
Quantum Information and Computation, Vol. 23, No. 9&10 (2023) 0733–0782
c© Rinton Press

MERMIN POLYTOPES IN QUANTUM COMPUTATION AND FOUNDATIONS

CIHAN OKAYa HO YIU CHUNGb SELMAN IPEKc

Department of Mathematics, Bilkent University, Ankara, Turkey

Received November 19, 2022
Revised June 27, 2023

Mermin square scenario provides a simple proof for state-independent contextuality. In

this paper, we study polytopes MPβ obtained from the Mermin scenario, parametrized
by a function β on the set of contexts. Up to combinatorial isomorphism, there are two

types of polytopes MP0 and MP1 depending on the parity of β. Our main result is the

classification of the vertices of these two polytopes. In addition, we describe the graph
associated with the polytopes. All the vertices of MP0 turn out to be deterministic.

This result provides a new topological proof of a celebrated result of Fine characterizing

noncontextual distributions on the CHSH scenario. MP1 can be seen as a nonlocal toy
version of Λ-polytopes, a class of polytopes introduced for the simulation of universal

quantum computation. In the 2-qubit case, we provide a decomposition of the Λ-polytope

using MP1, whose vertices are classified, and the nonsignaling polytope of the (2, 3, 2)
Bell scenario, whose vertices are well-known.

Keywords: quantum computation, quantum contextuality, algebraic topology, polytope

theory

1 Introduction

Central to many of the paradoxes arising in quantum theory is that the act of measurement

cannot be understood as merely revealing the pre-existing values of some hidden variables.d

Instead, as shown by the ‘no-go’ theorems of Bell [4], and Kochen-Specker (KS) [5], the

outcomes of quantum measurements depend crucially on what else they are being measured

with, a phenomenon known as contextuality. (For a recent review, see e.g., [6].) A particularly

accessible illustration of this quantum mechanical feature using just two spin-1/2 particles

was given some years ago by Mermin [7], an example which is now commonly called Mermin’s

square. This scenario, as illustrated in Fig. (2a), consists of 9 measurements M and 6 contexts

C given by the rows and the columns of the square grid. Together with the function β which

assigns a value in Z2 = {0, 1} to each context this scenario specifies a binary linear system [8].

It is known that this binary system (M, C, β) has a classical solution if and only if

[β] =
∑
C∈C

β(C) = 0 mod 2. (1)

acihan.okay@bilkent.edu.tr
bhoyiu.chung@bilkent.edu.tr
cselman.ipek@bilkent.edu.tr
dA classic counterexample to this viewpoint is the well-known de Broglie Bohm pilot wave theory [1]. For
more modern approaches seeking to bypass these claims, see e.g., [2, 3].
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734 Mermin polytopes in quantum computation and foundations

However, even in the case of [β] = 1 there is a quantum solution, e.g., over 2-qubits as

Fig. 1: Local structure MP1 at the type 1 vertex q0 and type 2 vertex p0. The former has only
type 2 neighbors, a single orbit under the action of the stabilizer of the vertex. The latter has
both type 1 (single orbit) and type 2 neighbors (breaks into two orbits with representatives
pb and pa). Edges in the polytope are represented by loops on the Mermin torus. qb can be
connected to p0 by a path corresponding to a loop but is not a neighbor.

given in Fig. (2b). The quantity [β] is, in fact, cohomological, as first observed in [9]. The

cohomological perspective is based on reorganizing the scenario into a space. Then the Mermin

scenario is represented as a torus; see Fig. (3b). In this representation, measurements label the

edges of the triangles, and β assigns a value in Z2 to each triangle. Choosing a quantum state

induces a nonsignaling distribution on the Mermin scenario with support on each context C

consisting of the set Oβ(C) of outcome assignments s : C → Z2 that satisfy
∑
m∈C s(m) =

β(C). Let NSC denote the nonsignaling polytope for the Mermin scenario. We introduce a

(a) (b)

Fig. 2: Mermin scenario with β = 1 for the context indicated in red color.

subpolytopee, called the Mermin polytope,

MPβ ⊂ NSC (2)

eThroughout the paper by a subpolytope we mean a polytope contained in the larger polytope as a subset,
not necessarily the convex hull of a subset of vertices.
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that consists of nonsignaling distributions, that is, tuples of p = (pC)C∈C probability distri-

butions compatible under marginalization, such that the support of each pC is contained in

Oβ(C). We show that the combinatorial isomorphism type of the polytope MPβ is deter-

mined by [β]. As canonical representatives for [β] = 0 and 1 we take the choices of β’s given

in Fig. (3a) and Fig. (3c); respectively. The resulting Mermin polytopes will be denoted by

MP0 and MP1. One of our main technical contributions is the classification of the vertices of

these two polytopes.

Theorem 1 Let MPβ denote the Mermin polytope.

1. All the vertices of MP0 are deterministic distributions corresponding to the functions

s : {m00,m01,m10,m11} → Z2.

There are 16 vertices.

2. For MP1 the vertices are given by pairs (Ω, s) where Ω ⊂ M is a maximal closed non-

contextual (cnc) set and s : Ω→ Z2 is an outcome assignment. There are two types of

vertices:

• Type 1: When Ω is of type 1. There are 48 vertices of this type.

• Type 2: When Ω is of type 2. There are 72 vertices of this type.

Although the Mermin polytopes are numerically tractable (e.g., using Polymake [10]), our

goal in this paper is to identify structures in the combinatorial description of these polytopes.

Our vertex classification result relies on the symmetries of the Mermin polytopes. We identify

a subgroupGβ of the combinatorial automorphisms of MPβ . We show thatG0 acts transitively

on the vertices of MP0. This means that for any pair of vertices, there is a symmetry of the

polytope that moves one to the other. For MP1 the symmetry group G1 acts transitively

within each type of vertices. We also study the stabilizer group of the vertices, that is,

symmetry elements that fix a given vertex, and the action of this group on the neighbor

vertices to obtain a description of the graph associated to the polytopes. In the graph of MP1

the main structural elements are the loops on the Mermin torus that give the edges of the

graph connecting a pair of neighbor vertices; see Fig. (1). We hope that these new structural

elements will help us understand more complicated polytopes, such as the close relatives of

MP1 known as Λ-polytopes [11].

Theorem 2 Let MPβ denote the Mermin polytope.

1. The graph of MP0 is the complete graph K16.

2. The graph of MP1 consists of 120 vertices and the local structure at the type 1 and 2

vertices is depicted in Fig. (1).

Let us put our result into context: The polytope MP0 can be best studied within the

framework of simplicial distributions introduced in [12]. In this framework, nonsignaling

distributions can be interpreted as distributions on spaces, as in Fig. (5b). The nonsignaling

conditions are encoded at the faces of the triangles. The Mermin scenario can be regarded as

an extension of the well-known Clauser, Horne, Shimony, Holt (CHSH) [13] scenario, a Bell
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(a) (b) (c)

Fig. 3: Mermin scenario represented as a torus: Top and bottom (left and right) edges are
identified. In this representation β assigns {0, 1} to each triangle. Red color indicates that
β = 1; otherwise β = 0.

scenario consisting of two parties and two measurements xi, yj , where i, j ∈ Z2, for each party

with binary outcomes; see Fig. (5a). A fundamental result for the CHSH scenario is Fine’s

theorem [14]. This theorem says that a distribution on the CHSH scenario is noncontextual

if and only if the CHSH inequalities are satisfied. Our vertex classification for MP0 can be

turned into a new topological proof of Fine’s theorem. This proof diverges from Fine’s original

argument; see [12, Thm. 4.12] for an alternative topological proof closer to Fine’s original

argument. We present our topological proof of Fine’s theorem in Section 5.1.

The other polytope, MP1, can be seen as a toy model of a more complicated polytope

introduced in [11] for classical simulation of universal quantum computation. For n-qubits,

the polytope Λn used in this classical simulation is defined as the polar dual of the n-qubit

stabilizer polytope. These polytopes are only fully understood in the case of a single qubit:

Λ1 is a 3-dimensional cube containing the Bloch sphere. The combinatorial structure of

Λn for n ≥ 2 is yet to be understood. This mathematical problem is the main obstacle to

quantifying the complexity of the Λ-simulation algorithm, a fundamental question in the study

of quantum computational advantage. The next case, Λ2, is only understood numerically (e.g.,

using Polymake [10]). A geometric understanding of Λ2 will bring insight into the structure

of Λ-polytopes with higher number of qubits. Tensoring a vertex of Λ2 with an (n− 2)-qubit

stabilizer state produces a vertex in Λn [15, Theorem 2]. Some of the vertices of Λ2 are similar

to the vertices of MP1. These vertices are also described by cnc sets [16]. In fact, the Mermin

polytope MP1 can be seen as a nonlocal version of Λ2. The local part is captured by the

nonsignaling polytope NS232 of the two party Bell scenario, consisting of two measurements

with binary outcomes per parties. Our decomposition result provides a description of Λ2

in terms of two well-understood polytopes: NS232 whose vertices are described in [17] and

MP1 described in Theorem 3. Vertices of MP1 are also described in [18] in the dual form by

solving the facet enumeration problem for the polytope given by the convex hull of the non-

local stabilizer states; see also [19] for applications to quantum computational universality.

Our main contributions in this paper can be summarized as follows:

• We define families of Mermin polytopes parametrized by a function β and classify the

corresponding polytopes by the cohomology class [β] (Proposition 1).

• The symmetry groups Gβ of each equivalence class of Mermin polytopes are described

and we demonstrate that they are isomorphic (Proposition 3).
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• A complete characterization of the vertices for both classes of Mermin polytopes is given

(Theorem 3).

• G0 acts transitively on the vertices of MP0 (Lemma 13) and G1 acts transitively on

the vertices of MP1 of a fixed type (Lemma 15). The latter result also describes the

stabilizers of each type of vertices.

• Graphs of both Mermin polytopes are described (Theorem 4 and Theorem 5).

• We exploit the relationship between the Mermin and CHSH scenarios to provide a new

topological proof of Fine’s theorem [14, 20] (Theorem 6). An important step is the

vertex classification for MP0, which implies that any distribution on the Mermin torus

is noncontextual (Corollary 3).

• The Λ2 polytope is decomposed into local and nonlocal polytopes. The former is a

well-known nonsignaling polytope NS232 [17], while the nonlocal part is precisely the

Mermin polytope (Theorem 7).

The rest of the paper is organized as follows. In Section 2 we formalize the Mermin scenario

and the notion of Mermin polytopes. In Section 3 we characterize the vertices of the Mermin

polytopes. In Section 4 we describe the graphs of the polytopes. In Section 5 we apply the

vertex characterization to problems in quantum foundations and quantum computation. More

involved proofs for Propositions 1 and 3 can be found in Appendices A and B, respectively.

Appendix C contains the description of the stabilizer groups of the vertices of MP1.

2 Mermin polytopes

Mermin polytopes mentioned in this paper are certain subpolytopes of nonsignaling polytopes

associated to the Mermin scenario. In this section we introduce these polytopes formally and

show that up to combinatorial isomorphism of polytopes there are two types denoted by MP0

and MP1. Our main result is a classification theorem for the vertices of these polytopes.

2.1 Definition

A measurement scenario, or more briefly a scenario, consists of the following data:

• a set M of measurements,

• a collection C of subsets C ⊂ M , called contexts, that cover the whole set of measure-

ments, i.e.

M = ∪C∈CC,

• a set of outcomes, which through the paper is fixed as Z2 = {0, 1}.

Since the outcome set is fixed we will write (M, C) to denote a scenario. For a set U we will

write ZU2 for the set {s : U → Z2} of functions on a context C ∈ C. The nonsignaling polytope

on this scenario, denoted by NSC , consists of collections (pC)C∈C of probability distributions,

each given by a function pC : ZC2 → R≥0 where
∑
m∈C p(m) = 1, satisfying the nonsignaling

condition given by

pC |C∩C′ = pC′ |C′∩C ∀C,C ′ ∈ C.
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The restriction pC |C∩C′ corresponds to marginalization of the distribution to the intersection.

A distribution p is called noncontextual if there exists a distribution d : ZM2 → R≥0 such that

pC = d|C for all C ∈ C. Otherwise, p is called contextual. For more details see [21]. We will

write NSC for the polytope of nonsignaling distributions on the scenario (M, C).
We are interested in polytopes associated to binary linear systems [8]. A binary linear

system consists of a scenario (M, C) together with a function β : C → Z2. For each C we will

write

Oβ(C) = {s : C → Z2 :
∑
m∈C

s(m) = β(C)} ⊂ ZC2 .

