, (2, 2)) ,

ζζH,M
C2

(s) = Γ2 (s+ 4, (2, 2)) ,

ζζH,M
C2

(−4− s) = S2 (s+ 4, (2, 2)) ζζH,M
C2

(s).

For N = 4,

ZζH,M
C4

(w, s) =
∑

I⊂{1}

(−1)|I| ζ3 (w, s+ 8 + 4|I|), (2, 2, 8)) ,

ζζH,M
C4

(s) =
∏

I⊂{1}

Γ3 (s+ 8 + 4|I|, (2, 2, 8))(−1)|I|
,

ζζH,M
C4

(−8− s) =
( ∏
I⊂{1}

S3 (s+ 8 + 4|I|, (2, 2, 8))(−1)|I|
)
ζζH,M

C4

(s).

For N = 8,

ZζH,M
C8

(w, s) =
∑

I⊂{1,...,5}

(−1)|I| ζ7 (w, s+ 16 +m(I), (2, 2, 2, 2, 8, 12, 12)) ,

ζζH,M
C8

(s) =
∏

I⊂{1,...,5}

Γ7 (s+ 16 +m(I), (2, 2, 2, 2, 8, 12, 12))
(−1)|I|

,

ζζH,M
C8

(−16− s) =
( ∏
I⊂{1,...,5}

S7 (s+ 16 +m(I), (2, 2, 2, 2, 8, 12, 12))
(−1)|I|

)
ζζH,M

C8

(s).
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F type: For N = 2,

ZζH,F
C2

(w, s) = ζ1 (w, s+ 4, (8))− ζ1 (w, s+ 8, (8)) ,

ζζH,F
C2

(s) =
Γ
(
s+4
8

)
Γ
(
s+8
8

) · n− 1
2 ,

ζζH,F
C2

(−4− s) = − cot
(sπ

8

)
ζζH,F

C2

(s).

For N = 4,

ZζH,F
C4

(w, s) =
∑

I⊂{1,2}

(−1)|I| ζ2 (w, s+ 8 + 2|I|), (4, 8)) ,

ζζH,F
C4

(s) =
∏

I⊂{1,2}

Γ2 (s+ 8 + 2|I|, (4, 8))(−1)|I|
,

ζζH,F
C4

(−8− s) =
( ∏
I⊂{1,2}

S2 (s+ 8 + 2|I|, (4, 8))(−1)|I|
)
ζζH,F

C4

(s).

For N = 8,

ZζH,F
C8

(w, s) =
∑

I⊂{1,...,4}

(−1)|I| ζ4 (w, s+ 16 +m(I), (4, 6, 6, 8)) ,

ζζH,F
C8

(s) =
∏

I⊂{1,...,4}

Γ4 (s+ 16 +m(I), (4, 6, 6, 8))
(−1)|I|

,

ζζH,F
C8

(−16− s) =
∏

I⊂{1,...,4}

S4 (s+ 16 +m(I), (4, 6, 6, 8))
(−1)|I|

ζζH,F
C8

(s).

Proof: The proofs are almost the same for each ζH,M
CN

and ζH,F
CN

. Thus we prove the

theorem only for ζH,M
C4

. First, by definition,

ζH,M
C4

(u) = det
(
I8 − uUH,M

4

)−1

.

Now, by Proposition 9, we know

det
(
xI8 − UH,M

4

)
=

(x2 − 1)2(x8 − 1)

x4 − 1
.

By substituting x = 1/u, we get

det
( 1

u
I8 − UH,M

4

)
=

((1/u)2 − 1)2((1/u)8 − 1)

(1/u)4 − 1
,

det
(
I8 − uUH,M

4

)
=

(u2 − 1)2(u8 − 1)

u4 − 1
.

Therefore, we conclude

ζH,M
C4

(u) =
u4 − 1

(u2 − 1)2(u8 − 1)
.

Here, we see that ζH,M
C4

is an absolute automorphic form of weight −8. Then, by Theorem 1,

we obtain the desired result. □
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6 Grover walks

Grover walks are another well-studied class of quantum walks. There are two types of Grover

walks as in the case of Hadamard walks: M- and F-type. They are characterized by local

coin operators as usual. In this paper, we focus on the 3-states model. First, we introduce

the definition:

Definition 13: M-type (respectively F-type) Grover walks with 3 states on CN are quantum

walks whose coin operators with respect to the ordered basis (|←⟩ , |·⟩ , |→⟩) are as follows

respectively:

AG3,M =
1

3

−1 2 2
2 −1 2
2 2 −1

 , AG3,F =
1

3

 2 2 −1
2 −1 2
−1 2 2

 .