A function in this set will be referred to as an outcome assignment on the context C. We

introduce a subpolytope

NSC,β ⊂ NSC (3)

that consists of nonsignaling distributions p = (pC)C∈C such that

supp(pC) ⊂ Oβ(C) ∀C ∈ C

where supp(pC) stands for the support of pC , i.e., the set of functions s : C → Z2 such that

pC(s) > 0.

Definition 1 The Mermin scenario consists of

• the measurement set M = {mij : i, j ∈ Z3}, and

• the cover C given by two types of contexts:

– Horizontal: Ch = {Ch
i : i ∈ Z3} where Ch

i = {mij : j ∈ Z3},
– Vertical: Cv = {Cv

j : j ∈ Z3} where Cv
j = {mij : i ∈ Z3}.

The Mermin polytope for a function β : C → Z2 is defined to be MPβ = NSC,β . Analogously

we can consider quasiprobability distributions on the Mermin scenario with restricted sup-

port. We will write MPR
β for this polytope.

In this paper we will study the Mermin polytope associated to the Mermin scenario (M, C).

2.2 Topological representation

In [7] it was shown that the Mermin scenario can be represented by a torus with a certain

triangulation. In this representation contexts are represented by triangles. We will follow the

more recent approach developed in [12] to represent nonsignaling distributions in a topological

way. Given a context C = {x, y, z} in C we represent the distribution pC as in Fig. (4). For a

measurement x we write p0
x for the probability of measuring outcome 0. Similarly given a pair

x, y of measurements pabxy denotes the probability for the outcome assignment (x, y) 7→ (a, b).

Given a triangle with a probability distribution as in Fig. (4) the probabilities at the x, y

edges are given by
p0
x = p01 + p00

p0
y = p10 + p00.

Fig. (4a) represents the case where β = 0. In this case

p0
z = p00 + p11, (4)
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(a) (b)

Fig. 4: (a) Triangle with β = 0. (b) Triangle with β = 1. The marginal at z is given by
Eq. (4), or Eq. (5); respectively.

whereas if β = 1 as in Fig. (4b) then

p0
z = p01 + p10. (5)

Therefore, in effect z is the XOR measurement x ⊕ y in the first case, and the NOT of the

XOR measurement x⊕ y in the second.

In this description the triangle with edges (x, y) is our measurement space and the outcome

space is kept implicit for convenience. In general a simplicial distribution [12] is defined on

a pair (X,Y ) of spaces where X and Y represent the space of measurements and outcomes,

respectively. The model used to represent these spaces is called simplicial sets. A simplicial

set X consists of a sequences of sets Xn indexed over the natural numbers n ≥ 0. These sets

represent the set of n-simplices and they are related by the face mapsfencoding the gluing

relations. Given an outcome space Y there is a way to obtain another simplicial set denoted

by D(Y ) whose n-simplices are distributions on Yn. Then a simplicial distribution is given

by a simplicial set map p : X → D(Y ), i.e., a sequence of functions Xn → D(Yn) assigning

to each n-simplex σ of X a distribution pσ on Yn. These assignments are compatible with

the gluing relations of both spaces. In this paper we restrict to measurement spaces obtained

by gluing triangles and our outcome space is fixed to the nerve space of Z2. Our pictorial

description in the rest of the paper will suffice to describe the relevant polytopes. See [22] for

more examples of simplicial distributions on 2-dimensional measurement spaces.

In Fig. (3) Mermin scenario with various choices of β’s are represented on a torus. In this

framework, β assigns 0 or 1 to each triangle, hence can be interpreted as a cochain from alge-

braic topology. The value given by the sum in Eq. (1) has a special meaning in this context

known as the cohomology class of β. In this paper we don’t assume familiarity with cochains,

or with other topological notions such as cohomology; see [9] for more on the cohomological

perspective.

Proposition 1 Given two functions β, β′ : C → Z2 the Mermin polytope MPβ is combinato-

rially isomorphic to MPβ′ if and only if [β] = [β′].

fThere is also a second type of maps called degeneracy maps that encode the “collapsing relations”. We will
ignore them for simplicity of the presentation.
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Proof of this result is given in Appendix A. As a consequence there are two types of

Mermin polytopes, up to combinatorial isomorphism, corresponding to the cases [β] = 0 and

1.

2.3 The even case: MP0

Let β0 : C → Z2 denote the function defined by

β0(C) = 0, ∀C ∈ C. (6)

We will simply write MP0 to denote the Mermin polytope MPβ0
. Note that this notation is

justified by the observation that the isomorphism type of MPβ only depends on [β] as proved

in Proposition 1. Our goal in this section is to relate this polytope to a famous bipartite Bell

scenario, usually referred to as the CHSH scenario.

(a) (b)

Fig. 5: (a) Mermin scenario in the conventional representation. Vertices correspond to mea-
surement labels. (b) Mermin scenario in the topological representation. Measurements label
the edges.

The CHSH scenario is a particular type of Bell scenario for 2 parties, 2 measurements per

party and 2 outcomes per measurement. More precisely, this scenario consists of

• the measurement set {xi, yj : i, j ∈ Z2} where xi’s are for Alice and yj ’s are for Bob,

and

• the contexts {xi, yj} where i, j ∈ Z2.

Mermin scenario can be obtained from the CHSH scenario by adding two additional contexts

{x0 ⊕ y0, x1 ⊕ y1, z} and {x0 ⊕ y1, x1 ⊕ y0, z}, where z = x0 ⊕ y0 ⊕ x1 ⊕ y1, consisting of the

XOR’s of the measurements of Alice and Bob; see Fig. (5a). See Fig. (5b) for a topological
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representation. For the convenience of the reader we list the nonsignaling conditions

p0
x0

= p10
y0x0

+ p00
y0x0

= p01
x0y1 + p00

x0y1

p0
y0 = p01

y0x0
+ p00

y0x0
= p01

y0x1
+ p00

y0x1

p0
x1

= p10
y0x1

+ p00
y0x1

= p01
x1y1 + p00

x1y1

p0
y1 = p10

x0y1 + p00
x0y1 = p10

x1y1 + p00
x1y1

p0
x0⊕y0 = p11

y0x0
+ p00

y0x0
= q01

0 + q00
0

p0
x1⊕y0 = p11

y0x1
+ p00

y0x1
= q01

1 + q00
1

p0
x0⊕y1 = p11

x0y1 + p00
x0y1 = q10

1 + q00
1

p0
x1⊕y1 = p11

x1y1 + p00
x1y1 = q10

0 + q00
0

p0
z = q11

0 + q00
0 = q11

1 + q00
1 .

(7)

Proposition 2 A distribution p on the CHSH scenario is noncontextual if and only if it ex-

tends to a distribution on the Mermin scenario.

Remark 1 This result first appeared in [12]. Its proof relies on Fine’s theorem character-

izing noncontextual distributions using the CHSH inequalities. We will provide a proof of

this result independent of Fine’s theorem (see Proposition 5) by describing all the vertices of

MP0. Then this observation will be used to provide a new topological proof of Fine’s theorem.

Fig. 6: Graph of K3,3.

Next we discuss the symmetries of MP0. For a polytope P let Aut(P ) denote the group

of combinatorial automorphisms of the polytope. We begin by describing certain elements of

this symmetry group. First we consider a graph obtained from the Mermin scenario. The

vertices of this graph are given by the contexts, i.e., C = Ch t Cv, and the edges are given

by the set M of measurements. The resulting graph is the bipartite complete graph K3,3;

see Fig (6). The automorphism group Aut(K3,3) of this graph is generated by the following

operations [23]:

(1) Permutation of the vertices in Ch while keeping Cv fixed.

(2) Permutation of the vertices in Cv while keeping Ch fixed.
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(3) The permutation exchanging

Cv
1 ↔ Ch

0

Cv
2 ↔ Ch

2

Cv
0 ↔ Ch

1

Denoting the symmetric group on n letters by Σn the symmetry group can be expressed as a

semidirect product

Aut(K3,3) = (Σ3 × Σ3) o Z2.

Each factor represents a type of symmetry given in (1), (2) and (3); respectively. Geometri-

cally the symmetry operation (3) corresponds to a reflection about the diagonal in the torus;

see Fig. (5b).

(a) (b)

Fig. 7: There are two types of loops denoted by l1a, l2b, · · · , l9a and l1b, l2b, · · · , l6b.

Another kind of symmetry of MP0 comes from flipping the outcomes of the measurements

in M . Each such symmetry operation can be represented by a loop in the graph K3,3. Let

`(K3,3) denote the set of loops on the graph; see Fig. (7) for the complete list of loops. For

each such loop l there is a group element gl that acts on MP0 by flipping the outcomes of the

measurements that live on the loop. Let G` denote the subgroup of Aut(MP0) generated by

the elements gl for l ∈ `(K3,3).

Lemma 1 G` is isomorphic to Z4
2 with the canonical generators given by the loops lx0

= l2a
(flipping x0), lx1 = l4a (flipping x1), ly0 = l9a (flipping y0) and ly1 = l3a (flipping y1).

Proof. Proof of this result follows from directly verifying that gl for each loop l in Fig. (7)

can be decomposed into a product of these canonical generators. For example, gl1a = glx0
gly1

and gl1b = glx0
gly1 glx1

. Similarly for the remaining loops. �
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We will write G0 for the subgroup of Aut(MP0) generated by the two subgroups Aut(K3,3)

and G`. This group can be expressed as an extension

0→ G` → G0 → Aut(K3,3)→ 1, (8)

that is G` is a normal subgroup of G0 and the quotient group G0/G` is given by Aut(K3,3).

2.4 The odd case: MP1

Let β1 : C → Z2 denote the function defined by

β1(C) = 0, ∀C ∈ Ch and β1(C) = 1, ∀C ∈ Cv. (9)

We will write MP1 for the the Mermin polytope MPβ1
. (This notation is justified by Propo-

sition 1.) Our goal in this section is to provide a quantum mechanical description of MP1.

Using this description we will study the symmetries of the polytope.

Fig. 8: Mermin square whose edges are labeled by nonlocal Pauli operators. The tensor
product is omitted from the notation.

The connection to quantum theory is via the notion of binary linear systems. A quantum

solution to the Mermin square binary linear system (M, C, β) consists of unitary operators

Aij ∈ U(Cd) where i, j ∈ Z3 such that

• A2
ij = 1 for all i, j ∈ Z3,

• {Aij : i ∈ Z3} and {Aij : j ∈ Z3} consist of pairwise commuting unitaries,

• Ai0Ai1Ai2 = (−1)β(Ch
i ) and A0jA1jA2j = (−1)β(Cv

j ) for all i, j ∈ Z3.

A quantum solution over U(C) is called a classical solution. It is known that a classical solution

exists if and only if [β] = 0. This can either be proved directly by an argument similar to

Mermin’s proof of contextuality [7], or by cohomological arguments [9]. Nonexistence of a

classical solution is an indication of quantum contextuality in the sense of Kochen–Specker.

As in the case of Mermin’s proof, quantum solutions can come from Pauli operators. The

n-qubit Pauli operatorsg are given by

A = A1 ⊗A2 ⊗ · · · ⊗An, Ai ∈ {1, X, Y, Z},
gWe only consider the ones whose eigenvalues are ±1.
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where 1, X, Y, Z are the 2 × 2 Pauli matrices. The Pauli group, denoted by Pn, consists of

operators of the form iαA where α ∈ Z4.

We partition the set of 2-qubit Pauli operators into local and nonlocal parts:

• Local 2-qubit Pauli operators

{X ⊗ 1, Y ⊗ 1, Z ⊗ 1,1⊗X,1⊗ Y, 1⊗ Z}.

• Nonlocal 2-qubit Pauli operators

{X ⊗X,X ⊗ Y,X ⊗ Z, Y ⊗X,Y ⊗ Y, Y ⊗ Z,Z ⊗X,Z ⊗ Y,Z ⊗ Z}.

For β1 defined as in Eq. (9) nonlocal Pauli operators constitute a quantum solution; see

Fig. (8). For a pair A,B of distinct and commuting Pauli operators let Πab
AB denote the pro-

jector onto the simultaneous eigenspace corresponding to the eigenvalues (−1)a and (−1)b

of A and B; respectively. More concretely, we have Πab
AB = (1 + (−1)aA + (−1)bB +

(−1)a+b+βAB)/4. These projectors constitute the set S2 of 2-qubit stabilizer states. There

is a corresponding local vs nonlocal decomposition:

S2 = S(l)
2 t S

(nl)
2 (10)

where

• S(l)
2 consists of projectors Πab

AB where A,B are local Pauli operators.

• S(nl)
2 consists of projectors Πab

AB where A,B are nonlocal Pauli operators.

Lemma 2 MP1 can be identified with the set of Hermitian operators ρ ∈ Herm((C2)⊗n) of

trace 1 such that Tr(ρA) = 0 for all local Pauli’s A and Tr(ρΠab
AB) ≥ 0 for all pairwise com-

muting nonlocal Pauli operators A,B and a, b ∈ Z2.

Proof. Let Q denote the set of operators ρ described in the statement. The Born rule gives

a map p : Q → MP1 sending ρ 7→ pρ. If we know pabρ for all a, b ∈ Z2 then we can compute

the expectation 〈A〉ρ for any nonlocal Pauli. Since by assumption 〈B〉ρ = 0 for every local

Pauli B this way we can determine ρ. In other words, we can define a map e : MP1 → Q by

sending a distribution d to the operator

ρd =
1

4

(
1 +

∑
A

αAA

)

where A runs over nonlocal Pauli’s and αA is the expectation obtained from d. Then e is the

inverse of p. Therefore p is a bijection. �

Lemma 2 provides a quantum mechanical description of MP1. In particular, some of the

symmetries of MP1 come from quantum mechanics, that is, by conjugation with a Clifford

unitary. The n-qubit Clifford group Cln is the quotient of the normalizer of Pn, the group

of unitaries U ∈ U((C2)⊗n) such that UAU† ∈ Pn for all A ∈ Pn, by the central subgroup
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{eiθ1 : 0 ≤ θ < 2π}. Acting by the elements of Cl1 on each qubit preserves the set of nonlocal

Pauli’s. By Lemma 2 this group acts on the polytope MP1. Additionally, the SWAP gate

that permutes the parties is also a symmetry of the polytope. Let us define the following

subgroup of Cl2:

G1 = 〈Cl1 × Cl1,SWAP〉. (11)

As we observed this is also a subgroup of Aut(MP1). Next we will express G1 as an extension

similar to the one for G0 given in Eq. (8). First recall that Cl1 has two parts: the Pauli part

isomorphic to Z2
2 generated by conjugation with X and Z, and the symplectic part Sp2(Z2).

The latter group is isomorphic to Σ3 since in the single qubit case the symplectic action is

determined by the permutation of the subgroups 〈−1, X〉, 〈−1, Y 〉, 〈−1, Z〉. We can express

this decomposition as an exact sequence

0→ Z4
2 → G1 → Aut(K3,3)→ 1. (12)

The quotient is given by Aut(K3,3) since G1 (up to signs) permutes the set of contexts which

in return induces as action on the graph K3,3. By comparing sizes we conclude that the

quotient group is the whole automorphism group of the graph.

Proposition 3 There is an isomorphism of groups φ : G1 → G0.

The proof can be found in Appendix B.

3 Vertices of the Mermin polytopes

The description of Mermin polytopes is most naturally given in terms of the intersection

of a finite number of half-spaces, or H-representation. However, by the Minkowski-Weyl

theorem [24] there is an equivalent representation of a polytope in terms of the convex hull of

a finite number of vertices, called the V -representation. The problem of switching from the

H to the V -description is called the vertex enumeration problem; see e.g., [25]. Here we do

precisely this and enumerate the vertices of MPβ , using the rich structure of these polytopes

to aid in this task.

3.1 Closed noncontextual subsets

We recall some definitions from [16].

Definition 2 A subset Ω ⊂ M is called closed if M ∩ C 6= ∅ implies C ⊂ M . An outcome

assignment on a closed subset Ω is a function s : Ω→ Z2 such that

s(c) = s(a) + s(b) + β(a, b)

for all C = {a, b, c} ⊂ Ω. A closed subset Ω is called noncontextual if it admits an outcome

assignment. We call subsets Ω obeying both of these properties closed noncontextual, or cnc

sets. And as noted in [16], it suffices to consider just the maximal cnc sets, which we do from

here forth.
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(a) Type 1 cnc set: All edges correspond to anti-commuting operators, thus never in the same triangle.

(b) Type 2 cnc set: Two adjacent triangles.

Fig. 9

As we observed in the description of MP1 (see Section 2.4) contexts of the Mermin scenario

can be realized by the commutation relation of nonlocal Pauli operators. Next we make

this connection more precise. Recall that the measurements mij ∈ M are labeled by pairs

(i, j) ∈ Z2
3. We consider a map ι : Z3 → Z2

2 − {0} defined as follows:

ι(0) = (0, 1), ι(1) = (1, 1), ι(2) = (1, 0).

The corresponding Pauli operators are T(0,0) = 1, T(0,1) = X, T(1,1) = Y and T(1,0) = Z.

On the other hand, 2-qubit Pauli operators can be labeled by (v, w) ∈ E = Z2
2 × Z2

2, which

corresponds to Tv ⊗ Tw. This way we obtain an embedding

M → E, mij 7→ (ι(i), ι(j)). (13)

Throughout we will use this identification. Given (v, w) and (v′, w′) there is a symplectic

form

[(v, w), (v′, w′)] = v · w′ + v′ · w mod 2.

We say that such a pair commutes if [(v, w), (v′, w′)] = 0; otherwise we say that they anticom-

mute. A subspace I ⊂ E is called isotropic if each pair of elements in this subspace commute.

Observe that contexts in C are precisely the maximal isotropic subspaces of M .

Lemma 3 The structure of maximal closed noncontextual subsets of M with respect to β1 is

given as follows:

• Type 1: the subset Ω consists of three distinct pairwise anticommuting elements; i.e.,

none lie within the same context. We have 6 such sets Ω and an outcome assignment

s : Ω→ Z2 is a function; see Fig. (9a).

• Type 2: the subset Ω is a union of two distinct contexts with a single measurement

m ∈ M lying on their (nonempty) intersection, and hence consists of 5 elements total.
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There are 9 such subsets Ω, one for each m ∈ M . Additionally, there are 3 elements

that generate the set and an outcome assignment s : Ω→ Z2 is determined by a function

on these 3 generators; see Fig. (9b).

Proof. This result follows from Raussendorf, et al. [16], specifically Lemma 3. The case of

the Mermin square is treated in more detail in Example 2. Quoting their results, there are

48 = 23 × 6 Type 1 cnc sets and 72 = 23 × 9 Type 2 cnc sets. �

(a) (b)

Fig. 10: Type 1 and 2 cnc sets indicated by green color and the nonlocal Pauli’s that flip only
one outcome indicated by red color.

Lemma 4 G1 acts transitively on the set

{(Ω, s) : Ω is a maximal cnc set of type k, and s : Ω→ Z2 is an outcome assignment}

where k is either 1, or 2.

Proof. We begin with type 1 cnc sets. First let us ignore the outcome assignment. A type

1 cnc set is specified by three pairwise anticommuting nonlocal Pauli operators. There are 6

of these sets, three are of the form {A⊗X,A⊗ Y,A⊗Z} and the remaining three are of the

form {X ⊗A, Y ⊗A,Z ⊗A}, where A = X,Y, Z. To move from one such cnc set to another

one one can use a local Clifford unitary and the SWAP gate if needed. Now including the

outcome assignments, for a fixed cnc set Ω we can move from one outcome assignment to the

other by flipping the signs of the outcomes by conjugating with a nonlocal Pauli operator

that commutes with two of them, but anticommutes with the remaining one; see Fig. (10a).

In the case of type 2 cnc sets we can move between the Ω sets since the Aut(K3,3) quotient

of G1 acts transitively on the edges of the torus (or the dual K3,3 graph) [26, Sec. 3.2]. To

move between the outcome assignments on a fixed type 2 cnc set Ω we can conjugate with a

nonlocal Pauli; see Fig. (10b). �

Corollary 1 Aut(K3,3) acts transitively on the set of maximal cnc sets of a fixed type.

Proof. As we observed in the proof of Lemma 4 the G1 action factors through the action of

the quotient group Aut(K3,3) when the outcome assignments are ignores. �
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3.2 Vertex classification

In the rest of this section we will prove the following result. Recall the embedding M ⊂ E

given in Eq. (13).

Theorem 3 There is a bijection between the set of vertices of MPβ and the set of functions

s : Ω→ Z2 satisfying the following properties:

(i) For MP0 the subset Ω = M and the functions are group homomorphisms s : M → Z2.

Each such function is given by specifying s(vi, wj) ∈ Z2 for vi, wj ∈ {(0, 1), (1, 1)}. In

particular, there are 16 vertices.

(ii) For MP1 the subset Ω is a maximal closed noncontextual subset (one of the two types in

Lemma 3) and s : Ω→ Z2 is an outcome assignment. There are two types of vertices:

• Type 1: When Ω is of type 1. In particular, there are 48 vertices of this type.

• Type 2: When Ω is of type 2. In particular, there are 72 vertices of this type.

Given a function s : Ω → Z2 as in (i) or (ii) the corresponding vertex p ∈ MPβ is uniquely

determined by

p0
m =

{
1+(−1)s(m)

2 ∀m ∈ Ω
0 otherwise

. (14)

We begin with some recollections from polytope theory; see [24, 25]. Let P (A, b) = {x :

Ax ≥ b} denote a polytope where A ∈ Rn×m and b ∈ Rn. Assume that P (A, b) ⊂ Rm is full

dimensional. Let us establish some terminology. If an inequality is satisfied with equality

then we call that inequality tight. For a point p ∈ P (A, b) we refer to the active set at p as a

subset Zp ⊂ {1, · · · , n} which indexes the set of tight inequalities at p. A point p is a vertex

of P (A, b) if and only if there exists a subset of tight inequalities Z ⊆ Zp with |Z| = m such

that

v = A[Z]−1b,

where A[Z] is the matrix obtained from A by removing all the rows whose index is not in Z.

Note that |Z| ≤ |Zp|.
Let us apply these observations to Mermin polytopes MPβ . We can express MPβ in the

form P (A, b). Let us write x ◦ y to mean the XOR measurement x⊕ y if β(x, y) = 0, or the

NOT of the XOR measurement x⊕ y if β(x, y) = 1.

Proposition 4 The Mermin polytope MPβ has a description in the form P (A, b) where b =

−19×1, A ∈ R24×9 is a matrix whose rows are labeled by the set

S = {(C, ab) : C ∈ C, a, b ∈ Z2},
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columns labeled by M (once both sets are ordered) and for C = {x, y, x ◦ y} its entries are

given by

A(C,ab),m =


(−1)a m = x
(−1)b m = y
(−1)a+b+β(C) m = x ◦ y
0 otherwise.

(15)

Before we proceed to proving Proposition 4, let us prove the following useful lemma:

Lemma 5 The distribution pabC in a single triangle (see Fig. (4)) with edges labeled {x, y, z}
and outcomes a, b, c ∈ Z2, respectively, with c = a + b + βC , is uniquely determined by the

marginals along the edges
{
pa{x}, p

b
{y}, p

c
{z}

}
according to

pabC =
1

2

(
pa{x} + pb{y} − p

c+1
{z}

)
. (16)

Proof. First note that we have:

p0
{x} = p00

C + p01
C (17)

p0
{y} = p00

C + p10
C (18)

pβC

{z} = p00
C + p11

C (19)

from which the normalization condition
∑
ab p

ab
C = 1 becomes:

p00
C + p01

C + p10
C + p11

C = p0
{x} + p0

{y} + pβC

{z} − 2p00
C = 1 .

From this we can obtain:

p00
C =

1

2

(
p0
{x} + p0

{y} + pβC

{z} − 1
)

=
1

2

(
p0
{x} + p0

{y} − p
βC+1
{z}

)
, (20)

where in the second line we used pc+1
{z} = 1 − pc{z}. Equation (16) then follows by inserting

Eq. (20) into Eqns. (17)-(19) and solving for the remaining pabC . �

Remark 2 Notice that if two contexts C and C ′ intersect on an edge m = C ∩ C ′ then

distributions pabC , pabC′ represented as in Eq. (16) will automatically satisfy the nonsignaling

conditions if one and the same marginal pa{m} is used in both.

The 24 probabilities pabC can therefore be uniquely expressed by the marginal probabilities

pa{m}, where m ∈M . In particular, any pabC can be expressed by just the 0-outcome marginals

p0
{m} since their complement is given by p1

{m} = 1− p0
{m}. These nine marginal probabilities
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therefore serve as a system of coordinates for MPβ , which can be embedded in R9.