We write UG3,M
N and UG3,F

N for the time-evolution opeartors of M- and F-type Grover

walks on CN , respectively. With respect to the ordered basis of H (|0⟩ ⊗ |←⟩ , |0⟩ ⊗ |·⟩ , |0⟩ ⊗
|→⟩ , |1⟩ ⊗ |←⟩ , . . . , |N − 1⟩ ⊗ |→⟩), the matrix representation of UG3,M

N and UG3,F
N is as

follows:

UG3,X
2 =

[
S LG3,X +RG3,X

LG3,X +RG3,X S

]
, X = M,F

and

UG3,X
N =



S LG3,X O · · · O RG3,X

RG3,X S LG3,X · · · O O
O RG3,X S · · · O O
...

...
...

. . .
...

...
O O O · · · S LG3,X

LG3,X O O · · · RG3,X S


, X = M,F

for N ≥ 3, where O represents the zero matrix, and S,LG3,X , and RG3,X are the following

matrices:

S :=

0 0 0
0 1 0
0 0 0

AG3,M =

0 0 0
0 1 0
0 0 0

AG3,F ,

LG3,X :=

1 0 0
0 0 0
0 0 0

AG3,X , RG3,X :=

0 0 0
0 0 0
0 0 1

AG3,X , X = M,F.

Furthermore, let fG3,M
N and fG3,F

N be the characteristic polynomials of UG3,M
N and UG3,F

N ,

respectively:

fG3,M
N (x) := det

(
xI3N − UG3,M

N

)
, fG3,F

N (x) := det
(
xI3N − UG3,F

N

)
.
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Then, we can obtain the following factorization of fG3,M
N (x) and fG3,F

N (x):

Proposition 14: For N ≥ 2, it holds that

fG3,M
N (x) = (x− 1)N

N−1∏
k=0

(
x2 +

2

3

(
2 + cos

(
2πk

N

))
x+ 1

)
,

fG3,F
N (x) = (x− 1)N

N−1∏
k=0

(
x2 − 2

3

(
2 + cos

(
2πk

N

))
x+ 1

)
.

Since UG3,X
N (X = M,F ) are circulant matrices in the sense of a block matrix, we can prove

this in the same way as in the proof of Proposition 9. That is, it is enough to multiplying

Fourier matrix TN and its inverse T−1
N to UG3,X

N .

6.1 Periods of Grover walks with 3 states

The periods of Grover walks with 3 states were clarified by Kajiwara et al. [22] like the

following:

Theorem 15: Let TG3,M
N be the period of M-type Grover walk with 3 states on CN (N ≥ 2).

Then

TG3,M
N =

{
6, (N = 3),

∞, (otherwise)

holds.

Theorem 16: Let TG3,F
N be the period of F-type Grover walk with 3 states on CN (N ≥ 2).

Then

TG3,F
N =

{
4, (N = 3),

∞, (otherwise)

holds.

In this paper, we point out that the same approach as in the proof in the previous sub-

section works for this theorem. The proof of this approach is given below.

Proof: First, we consider the F type.

For N = 3, we have

fG3,F
3 (x) = Φ1(x)

2Φ2(x)
3Φ4(x)

2

by Proposition 14. The result is a direct consequence of this factorization.

For N = 2, by Proposition 14 again, we see

fG3,F
2 (x) = x6 − 14

3
x5 +

29

3
x4 − 12x3 − 29

3
x2 − 14

3
x+ 1.

Thus, fG3,F
2 (x) is monic and in Q[x] but not in Z[x]. Therefore, by Proposition 7, fG3,F

N (x)

has a root which is not a root of unity, and this implies TG3,F
2 =∞.
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In the case of N ≥ 4 which is not a multiple of 3, we get

fG3,F
N (x) =

N−1∏
k=0

(
x3 − 1

3

(
7 + 2 cos

(2πk
N

))
x2 +

1

3

(
7 + 2 cos

(2πk
N

))
x− 1

)
by Proposition 14 again. Then the absolute value of the coefficient of x3N−1 can be calculated:

N−1∑
k=0

1

3

(
7 + 2 cos

(2πk
N

))
=

7N

3
+

2

3

N−1∑
k=0

cos
(2πk

N

)
=

7N

3
.

Therefore, fG3,F
N (x) is not in Z[x], and fG3,F

N (x) is monic and in Q[x] by definition. Thus,

by Proposition 7, we know TG3,F
N =∞.