We now introduce a new set of coordinates in terms of the expectation values of the measure-

ment outcomes, denoted m̄. The two are related by an affine transformation. The expectation

value of a measurement m ∈M is then given by

m̄ :=
∑
a

(−1)apa{m} = p0
{m} − p

1
{m}.

Using that p1
{m} = 1− p0

{m} and solving for p0
{m} we obtain the desired relationship

p0
{m} =

1

2
(1 + m̄) . (21)

noindent [Proof of Proposition 4] Note that MPβ is defined as the intersection of the half-

space inequalities pabC ≥ 0 intersected by the affine subspace generated by the nonsignaling

conditions and normalization. By Lemma 5 this is equivalent to requiring the nonnegativity

of Eq. (16), for every C ∈ C and a, b ∈ Z2. Plugging in Eq. (21) for p0
{m} in terms of m̄ gives

us the expression

pabC =
1

4

(
1 + (−1)ax̄+ (−1)bȳ + (−1)a+b+β z̄

)
. (22)

Requiring nonnegativity and rearranging yields

AT(C,ab) x ≥ −1 (23)

where A(C,ab) is given as in Eq. (15) and x ∈ R9 has components m̄, where m ∈ M . The

24 inequalities defining the polytope can now be compactly expressed as Ax ≥ b, which

concludes the proof.

Let Z ⊂ S be a subset of indices such that |Z| = 9. For each C ∈ C let us write

n(C) = |Z ∩ {(C, ab) : a, b ∈ Z2}|. The numbers n(C) satisfy the following properties:

•
∑
C∈C n(C) = 9 since |Z| = 9.

• 0 ≤ n(C) ≤ 3 since
∑
a,b∈Z2

pabC = 1 for each context.

Our case classification will be in terms of the following numbers:

nk = |{C ∈ C : n(C) = k}|

Table (1) displays all the cases that can occur. These cases will be denoted by (n3, n2).

A triangle representing a context C is called a deterministic triangle if pC is a deterministic

distribution. An edge labeled by a measurement x ∈ C is called a deterministic edge if pC |{x}
is a deterministic distribution.
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n3 n2 n1

3 0 0

2 1 1

2 0 3

1 3 0

1 2 2

1 1 4

0 3 3

Table 1: Each row displays the number of contexts with the indicated number of zeros. These
are the triples (n3, n2, n1) satisfying 0 ≤ ni ≤ 3 and 3n3 + 2n2 + n1 = 9.

Lemma 6 A triangle C with two deterministic edges is deterministic.

Proof. We can assume β = 0 on the triangle, the case β = 1 is treated similarly. Let

pC = {pabC }a,b be a distribution on the triangle where C = {x, y, x⊕y}. Assume that p|x = δax
and p|y = δb for some a, b ∈ Z2. This implies

pā0 + pā1 = p0b̄ + p1b̄ = 0,

where ā = a+1. In every case three of the four probabilities are zero giving us a deterministic

distribution. Other cases where x, x⊕y and y, x⊕y are deterministic are also treated similarly

�

Lemma 7 Let p be a distribution on a single triangle C. Let ZC = {A(C,ab) : a, b ∈ Z2} be

the set of tight inequalities. Then rank(A[ZC ]) = |ZC |.

Proof. We can assume β = 0, the case β = 1 is similar. Assume that ZC is nonempty,

otherwise the rank is zero. Let us write C = {x, y, x ⊕ y}. We will use the symmetry group

GC generated by flipping the outcomes of x, y, which is isomorphic to Z2
2. By Lemma 6 there

are two cases (up to GC action):

• Single deterministic edge: p|{x} = δ0. In this case

rank(A) = rank

[
1 −1 −1
1 1 1

]
= 2, (24)
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where a row corresponds to outcomes of (x, y, x⊕ y) in this order.

• Deterministic triangle: p = δ00. In this case

rank(A) = rank

 1 −1 −1
−1 1 −1
−1 −1 1

 = 3. (25)

�
Next, we consider distributions on the diamond D, which is obtained by gluing two tri-

angles, C and C ′, along a common edge. We will denote the common edge by z. See Fig. (11a).

Lemma 8 Let p be a distribution on the diamond D. Let ZC , ZC′ be the set of tight inequal-

ities in triangles C, C ′; respectively. Define ZC,C′ = ZC ∪ ZC′ . Then

rank(A[ZC,C′ ]) =

 |ZC,C′ | − 1 z is deterministic,

|ZC,C′ | otherwise.

Proof. We assume β = 0 on both triangles, the case β = 1 on one of the triangles is

treated similarly. Assume that ZC,C′ is nonempty, otherwise the rank is zero. We will

also use symmetries to reduce the number of cases. Let us write C = {x, z, x ⊕ z} and

C ′ = {x′, z, x′ ⊕ z} for the contexts. Let GD denote the symmetry group generated by

flipping the outcomes of x, z, x′, which is isomorphic to Z3
2. First, let us assume that z is not

deterministic. The cases where either ZC or ZC′ are empty can be deduced from Lemma 7.

By Lemma 6 the remaining cases are as follows (up to GD action):

• |ZC | = |ZC′ | = 1 with p00
C = p00

C′ = 0. In this case

rank(A[ZC,C′ ]) = rank

[
1 1 1 0 0
0 0 1 1 1

]
= 2, (26)

where a row corresponds to outcomes of (x, x⊕ z, z, x′, x′ ⊕ z) in this order.

• |ZC | = 2, |ZC′ | = 1 with pC |{x} = δ0 and p00
C′ = 0. In this case

rank(A[ZC,C′ ]) = rank

1 1 1 0 0
1 −1 −1 0 0
0 0 1 1 1

 = 3. (27)

The case |ZC | = 1, |ZC′ | = 2 is similar.

• |ZC | = 2, |ZC′ | = 2 with pC |{x} = pC′ |{x′} = δ0. In this case

rank(A[ZC,C′ ]) = rank


1 1 1 0 0
1 −1 −1 0 0
0 0 1 1 1
0 0 −1 1 −1

 = 4. (28)

Next, we consider the case where z is deterministic. Again up to the action of GD we

have the following cases:



Cihan Okay, Ho Yiu Chung, Selman Ipek 753

• |ZC | = 2, |ZC′ | = 2 with pC |{z} = pC′ |{z} = δ0. In this case

rank(A[ZC,C′ ]) = rank


1 1 1 0 0
−1 −1 1 0 0
0 0 1 1 1
0 0 1 −1 −1

 = 3. (29)

• |ZC | = 3, |ZC′ | = 2 with pC = δ00 and pC′ |{z} = δ0. In this case

rank(A[ZC,C′ ]) = rank


1 −1 −1 0 0
−1 1 −1 0 0
−1 −1 1 0 0
0 0 1 1 1
0 0 1 −1 −1

 = 4. (30)

The case |ZC | = 2, |ZC′ | = 3 is similar.

• |ZC | = 3, |ZC′ | = 3 with pC = pC′ = δ00. In this case

rank(A[ZC,C′ ]) = rank


1 −1 −1 0 0
−1 1 −1 0 0
−1 −1 1 0 0
0 0 −1 1 −1
0 0 1 −1 −1
0 0 −1 −1 1

 = 5. (31)

�

(a)
(b)

Fig. 11: (a) Two triangles glued along a common edge. (b) A distribution on the torus with
one deterministic triangle.

Lemma 9 Let p be a distribution in MPβ and Z denote the set of tight inequalities. Assume

that there exists a deterministic triangle C. Then rank(A[Z]) ≥ 6.

Proof. Considering the action of Gβ will simplify the discussion. Our argument does not

depend on β, so we assume β = 0. Up to the action of the symmetry group we can assume
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that pC has the form given in Fig. (11b). Let us write C = {x, y, z} and Ct = {t, t′, t ⊕ t′}
where t = x, y, z for the adjacent triangles. Then

rank(A[Z]) = rank



1 −1 −1 0 0 0 0 0 0
−1 1 −1 0 0 0 0 0 0
−1 −1 1 0 0 0 0 0 0
−1 0 0 1 −1 0 0 0 0
−1 0 0 −1 1 0 0 0 0
0 −1 0 0 0 1 −1 0 0
0 −1 0 0 0 −1 1 0 0
0 0 −1 0 0 0 0 1 −1
0 0 −1 0 0 0 0 −1 1


= 6, (32)

where a row corresponds to outcomes of (x, y, z, x′, x⊕ x′, y′, y⊕ y′, z′, z ⊕ z′). Lemma 7 and

Lemma 8 can be used to compute the rank. We are looking at a region obtained by gluing

three diamonds along a triangle. The rank of the matrix above is the sum of the ranks of

each diamond minus two times the rank of the deterministic triangle.�

Remark 3 Lemma 9 implies that to obtain a vertex we must fix three additional (linearly

independent) zeros. This forces at least one additional edge to be deterministic, which by

Lemma 6 implies that we must have at least two adjacent deterministic triangles.

We will use the number of deterministic triangles and the number of deterministic edges

(that lie out side the boundary of the triangles) to organize the cases. In Fig. (12) we see

a diagram that illustrates all the possibilities. The base cases consist of three deterministic

edges. Successive application of Lemma 6 together with Lemma 9 and Remark 3 reduces the

diagram to three main cases:

(C1) All triangles are deterministic.

(C2) Two adjacent deterministic triangles.

(C3) Three anticommuting deterministic edges.

Note that if there are more than three deterministic edges again Lemma 6 can be used to

reduce to (C1). The case where there is only one deterministic triangle and no additional

deterministic edges does not appear since Lemma 8 implies that such a configuration can have

rank at most 8.

Remark 4 Note that up to Aut(K3,3) there are only three representative cases. For (C1)

this is obvious since all triangles are deterministic. For cases (C2) and (C3) we observe that

these correspond to type 2 and type 1 cnc sets, respectively. Thus by Corollary 1 it suffices

to consider a single representative for each case. The representatives are given in Fig. (12).

Lemma 10 Assume p ∈ MPβ is a vertex that satisfies (C1). Then p belongs to MP0. No

distribution in MP1 is deterministic.
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Fig. 12: Starting from the base case of three deterministic edges, we can obtain the vertices
of MPβ by repeated application of Lemma 6. Up to symmetry we have three representative
cases: (C1) All deterministic triangles (C2), two adjacent deterministic triangles, and (C3)
three anti-commuting deterministic edges. For β = 0 all of these cases lead to a deterministic
distribution. For β = 1 deterministic distributions are not allowed and we have type 1 and
type 2 cnc distributions corresponding to cases (C2) and (C3), respectively.

Proof. First let us note that (C1) implies that A[Z] has full rank. To see this, take three

mutually nonadjacent (i.e., the set of edges Ci∩Cj is empty) triangles as deterministic, which

implies that all edges are deterministic. By applying Lemma 7 for each triangle (after an

appropriate permutation of columns) we have that A[Z] has full rank. Next observe that a

set of deterministic edges implies a classical solution to the binary linear system (M, C, β).

Since this is possible only for [β] = 0, we have (C1) defines a vertex of MP0, but not of MP1. �

Lemma 11 Let p be a vertex of MPβ that satisfies (C2). Then either

(i) p satisfies (C1), or

(ii) p is a type 2 vertex of MP1.

Proof. Consider a configuration for (C2), which specifies a cnc set Ω of type 2. We can fix a

deterministic distribution on Ω. Any other choice can be dealt with similarly by the help of

Lemma 4. Then we use the compatibility conditions, as shown below:

Here we have β0 (β1) in red (blue). For β = 0 there is a one parameter family of distribu-

tions. A vertex is specified by choosing α = 0, 1, which implies a deterministic distribution
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and thus reduces to (C1). For β = 1 the compatibility conditions imply that α = 1−α = 1/2.

Lemma 12 Let p be a vertex of MPβ that satisfies (C3). Then either

(i) p satisfies (C1), or

(ii) p is a type 1 vertex of MP1.

Proof. Similar to the case (C2) let us consider a configuration, choose a convenient dis-

tribution consistent with the case (C3) (other choices can be handled using symmetry, i.e.,

Lemma 4), and solve for the probabilities using the compatibility conditions:

As with (C2), here for β = 0 we have a one-parameter family of distributions (red) where

vertices are specified by α = 0, 1, reducing to the deterministic case (C3). For β = 1 we have

that α = 1− α = 1/2 (blue). �

[Proof of Theorem 3] To begin, the diagram in Fig. (12) implies that we need only consider

cases (C1)-(C3). Focusing first on β = 0, Lemmas 10-12 imply that all vertices of MP0 are

deterministic. These vertices are determined by the marginals on the measurements (vi, wj)

where vi, wj ∈ {(0, 1), (1, 1)}. Hence there are 16 such vertices.

Turning now to MP1, note that by Lemma 10 that no deterministic distribution is a point

of MP1, thus by Lemmas 11 and 12, the only vertices of MP1 are those of the form of (C2)

and (C3). Observe that for (C2) and (C3) that p0
{m} ∈ {0, 1} (i.e., the edge is deterministic) if

and only if m ∈ Ω, where Ω are the maximal cnc sets described in Lemma 3, and p0
{m} = 1/2

(or m̄ = 0) for all other observables m /∈ Ω. For example, the deterministic edges in (C3)

are described by a type 1 cnc set since they correspond to a maximal set of anti-commuting

observables. Using Lemma 3, we know that there are 48 = 23×6 type 1 and 72 = 23×9 type

2 cnc sets, which then correspond to 48 type 1 and 72 type 2 vertices of MP1, respectively. �

4 Graph of the Mermin polytopes

In this section, we determine the graph of MPβ consisting of the vertices of the polytope

together with the edges connecting two neighbor vertices in the polytope.

4.1 Graph of MP0

Lemma 13 G0 acts transitively on deterministic vertices of MP0.
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Proof. Take an arbitrary deterministic vertex p ∈ MP0 and act on it by G` ⊂ G0. There are

15 elements of G` listed in Fig. (7a) and the action of each permutes the outcomes of a dif-

ferent subset of measurements and thus generates 15 distribution distinct from p. Since there

are 16 = 24 outcome assignments in total, we obtain all possible deterministic distributions

by the action of G0 �

Let q denote the deterministic distribution in MP0 given by q00
C = 1 for all triangles C; see

Fig. (13). We will take this as the canonical vertex of this polytope. The other vertices can

be obtained by using the action of the loops as a consequence of Lemma 13. We will write

ql = gl · q where gl ∈ G`, l ∈ `(K3,3)

for the remaining vertices obtained via the action of G` (see Eq. (8)).

Fig. 13

Corollary 2 Let p be a vertex of MP0. Then StabG0
(p) is isomorphic to Aut(K3,3). More-

over, the stabilizer acts transitively on the set of remaining vertices.

Proof. By Lemma 13 we know that the action of G0 on the set of vertices is transitive.

Therefore the stabilizers of each vertex are isomorphic. It suffices to compute the stabilizer

of the canonical vertex q. By definition of q, permutation of the contexts does not change it.

That is, Aut(K3,3) ⊂ StabG0(p). Since there are 16 vertices, this implies |G0/StabG0(p)| = 16

and we have Aut(K3,3) = StabG0
(p).

For the second part of the statement observe that the set of edges in a loop is precisely

the complement Ωc of a maximal cnc set (Definition 2). Therefore there is a one-to-one cor-

respondence between the set of loops and the set of maximal cnc sets (both types combined).

Since Aut(K3,3) acts transitively on the set of cnc sets (Corollary 1), it also acts transitively

on the set `(K3,3) of loops. This implies that the action of the stabilizer, that is Aut(K3,3),

on the vertices {gl · q : l ∈ `(K3,3)} is transitive since σ · ql = gσ·l · q for σ ∈ Aut(K3,3), where

σ · l is the loop obtained by the permutation action of σ. �

Theorem 4 The graph of MP0 is the complete graph K16.
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Proof. Let us consider q and another vertex ql = gl · q. By Corollary 2 we can assume l = lx0

corresponding to flipping the outcome of x0; see Lemma 1. It suffices to show that q and ql
are neighbors. The distribution p(α) = αq + ᾱql, where 0 ≤ α ≤ 1/2, is given as follows:

Note that p(α) for α ∈ (0, 1/2) specifies an edge in MP0 from q to ql since the rank of A[Z],

where Z is the set of tight inequalities, is equal to 8. This is because, the zeros in Z together

with the nonsignaling conditions leaves a single parameter, that is α. �

4.2 Graph of MP1

Our goal is to describe the graph of MP1. We will follow a similar approach to the vertex

classification. This time we consider 8 linearly independent inequalities instead of 9. Consid-

ering the number of deterministic edges on the torus representation is a good way to organize

the cases. Our main technical result describes an edge between two neighboring vertices of

MP1 in terms of the loops on the torus given in Fig. (7). We begin by introducing some

notation: We have seen that the complement of a loop l ∈ `(K3,3) corresponds to a cnc set

(Definition 2). Denoting a maximal cnc set that corresponds to loop l by Ωl we will write Ωcl
for its complement, consisting of the edges that belong to the loop l. A signed loop consists

of a loop together with a function

ϕ : Ωcl → {±1}.

Corresponding to this function we will define a collection pϕ = (pϕ)C∈C of functions pϕ :

ZC2 → R such that
∑
s p

ϕ(s) = 0. Note that this is similar to a distribution but the values

sum to zero instead of one, and can be negative. For C = {x, y, z} our definition of pϕC uses

a version of Eq. (22):

(pϕC)ab =
1

4
((−1)aϕ(x) + (−1)bϕ(y) + (−1)a+b+β(C)ϕ(z)).

Lemma 14 Let p be a distribution in MP1 and Z denote a subset of tight inequalities such

that |Z| = 8. If rank(A[Z]) = 8 then there exists precisely two deterministic edges. Moreover,

an edge p ∈ MP1 between two vertices q1 and q2 is given by

p(α) = q1 + αpϕ, α ∈ [0, 1/2], (33)

for some signed loop ϕ : Ωcl → {±1}, where l ∈ `(K3,3), such that p(1/2) = q2.

Proof. Let us start with the case of no deterministic edges. In this case A[Z] ≤ 6, hence we

don’t have enough zeros to obtain an edge in the polytope. When there is one deterministic

edge, say denoted by z, we consider the diamond D consisting of two adjacent triangles C,C ′

at z. By Lemma 8 we have rank(A[ZC,C′ ]) = |ZC,C′ | − 1 which implies rank(A[Z]) ≤ 7. The
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(a) (b) (c)

Fig. 14: An edge (top) in MP1 between (a) canonical type 2 vertex p0 and canonical type 1
vertex q0 (b) p0 and pb (c) p0 and pa, as well as the corresponding loops (bottom). The edges
are parameterized by α ∈ [0, 1/2] such that α = 0 corresponds to p0 and α = 1/2.

case of three deterministic edges, or more, with at least two of them anticommuting is studied

in Section 3. According to Lemmas 10-12 we obtain either a vertex of MP1 or a distribution

that lies outside of this polytope. Remaining cases are two deterministic edges which either

commute or anticommute. Note that by Lemma 6 the commuting case also covers the three

pairwise commuting deterministic edges. To establish Eq. (33) we note that two distributions

q1 and q2 are connected by an edge if and only if they have in common 8 linearly independent

tight inequalities preserved along the edge. Given such a set of tight inequalities, we proceed

to construct pϕ by placing the corresponding zeros on the torus and then use the compatibility

conditions together with the fact that
∑
s p

ϕ(s) = 0.

To see how this works, let us consider a representative Ω = {x, y} ⊂M for the case of two

(a) anti-commuting and (b) commuting deterministic edges (see Fig. (15)) and notice that

these are both cnc sets, although not maximal. Moreover, let us choose a value assignment

s : Ω → Z2, which by Eq. (14) determines the marginals p{x} and p{y}. By Lemma 4 the

action of G1 on the set of pairs (Ω, s) is transitive. Even though Ω is not maximal we can

always embed it into a maximal one, extend s and apply the transitivity of the action of G1.

In both cases, as depicted in Fig. (15a) and (15b), there are 6 linearly independent tight

inequalities, thus we must choose two additional probabilities to set to zero. The possible

choices are as follows: (1) Set two (or one) of the given parameters α, β, γ = 0, 1. (2) Place

both remaining zeros in a single shaded triangle. (3) Place one zero in each of the shaded

triangles. It is straightforward to see that both options (1) and (2) will fix the distribution

to be a specific vertex, and thus will not be an edge. For (3) we let p and q denote the
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distribution on the shaded triangles. In Fig. (15a) suppose p corresponds to the triangle

whose boundary has marginals for the outcome 0 given by (−α,−β,−γ) and q corresponds

to (−α, β,−γ). Then from these marginals one can compute

p01 = −α− p00

p10 = −β − p00

p11 = γ − p00

and similarly for q. Using
∑
a,b p

ab =
∑
c,d q

cd = 0 and solving for pab and qcd we obtain

p00 = (−α− β + γ)/2

p01 = (−α+ β − γ)/2

p10 = (α− β − γ)/2

p11 = (α+ β + γ)/2

q00 = (−α+ β + γ)/2 = −p10

q01 = (−α− β − γ)/2 = −p11

q10 = (α+ β − γ)/2 = −p00

q11 = (α− β + γ)/2 = −p01.

If pab is set to zero then we can set one of qcd, where (c, d) ∈ Z2
2 − {a + 1, b}, equal to zero.

In this way we obtain a type 2 loop. For example, setting p01 = q10 = 0 gives the signed loop

Fig. (14c) For this choice p(1/2) is the vertex pa.

Fig. (15b) is handled similarly. Suppose p corresponds to the triangle whose boundary

has marginals given by (−α,−β, γ) and q corresponds to (α, β, γ). Then we have

p00 = (−α+ β + γ)/2

p01 = (−α− β − γ)/2

p10 = (α− β + γ)/2

p11 = (α+ β − γ)/2

q00 = (α+ β + γ)/2 = −p01

q01 = (−α+ β − γ)/2 = −p10

q10 = (−α− β + γ)/2 = −p11

q11 = (α− β − γ)/2 = −p00.

This case gives either a type 1 or a type 2 loop. For example, setting p10 = q00 = 0 gives the

signed loop in Fig. (14b), and p(1/2) is the vertex pb.

�

Next, we will describe the graph of MP1. By Lemma 15 the action of G1 on the type 1 and

2 vertices is transitive. Therefore to understand the local structure, i.e., the neighbors, at a

given vertex we can fix one type 1 vertex and one type 2 vertex. Our canonical representative

for a type 1 vertex is q0 given in Fig. (16b), which as an operator given as follows:

q0 =
1

4
(1 +X ⊗ Y − Y ⊗ Y + Z ⊗ Y ). (34)

Here we are using Lemma 2 to identify points of MP1 as operators and don’t distinguish them

notationally from the probability distributions. For a type 2 vertex our canonical choice is p0

given in Fig. (16a):

p0 =
1

4
(1 +X ⊗X +X ⊗ Y + Y ⊗X − Y ⊗ Y + Z ⊗ Z). (35)

Lemma 15 Let p be a vertex of MP1.
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(a)

(b)

Fig. 15: (a) Two commuting edges generate three possible loops; all of these are type-2. The
zeros in pink correspond to linearly independent tight inequalities. (b) Two anti-commuting
edges generate three possible loops; i.e., one type-1 and two type-2.

• If p is of type 1 then its stabilizer is isomorphic to the dihedral group D24 of order 24.

For the canonical type 1 vertex q0 we have

StabG1
(q0) = 〈Y S ⊗X,Y H ⊗H〉,

where S is the phase gate and H is the Hadamard gate.

• If p is of type 2 then its stabilizer is isomorphic to the dihedral group D16 of order 16.

For the canonical type 2 vertex p0 we have

StabG1
(p0) = 〈X ⊗ Y S,SWAP〉,

where SWAP is the swap gate that permutes the parties.

In particular, G1 acts transitively on the set of type 1 and 2 vertices.

Proof. Proof is given in Lemma C.1 and Lemma C.2. The last statement about the transi-

tivity of the action follows from Lemma 4. �

For a vertex p ∈ MP1 let N(p) denote the set of neighbor vertices of p.

Theorem 5 The graph of MP1 consists of 120 vertices partitioned into two kinds: 48 type 1

and 72 type 2 vertices. The local structure at these vertices is as follows:
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(a) (b)

Fig. 16

• N(q0) consists of 12 type 2 vertices given in Fig. (19a). StabG1(q0) acts transitively on

these neighbors.

• N(p0) consists of 8 type 1 vertices and 16 type 2 vertices given in Fig. (18a) and (18b);

respectively. StabG1(p0) acts transitively on the type 1 neighbors, whereas the type 2

neighbors break into two orbits.