In the case of N ≥ 4 which is a multiple of 3 but not a power of 3, we can take a prime

factor p of N such that p ̸= 3. Then like the above-mentioned proof in the previous subsection,

we can show that fG3,F
N (x) has fG3,F

p (x) as its factor. Here, we already know that fG3,F
p (x)

has a root which is not a root of unity. Thus, also fG3,F
N (x) has a root which is not a root of

unity, and we get TG3,F
N =∞.

Finally, in the case of N ≥ 4 which is a power of 3, it is enough to examine fG3,F
9 (x),

because fG3,F
N (x) has fG3,F

9 (x) as its factor. By Proposition 14, we have

fG3,F
9 (x) = x27 + 3x26 + 3x25 +

25

9
x24 +

26

9
x23 − 2

9
x22 +

46

81
x21

+
106

81
x20 − 59

27
x19 +

125

81
x18 − 1

27
x17 − 353

81
x16 − 116

81
x15 − 212

27
x14

− 212

27
x13 − 116

81
x12 − 353

81
x11 − 1

27
x10 +

125

81
x9 − 59

27
x8

+
106

81
x7 +

46

81
x6 − 2

9
x5 +

26

9
x4 +

25

9
x3 + 3x2 + 3x+ 1.

Thus, fG3,F
9 (x) is monic and in Q[x] but not in Z[x]. Therefore, by Proposition 7, fG3,F

N (x)

has a root which is not a root of unity, and this implies TG3,F
N =∞.

Then the same method can be used to prove the case of M type. Note that we can obtain

the following expanded form of fG3,M
9 (x):

fG3,M
9 (x) = x27 + 3x26 − 128

9
x24 − 214

9
x23 +

62

9
x22 +

5752

81
x21 +

6376

81
x20

− 3331

81
x19 − 15059

81
x18 − 11686

81
x17 +

8728

81
x16 +

23752

81
x15 +

4316

27
x14

− 4316

27
x13 − 23752

81
x12 − 8728

81
x11 +

11686

81
x10 +

15059

81
x9 +

3331

81
x8

− 6376

81
x7 − 5752

81
x6 − 62

9
x5 +

214

9
x4 +

128

9
x3 − 3x− 1.

□
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6.2 Absolute zeta functions of zeta functions of Grover walks with 3 states

Theorem 17: We have the following explicit expressions of absolute zeta functions and their

functional equations.

M type:

Z
ζ
G3,M

C3

(w, s) = −
∑

I⊂{1}

(−1)|I| ζ4 (w, s+ 9 + |I|, (2, 2, 3, 3)) ,

ζζG,M
C3

(s) =
∏

I⊂{1}

Γ4 (s+ 9 + |I|, (2, 2, 3, 3))(−1)|I|+1

,

ζζG,M
C3

(−9− s)−1 =
( ∏
I⊂{1}

S4 (s+ 9 + |I|, (2, 2, 3, 3))(−1)|I|+1
)
ζζG,M

C3

(s).

F type:

Z
ζ
G3,F

C3

(w, s) = −
∑

I⊂{1}

(−1)|I| ζ3 (w, s+ 9 + |I|, (2, 4, 4)) ,

ζ
ζ
G3,F

C3

(s) =
∏

I⊂{1}

Γ3 (s+ 9 + |I|, (2, 4, 4))(−1)|I|+1

,

ζ
ζ
G3,F

C3

(−9− s) =
( ∏
I⊂{1}

S3 (s+ 9 + |I|, (2, 4, 4))(−1)|I|+1
)
ζ
ζ
G3,F

C3

(s).

Proof: The proof is almost the same as that of Theorem 12. Remark that the explicit forms

of the zeta functions are as follows:

ζG3,M
C3

(u) = − u− 1

(u2 − 1)2(u3 − 1)2
,

ζG3,F
C3

(u) = − u− 1

(u2 − 1)(u4 − 1)2
.

Moreover, both of them are absolute automorphic forms of weight −9. □

7 Conclusion

In this paper, we dealt with the periods of some kind of quantum walks on cycle graphs

and absolute zeta functions of their zeta functions. The quantum walks we studied in this

paper are Hadamard walks and Grover walks with 3 states. We provided a simple and unified

proof for these periods using the notion of cyclotomic polynomials. Moreover, we pointed out

that it is possible to compute the absolute zeta functions of such quantum walks by applying

a theorem of Kurokawa et al. (Theorem 1) if the period is finite. Also, we obtained some

functional equations of such absolute zeta functions by the same theorem.
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