Proof. Vertices of MP1 are classified in part (ii) of Theorem 3. Lemma 14 shows that

edges of MP1 are described by signed loops. To describe the local structure of the graph at

a vertex we consider the canonical vertices in Eq. (34) and (35), since by Lemma 15 G1 acts

transitively on each type of vertex.

Fig. 17

Our strategy is to find the signed loops such that p(α) in Eq. (33) gives p(0) = q0 or

p0. Let us start with p0, the corresponding distribution is given in Fig(16a). Let Ω denote

the maximal cnc set corresponding to p0 and Ωc denote its complement. We will partition

a loop l into two parts Ωl ∩ Ω and Ωl ∩ Ωc. The restriction of ϕ to Ωl ∩ Ω is determined by

the outcome assignment corresponding to p0. We begin by considering the restriction of ϕ

to Ωl ∩ Ωc. The region Ωc consists of four triangles. Each of these triangles has exactly one
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deterministic edge. Let C be one of those four triangles. The intersection Ωl ∩ C is either

empty or consists of two edges. There are two choices for the restriction of the sign ϕ to

this intersection, which is dictated by the distribution on C. All the possibilities are given in

Fig. (17). Observe that Ωl ∩ Ω can be given by one of the following possibilities:

We analyze each case.

(a) There are two ways to complete the paths to a loop. The sign on Ωl ∩Ωc is determined

by two adjacent triangles C,C ′. There are two possibilities for the sign on (Ωl ∩ Ωc) ∩
(C∪C ′). If l is type 2 then we obtain the type 2 neighbors given in the first two columns

of Fig. (18b). The action of StabG1
(p0) is transitive by Lemma C.6 on these neighbors;

see Table (C.2c). A representative vertex in this orbit is

pb =
1

4
(1 +X ⊗X +X ⊗ Y − Y ⊗ Z + Z ⊗X − Z ⊗ Y ). (36)

If l is type 1 we obtain the type 1 neighbors in Fig. (18a). By Lemma C.6 StabG1
(p0)

acts transitively; see Table (C.2a). A representative vertex in this orbit is q0 given in

Eq. (34).

(b) This is similar to (a): Two ways to complete to a loop and two choices for the sign on

the complement. We obtain the type 2 neighbors in the last two columns of Fig. (18b).

The action of StabG1(p0) is transitive by Lemma C.6 on these neighbors; see Table

(C.2c). A representative vertex in this orbit is

pa =
1

4
(1 +X ⊗X − Y ⊗ Y − Y ⊗ Z − Z ⊗ Y + Z ⊗ Z). (37)

(c) Top figure: There are two ways to complete to a loop. The sign on the complement

is determined by two nonadjacent triangles. Hence there are four possibilities for the

sign on the complement. We obtain the signed loops in Fig. (19b). By Lemma C.7 the

vertices at p(1/2) are not neighbors of p0. Also in the proof of this lemma we see that

StabG1(p0) acts transitively; see Table (C.2b). Our representative vertex is

qb =
1

4
(1 + Z ⊗X − Z ⊗ Y + Z ⊗ Z). (38)

Bottom figure: There is a unique loop on Ωc. However, no sign is compatible with the

restrictions onto the triangles given in Fig. (17). This loop does not produce an edge in

the graph that initiates from p0; see Lemma C.7.
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The distributions connecting p0 to q0, pb and pa are given in Fig. (14a), (14b) and (14c);

respectively.

For q0 given in Fig (16b) the argument is similar. Let p(α) be a path obtained from a

signed loop such that p(0) = q0. The distribution p(1/2) will consists of triangles with a

single deterministic edge on the boundary. Hence it is a vertex of type 1. However, we need

to determine whether p(α) is an edge in MP1. There are three cases to consider.

(a) l is of type 2: Then p(α) will be obtained from q0 by swapping a 1/2 with 0 in each

triangle. This means that the common set of zeros between q0 and p(1/2) is 6. Therefore

p(α) cannot be an edge.

(b) l is of type 1 and intersects two of the edges in {X ⊗Y,Z ⊗Y, Y ⊗Y }: Similarly p(1/2)

is a type 1 vertex. Looking at the common zeros we see that there are 8. However, as

in the proof of Lemma C.7 we can argue that Lemma 8 to a pair of adjacent triangles

to reduce the rank by 1. This implies that the path p(α) is not an edge in MP1.

(b) l is of type 1 and intersects one of the edges in {X ⊗ Y, Z ⊗ Y, Y ⊗ Y }: Then p(1/2) is

a type 2 vertex as listed in Fig. (19a). By Lemma C.5 StabG1
(q0) acts transitively on

them. The distribution connecting q0 to p0 is given in Fig. (14a).

�

5 Applications

Mermin polytopes MPβ , besides having an interesting structure in their own right, also have

utility in understanding aspects of quantum foundations (MP0) as well as quantum compu-

tation (MP1). We explore these topics here.

5.1 A new topological proof of Fine’s theorem

Here we combine the current results on Mermin polytopes together with the topological

framework of [12] to provide a novel proof of Fine’s theorem [14]. Before proceeding to the

precise statement of Fine’s theorem, however, we recall from Section 2.3 that the CHSH

scenario consists of four measurements xi, yj and four measurement contexts consisting of

pairs {xi, yj}, where i, j ∈ Z2. Our first goal will be to represent this scenario topologically.

In the simplicial approach to contextuality, first introduced in [12], and discussed briefly

in Section 2.2, measurement contexts are represented by simplicies (triangles) and to each

simplex we associate a probability distribution. The collection of distributions on each simplex

constitutes a simplicial distribution, which generalizes the notion of nonsignaling distributions.

In particular, a well-studied class of measurement scenarios are the bipartite scenarios which

in the simplicial framework are given by collections of triangles (i.e., 2-simplicies) where

edges (i.e., 1-simplicies) represent measurements; not necessarily local. Nonsignaling (or

compatibility) constraints are then formalized as the gluing of triangles along edges. For

instance, the (2, 1, 2) Bell scenario is just a single triangle as in Fig. (20), while the so-called

diamond scenario consists of two triangles glued along a single edge; see Fig. (23b). The

diamond scenario will prove useful for our proof of Fine’s theorem.

A topological representation of the CHSH scenario is given by four triangles glued along

their xi, yj edges. We assemble these four triangles into a punctured torus as in Fig. (21).
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(a) (b)

Fig. 18: (a) Type 1 neighbors of p0. (b) Type 2 neighbors of p0.

That is, as a Mermin scenario with the {x0⊕ y0, x1⊕ y1, z} and {x0⊕ y1, x1⊕ y0, z} contexts

removed. For convenience we denote the CHSH scenario as T0 and the Mermin scenario as

T .

Before we analyze this scenario, let us establish some terminology.

Definition 3 [12, Def. 3.10] A simplicial distribution p is called noncontextual if it can be

written as a convex combination of deterministic distributions. Otherwise we call it contex-

tual.

This notion of contextuality specializes to the usual notion for the CHSH scenario. As is well-

known, the CHSH scenario is contextual since there are distributions, the so-called Popescu-

Rohrlich boxes [27], which cannot be written as a probabilistic mixture of deterministic dis-

tributions. It was established by CHSH [13] that necessary for a distribution on the CHSH
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(a)

(b)

Fig. 19: (a) Type 2 neighbors of q0. The neighbors p+
1a, p−1a, p+

2a, p+
7a, p+

5a, p−9a coincide with
the type 2 neighbors p+

1b, p
−
1b, p

−
3b, p

+
5b, p

−
3a, p0 of the canonical type 2 vertex p0; respectively.

(b) Signed loops that connect p0 to a type 1 vertex that is not a neighbor.

Fig. 20: The (2, 1, 2) Bell scenario in the simplicial setting.

scenario to be noncontextual is that the following CHSH inequalities be satisfied:

0 ≤ p0
x0⊕y0 + p0

x0⊕y1 + p0
x1⊕y0 − p

0
x1⊕y1 ≤ 2

0 ≤ p0
x0⊕y0 + p0

x0⊕y1 − p
0
x1⊕y0 + p0

x1⊕y1 ≤ 2

0 ≤ p0
x0⊕y0 − p

0
x0⊕y1 + p0

x1⊕y0 + p0
x1⊕y1 ≤ 2

0 ≤ −p0
x0⊕y0 + p0

x0⊕y1 + p0
x1⊕y0 + p0

x1⊕y1 ≤ 2.

(39)

Fine [14,20] then established the sufficiency of these inequalities:
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Fig. 21: CHSH scenario represented topologically as a punctured torus.

Theorem 6 [Fine]A distribution on the CHSH scenario is noncontextual if and only if the

CHSH inequalities are satisfied.

To provide a new proof of Fine’s theorem we will rely on a couple of key observations.

One is that T0 can be embedded into T by inclusion, which allows us to study the CHSH

scenario via the Mermin scenario. The other is the following immediate consequence of the

vertex classification of MP0.

Corollary 3 Any distribution on the Mermin torus, whose topological realization is given in

Fig. (2a), is noncontextual.

Proof. The distributions on the Mermin torus satisfying the nonsignaling conditions given

in Eq. (7) constitute the polytope MP0. In Theorem 3 part (1) we have seen that all the

vertices of this polytope are deterministic. Therefore any distribution on the Mermin torus

can be written as a probabilistic mixture of deterministic distributions. �

Next, we prove Proposition 2, which is stated in a more topological form below.

Fig. 22: (Left) The deterministic distribution δs on the punctured torus corresponding to the
outcome assignment s : x0 7→ 1, x1, yj 7→ 0. (Right) The extension δ̃s of the distribution to
the torus.

Proposition 5 A distribution p on the punctured torus T0 extends to a distribution on the
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torus T if and only if p is noncontextual.

Proof. This result is a special case of the extension result proved in [12, Pro. 4.7]. The

key observation is that an outcome assignment s : {xi, yj : i, j,∈ Z2} → Z2 specifies both a

deterministic distribution δs on T0 and a deterministic distribution on T , which we denote

by δ̃s. See Fig. (22). Assume that p is noncontextual. We can express p as a probabilistic

mixture
∑
s λ(s) δs of deterministic distributions. Then p̃ defined as the probabilistic mixture∑

s λ(s) δ̃s is the desired extension. Conversely, assume that p extends to a distribution p̃ on

the torus. By Corollary 3 every distribution in MP0 is noncontextual, i.e., can be expressed

as a probabilistic mixture of deterministic distributions δ̃s. Then restricting onto T0 we can

write p as a probabilistic mixture of δs. Thus p is noncontextual. �

Since an extension from T0 to T amounts to filling in the diamond whose boundary is

given by the measurements xi ⊕ yj , i, j ∈ Z2, it is useful to establish the following fact:

Lemma 16 A distribution p on the boundary of the diamond scenario extends to the diamond

if and only if p satisfies the CHSH inequalities in Eq. (39).

Proof. This is proved in [12, Pro 4.9], we include the proof here for the convenience of the

reader. For our purposes we will assume that the diamond Z is such that the triangles are

glued along their XOR edge; see Fig. (23).

(a) (b)

Fig. 23: (a) The boundary of the diamond. (b) Topological representation of the diamond
scenario.

The argument for the other choices is similar. The distribution p∂Z on the boundary of

the diamond is specified by (p0
x0
, p0
y0 , q

0
x1
, q0
y1) ∈ [0, 1]4. On the other hand, a distribution pZ

on the diamond, requires compatible distributions pabxy and qrsvw, which by using Eq. (16) can

be specified by (p0
x0
, p0
y0 , q

0
x1
, q0
y1 , q

0
z), where q0

z is the marginal along the common edge. It is

possible to extend from ∂Z to Z if and only if there exists a q0
z such that all pabx0y0 , q

rs
x1y1 ≥ 0.

This occurs precisely when

max{|p0
x0

+ p0
y0 − 1|, |q0

x1
+ q0

y1 − 1|} ≤ q0
z ≤ min{1− |p0

x0
− p0

y0 |, 1− |q
0
x1
− q0

y1 |}.
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By Fourier-Motzkin elimination this single inequality is equivalent to the following four

|p0
x0

+ p0
y0 − 1| ≤ 1− |p0

x0
− p0

y0 |
|p0
x0

+ p0
y0 − 1| ≤ 1− |q0

x1
− q0

y1 |
|q0
x1

+ q0
y1 − 1| ≤ 1− |p0

x0
− p0

y0 |
|q0
x1

+ q0
y1 − 1| ≤ 1− |q0

x1
− q0

y1 |,

in addition to the trivial inequalities corresponding to 0 ≤ p0
i0
, q0
i1
≤ 1, where i = x, y.

Expanding the absolute values gives the inequalities

0 ≤ p0
x0

+ p0
y0 + q0

x1
− q0

y1 ≤ 2

0 ≤ p0
x0

+ p0
y0 − q

0
x1

+ q0
y1 ≤ 2

0 ≤ p0
x0
− p0

y0 + q0
x1

+ q0
y1 ≤ 2

0 ≤ −p0
x0

+ p0
y0 + q0

x1
+ q0

y1 ≤ 2.

(40)

These equations are formally identical to the CHSH inequalities appearing in Eq.(39). �

[Proof of Theorem 6] Let p be a distribution on T0 and p∂ denote the restriction (marginal-

ization) of p to the boundary of T0. Observe that the torus is obtained from the punctured

torus by filling in the diamond in the middle. Therefore p extends to T if and only if p∂
extends to the diamond. Combining this observation with Proposition 5 and Lemma 16 gives

the desired result. �

5.2 Decomposing the 2-qubit Λ-polytope

In this section, we provide a decomposition for Λ2, the Λ-polytope for 2-qubits, using the

Mermin polytope MP1. This decomposition will provide valuable insight into the vertex

enumeration problem for Λ-polytopes. This problem is a fundamental mathematical obstacle

in the complexity analysis of the Λ-simulation algorithm introduced in [11].

Recall the set S2 of 2-qubit stabilizer states and the (non)local version from Eq. (10). The

2-qubit Λ-polytope is defined as follows:

Λ2 = {X ∈ Herm((C2)⊗2)) : Tr(X) = 1, Tr(XΠ) ≥ 0, ∀Π ∈ S2} (41)

Our decomposition will be derived from the local vs. nonlocal decomposition of Pauli opera-

tors introduced in Section 2.4. Let us write E(l) and E(nl) for the subsets of E corresponding

to the local and nonlocal Pauli operators; respectively. This gives us the following decompo-

sition:

E = {0} t E(l) t E(nl).

Let I denote the set of maximal isotropic subspaces in E. This set also decomposes into a

local I(l) and a nonlocal part I(nl); see Fig. (24). Recall that the Mermin scenario (M, C) can

be identified with (E(nl), I(nl)) via the map in Eq. (13). The function β1 : C → Z2 extends to

a function β̃ : I → Z2 where β̃(C) = 0 for C ∈ I(l). We begin with a result that is a local

version of Lemma 2. We define the local 2-qubit Λ-polytope:

Λ
(l)
2 = {X ∈ Herm((C2)⊗2)) : Tr(X) = 1, Tr(XΠ) ≥ 0, ∀Π ∈ S(l)

2 }.
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(a) (b)

Fig. 24: (a) Subspaces in I(nl)
2 and their intersections (zero subspace is omitted). (b) Sub-

spaces in I(l)
2 and their intersections (nonlocal operators do not belong to this set, they are

only indicated to reveal the connection to the nonlocal part).

Note that by definition Λ2 ⊂ Λ
(l)
2 . This local polytope is, in fact, a well-known nonsignaling

polytope. The (2, 3, 2) Bell scenario consists of

• the measurement set M232 = {xi, yj : i, j,∈ Z3},

• the collection C232 of contexts Cij , where i, j ∈ Z3, given by

Cij = {xi, yj}.

Lemma 17 The local polytope Λ
(l)
2 can be identified with the nonsignaling polytope NS232 of

the (2, 3, 2) Bell scenario.

Proof. The argument is similar to the proof of Lemma 2. An operator X ∈ Λ
(l)
2 specifies a

distribution pX in NSI(l),0 (see Eq. (3) for the definition of the polytope) via the Born rule.

For the bijection we need an inverse map, which comes from by first marginalizing to a single

measurement and then computing the expectation 〈A〉X of the corresponding Pauli operator.

The identification of NSI(l),0 with the nonsignaling polytope NS232 follows from realizing the

measurements in the Bell scenario as quantum mechanical measurements

x0 7→ X ⊗ 1, x1 7→ Y ⊗ 1, x2 7→ Z ⊗ 1

y0 7→ 1⊗X, y1 7→ 1⊗ Y, y2 7→ 1⊗ Z.
(42)

�

Let MPR
1 denote the Mermin polytope for quasiprobability distributions; see Definition 1.

We introduce an important map

ext : NS232 → MPR
1 (43)
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using the identification of Lemma 17. For the explicit description of the ext map we need

to extend the (2, 3, 2) Bell scenario (M232, C232) by including the nonlocal measurements.

Formally we introduce an extended scenario:

• M̃ = M232 t {xi ⊕ yj : i, j ∈ Z3},

• C̃ = {C̃ij : i, j ∈ Z3} where C̃ij = Cij t {xi ⊕ yj}.

Now we are ready to describe the ext map explicitly. Let d = {dCij
}i,j∈Z3

be a nonsignaling

distribution defined on the (2, 3, 2) Bell scenario. We define d̃ as a nonsignaling distribution

on (M̃, C̃) by setting

d̃C̃ij
(s) =

{
dCij (s|Cij ) s(xi ⊕ yj) = s(xi) + s(yj)
0 otherwise.

The mapping in Eq. (42) can be used to define an embedding M232 ⊂ E. Together with the

embedding of Eq. (13) we obtain a local vs nonlocal decomposition

E = M232 tM.

With this convention we will give the explicit form of the ext map on a context of the form

C = {(v, w), (v′, w′), (v + v′, w + w′)}

with ω((v, w), (v′, w′)) = 0. For s ∈ ZC2 we set a = s(v, w), b = s(v′, w′) and c = a + b +

β((v, w), (v′, w′)). Then we have

(ext d)C(s) =
1

2

(
d̃|{(v,w)}(a) + d̃|{(v′,w′)}(b)− d̃|{(v+w,v′+w′)}(c+ 1)

)
(44)

if s(v + w, v′ + w′) = s(v, w) + s(v′, w′) + β((v, w), (v′, w′)) and (ext d)C(s) = 0 otherwise.

Theorem 7 The polytope Λ2 is precisely the subpolytope of the nonsignaling polytope NS232

for the (2, 3, 2) Bell scenario given by those distributions that map to a probability distribution

in MP1 under the ext map given in Eq. (44).

Proof. Using the identification given in Lemma 17 and the operator-theoretic description of

MPR
1 in Lemma 2 the ext map given in Eq. (43) can be identified with the map

Λ
(l)
2 → MPR

1 (45)

obtained by sending X to the operator X̄ such that 〈X̄〉A = 〈X〉A for nonlocal Pauli opera-

tors A (including 1) and 〈X̄〉A = 0 for the remaining local Pauli operators. Those operators

X ∈ Λ
(l)
2 which give a probability distribution on the Mermin scenario, instead of a quasiprob-

ability distribution, are precisely those that come from Λ2. �

Theorem 7 gives a description of Λ2 in terms of well-understood polytopes: NS232 whose

vertices are described in [17] and MP1 described in Theorem 3. We remark that not every

vertex of Λ2 is a vertex of NS232. Description of the vertices of the former requires the analysis

of the ext map in Eq. (44). We leave this analysis for a future work.
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We hope that the decomposition described in Theorem 7 will help understand Λn for

n ≥ 2. The local version Λ
(l)
n can be defined for any number of qubits. The Λ-polytope lies

inside this local version Λn ⊂ Λ
(l)
n . One can consider an analogue of the ext map and try to

describe Λn as a subpolytope of the local version. Since the structure of the non-local Pauli

operators and the corresponding contexts are more complicated the analysis will be harder.

For n ≥ 3 the local version cannot be identified with NSn32, the polytope of non-signaling

distributions on the (n, 3, 2) Bell scenario.

6 Conclusion

Motivated by a classic example of contextuality known as Mermin’s square [7], and its topolog-

ical realization given in [9], in this paper we considered variations of this scenario parametrized

by a function β and studied the corresponding nonsignaling polytopes MPβ . We showed that

these polytopes fall into two equivalence classes, determined by [β], which has a cohomologi-

cal interpretation [9]. Among our main results is the characterization of the vertices of MPβ .

We demonstrated that all vertices of MP0 are deterministic, which facilitates a novel proof of

Fine’s theorem [14,20]. On the other hand, MP1 has two types of vertices, both of which are

cnc [16]. We also described the graphs associated with the polytopes. In the case of MP1,

the edges in this graph are essentially given by the loops on the Mermin torus. These loops

correspond to complements of cnc sets and play a significant role throughout the paper.

An important connection is established between MP1 and computation through the notion

of Λ-simulation [11]. Indeed, if one restricts to just measurements of non-local Pauli operators

then one can define a simulation algorithm for MP1 in the spirit of [11]; although, since the

vertices of MP1 are cnc, all resulting quantum computations can be efficiently simulated

classically [16]. Alternatively, here we have established that MP1 corresponds precisely to

the non-local part of the polytope Λ2 [11,15], with the local part being related to NS232, the

polytope associated with the (2, 3, 2) Bell scenario [17]. We expect that this decomposition

will be important in understanding the combinatorial structure of Λ2; an important first

step in analyzing the complexity of classical simulation based on Λ-polytopes, which become

numerically intractable even for n = 3 qubits.

An interesting but yet unexplored topic of research is the study more generally of polytopes

associated with measurement scenarios, or topological spaces with non-trivial [β]. An inter-

esting example of this is the well-known Mermin star scenario [7], which also has a topological

realization as a torus [9]. Particularly appealing about this line of research is that the Mer-

min’s star is closely related to the so-called Greenberger-Horne-Zeilinger (GHZ) paradox [28],

which can be exploited for computational advantage; see [29,30].
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Appendix A Proof of Proposition 1

In this section we will prove Proposition 1. For this we will introduce a generalized version of
the Mermin polytope (Definition 1). Recall the K3,3 graph associated to the Mermin scenario with
vertex set C = Ch t Cv and edge set M ; see Fig. (6). We begin with generalizing the definition of β.
Let R denote the set of pairs (C,m) ∈ C ×M such that m ∈ C. We will consider incidence weights
on K3,3, that is functions of the form β : R→ Z2. Let us write Kβ

3,3 to indicate the weight.

Definition A.1 Let M̃Pβ denote the polytope given by the set of functions

p : R→ R≥0

satisfying the following conditions:

(a)
∑
m∈C p(C,m) ≤ 1 for all C ∈ C,

(b) For a context C ∈ C define pC : C → R≥0 by

pC(m) =

{ ∑
m′∈C−{m} p(C,m

′) β(C) = 1,

1−
∑
m′∈C−{m} p(C,m

′) β(C) = 0.

Then for all m ∈M and C,C′ ∈ C such that m ∈ C ∩ C′ we require that

pC(m) = pC′(m).

To have a better idea of this definition consider a context C = {x, y, z} and let

a = p(C, x), b = p(C, y), c = p(C, z), d = 1− (a+ b+ c). (A.1)

Condition (a) says that p = {a, b, c, d} is a probability distribution. The choice of β at C determines
the way p marginalizes to each single measurement. This is given by condition (b). For example, if
β(C, x) = 1 then we have p0x = b+ c, but if β(C, x) = 0 then p0x = a+ d = 1− (b+ c). In the notation
of (b) the value pC(x) coincides with p0x; similarly for y and z. This definition generalizes MPβ ; for
example the β choices given in Fig. (3) can be captured by the weights given in Fig. (A.1).



Cihan Okay, Ho Yiu Chung, Selman Ipek 775

(a) (b) (c)

Fig. A.1: Kβ
3,3 for three different choices of β. Pink color on the part of an edge x incident to

C implies that β(C, x) = 1, otherwise β takes the value of zero.

Lemma A.1 Let β′ be an incidence weight on K3,3 defined in the same way as β except possible at
a single context as in (1) and (2), or at two contexts as in (3).

(1) There is a single context on which β and β′ are defined as one of the following:

(2) There is a single context on which β and β′ are defined as one of the following:

(3) There are two contexts on which β and β′ are defined as one of the following:

At each case MPβ is combinatorially isomorphic to MPβ′ .
Proof. The isomorphism is given by permuting the probability coordinates inside the contexts. Let
C = {x, y, z} denote the context in cases (1) and (2). (See Fig. (20) for the labeling convention.) In
case (1) we can obtain the isomorphism between the polytope corresponding to the first context and
the next ones (from right to left) by flipping the outcome of x, y and both x and y; respectively. Case
(2) is similar. In (3) the constrained imposed at the common edge is the same in both cases, hence
they specify the same polytope. �

Proposition 1 is a consequence of the following more general result.
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Proposition 6 M̃Pβ is combinatorially isomorphic to M̃Pβ′ if and only if∑
(C,m)∈R

β(C,m) =
∑

(C,m)∈R

β′(C,m) mod 2.

Proof. The main idea of the proof is to use Lemma A.1 to show that every case is either isomorphic
to Fig. (A.1a) or Fig. (A.1b). First we observe that applying the transformations in (1) and (2) in
Lemma A.1 we can assume that at each context C either β(C,m) = 0 for all m ∈ C or β(C,m) = 1
for exactly one m ∈ C and zero otherwise. Applying the transformation (3) we can assume that every
context where β is nonzero is adjacent. Furthermore, again using (3) we can cancel a pair of adjacent
contexts with β = 1 by first rotating β(C,m) = 1 once using (1) and then applying (3) to obtain a
pair of contexts where on one of them β = 0 and on the other there are two measurements for which
β(C,m) = 1. Using (1) the remaining context with two nonzero β’s can be replaced by β = 0. This
procedure terminates either at Fig. (A.1a), or, after successive application of the transformation in
(3), at Fig. (A.1b). �

Appendix B Proof of Proposition 3

Let Σn denote the symmetric group on n letters.

Proposition 7 The group presentations of Cl1 and G1 are given as follows:

Cl1 = 〈H,S〉 ∼= 〈h, s : h2 = s4 = (hs)3 = 1〉 ∼= Σ4,

where s and h correspond to S and H, and

G1 = 〈Cl1×Cl1,SWAP〉 ∼= 〈h, s, w : w2 = h2 = s4 = (hs)3 = [h,whw] = [h,wsw] = [s, whw] = [s, wsw] = 1〉,
(B.1)

where s, h and w correspond to S ⊗ 1, H ⊗ 1 and SWAP; respectively.

Proof. The group 〈h, s : h2 = s4 = (hs)3 = 1〉 is isomorphic to Σ4 (cf. [31, Theorem 8.1]). In
particular, it has order 24. Sending H 7→ h and S 7→ s defines a group homomorphism from Cl1 since
H2 = S4 = (HS)3 = 1. By comparing the orders of the groups we see that this is an isomorphism.

By the first part, the presentation of Cl1 × Cl1 is given by

Cl1 × Cl1 ∼= 〈h1, s1, h2, s2 : h2
1 = s41 = (h1s1)3 = h2

2 = s42 = (h2s2)3

= [h1, h2] = [h1, s2] = [s1, h2] = [s1, s2] = 1〉

where we identify h1, s1, h2, s2 with H ⊗ 1, S ⊗ 1, 1⊗H, 1⊗ S; respectively. The presentation of G1

is obtained by adding one more generator namely w (which identify with SWAP) and add relations
that correspond to the action of w on h1, s1, h2 and s2. Thus we have

G1
∼= 〈h1, s1, h2, s2, w : w2 = h2

1 = s41 = (h1s1)3 = h2
2 = s42 = (h2s2)3 = 1

[h1, h2] = [h1, s2] = [s1, h2] = [s1, s2] = wh1wh
−1
2 = ws1ws

−1
2 = 1〉.

By relations wh1wh
−1
2 = ws1ws

−1
2 = 1, we can remove the generators h2 and s2. Then we obtain

G1
∼= 〈h1, s1, w : w2 = h2

1 = s41 = (h1s1)3 = (wh1w)2 = (ws1w)4 = (wh1wws1w)3 = 1

[h1, wh1w] = [h1, ws1w] = [s1, wh1w] = [s1, ws1w] = 1〉.

Note that the relations (wh1w)2 = 1, (ws1w)4 = 1 and (wh1wws1w)3 can be obtained from h2
1 =

w2 = 1, w2 = s41 = 1 and w2 = (h1s1)3 = 1, respectively. Thus those three relations can be removed.
Finally, we obtain

G1 = 〈Cl1×Cl1, SWAP〉 ∼= 〈h, s, w : w2 = h2 = s4 = (hs)3 = [h,whw] = [h,wsw] = [s, whw] = [s, wsw] = 1〉
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where we identify h, s, w with H ⊗ 1, S ⊗ 1 and SWAP, respectively. �

[Proof of Proposition 3] We will construct a function φ : G1 → G0, show that it is a group
homomorphism, and makes the following diagram commute:

0 Z4 G1 p(G1) ⊂ Sp4(Z2) 1

0 Gl ∼= Z4
2 G0 Aut(K3,3) 1

ι p

ι′ p′

φf g

Since G1 is a subgroup of Cl2, the top row of the group extension corresponds to decomposing G1

into the symplectic part and the Pauli part. Define the following sets:

C1 = {Y ⊗X,X ⊗ Y,Z ⊗ Z},
C2 = {X ⊗X,Y ⊗ Y,Z ⊗ Z},
C3 = {X ⊗ Z,Z ⊗X,Y ⊗ Y },
C4 = {X ⊗ Y, Y ⊗ Z,Z ⊗X},
C5 = {X ⊗X,Y ⊗ Z,Z ⊗ Y },
C6 = {X ⊗ Z,Z ⊗ Y, Y ⊗X}.

The group Aut(K3,3) permutes these sets, hence we think of it as a subgroup of Σ6. We define f and
φ as follows

1⊗X 7→l6b
f : 1⊗ Z 7→l2b

X ⊗ 1 7→l3b
Z ⊗ 1 7→l4b

and

H ⊗ 1 7→(l5b, (1 6)(2 3)(4 5))

φ : S ⊗ 1 7→(l3b, (1 2)(3 4)(5 6))

SWAP 7→(l0, (4 6))

where we write l0 for the trivial element of Gl. Note that φ factors through g and its surjective. It is
clear that f is an isomorphism. It remains to show that φ is group homomorphism and the left square
of the diagram commutes. By Proposition 7, we know that the group presentation of G1 is given by
Eq. (B.1). We show that φ is a group homomorphism by checking that it respects all the relations.

We will need the products φ(w)φ(h)φ(w) and φ(w)φ(s)φ(w):

φ(w)φ(h)φ(w) = (l0, (46))(l5b, (16)(23)(45))(l0, (46))

= (l1b, (1456)(23))(l0, (46))

= (l1b, (14)(23)(56))

φ(w)φ(s)φ(w) = ((l0, (46))(l3b, (12)(34)(56))(l0, (46))

= (l6b, (12)(3654))(l0, (46))

= (l6b, (12)(36)(45))
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We check the commutation relation [φ(h), φ(w)φ(h)φ(w)] = 1:

φ(h)(φ(w)φ(h)φ(w)) = (l5b, (16)(23)(45))(l1b, (14)(23)(56))

= (l5b + l1b, (15)(46))

= (l6a, (15)(46))

(φ(w)φ(h)φ(w))φ(h) = (l1b, (14)(23)(56))(l5b, (16)(23)(45))

= (l1b + l5b, (15)(46))

= (l6a, (15)(46)).

The remaining commutation relations [φ(h), φ(w)φ(s)φ(w)] = [φ(s), φ(w)φ(h)φ(w)] = [φ(s), φ(w)φ(s)φ(w)] =
1 can be checked similarly. Next, we check the remaining relations:

(φ(h)φ(s))3 = ((l5b, (16)(23)(45))(l3b, (12)(34)(56)))3

= (l5b + l4b, (16)(23)(45)(12)(34)(56))

= (l3b, (135)(264))(l3b, (135)(264))2

= (l3b + l5b, (153)(246))(l3b, (135)(264))

= (l4b, (153)(246))(l3b, (135)(246))

= (l4b + l4b, ())

= (l0, ()).

The relations φ(w)2 = φ(h)2 = φ(s)4 = 1 can be checked similarly.

Finally, we need to check the left square commutes. First, we express all generators of Z4
2 ⊂ G1

using H ⊗ 1, S ⊗ 1 and SWAP:

X ⊗ 1 = (H ⊗ 1)(S ⊗ 1)2(H ⊗ 1)

Z ⊗ 1 = (S ⊗ 1)2

1⊗X = SWAP(X ⊗ 1)SWAP

1⊗ Z = SWAP(Z ⊗ 1)SWAP.

Then we calculate the image of each generator:

φ ◦ ι(Z ⊗ 1) = (l3b, (12)(34)(56))(l3b, (12)(34)(56))

= (l3b + l5b, ())

= (l4b, ())

= ι′ ◦ f(Z ⊗ 1)

and
φ ◦ ι(X ⊗ 1) = (l5b, (16)(23)(45))(l4b, ())(l5b, (16)(23)(45))

= (l5b + l3b, (16)(23)(45))(l5b, (16)(23)(45))

= (l4b, (16)(23)(45))(l5b, (16)(23)(45))

= (l4b + l5b, ())

= (l3b, ())

= ι′ ◦ f(X ⊗ 1).

We can verify φ ◦ ι(1⊗X) = ι′ ◦ f(1⊗X) and φ ◦ ι(1⊗ Z) = ι′ ◦ f(1⊗ Z) in a similar way.

�
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Appendix C Stabilizers of MP1 vertices

C.1 Stabilizers of type 1 and 2 vertices
In this section we describe the stabilizers of the vertices of MP1 in the group G1 ⊂ Cl2. Recall

that Cl2 is the quotient of the normalizer of the Pauli group by the central subgroup. When we
consider a unitary as an element of the Clifford group, we mean the equivalence class up to a scalar,
even though this is not indicated in our notation for the sake of simplicity. For the computation of the
stabilizers it suffices to choose a representative from each type of vertices. We choose q0 (type 1) and
p0 (type 2). For the description of the stabilizers we will need the dihedral group whose presentation
is given as follows:

D2n = 〈a, b : an = b2 = (ba)2 = 1〉. (C.1)

Lemma C.1 The stabilizer of q0 is given by

StabG1(q0) = 〈Q,R〉 ∼= D24

where Q = Y S ⊗X and R = Y H ⊗H.

Proof. Let K = 〈Q,R〉. It is straight-forward to verify that K is contained in the stabilizer by
explicitly checking that the vertex is fixed by Q and R. Hence K ⊂ StabG1(q0). Since there are 48
type 1 vertices and G1 acts transitively on them by Lemma 4 we have∣∣∣∣ G1

StabG1(q0)

∣∣∣∣ = 48,

which implies that |StabG1(q0)| = 24. We finish the proof by showing that K ∼= D24. Let A = QR
then one can verify that

K = 〈A,R : A12 = R2 = (RA)2 = 1〉 ⊂ G1.

�

Lemma C.2 The stabilizer of p0 is given by

StabG1(p0) = 〈M,SWAP〉 ∼= D16

where M = X ⊗ Y S.

Proof. Proof is similar to Lemma C.1. Let L = 〈M,SWAP〉. First one verifies that the given generators
fix p0, which implies that L is contained in the stabilizer. Transitivity of the action of G1 on the set
of type 2 vertices (Lemma 4) implies that |StabG1(p0)| = 16. To conclude the proof we observe that

L = 〈N,SWAP : N6 = SWAP2 = (SWAPN)2 = 1〉 ⊂ G1,

where N = M SWAP. Therefore L ∼= D16. �

C.2 Stabilizer action on the neighbors
Lemma C.3 Consider the generator a ∈ D2n in the presentation of D2n; see Eq. (C.1). If an/2 6∈ G,
then either D2n∩G = {1} or there exists a unique i ∈ {0, · · · , n−1} such that D2n∩G = 〈aib〉 ∼= C2.

Proof. Observe that any non-trivial subgroup of 〈a〉 will contains an/2. Since an/2 6∈ G, it follows
that ai 6∈ G for all i ∈ {0, 1, · · · , n− 1} (otherwise an/2 ∈ 〈ai〉 ⊂ G, which is a contradiction). Thus
either D2n ∩G is trivial or D2n ∩G is generated by elements of form aib where i ∈ {0, 1, · · · , n− 1}.
Let g = aib and h = ajb be two distinct elements. We have gh = ai−j , which is a non-trivial elements
in 〈a〉. Thus either aib 6∈ G for all i ∈ {0, 1, · · · , n− 1}, or there exists an unique k ∈ {0, 1, · · · , n− 1}
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such that akb ∈ G. This proves the statement. �

We will consider the following type 2 neighbors of p0: pa given in Eq. (37), pb in Eq. (36) and qb
in Eq. (38).

Lemma C.4 Let N = M SWAP where M = X ⊗ Y S. We have

1. StabG1(p0) ∩ StabG1(pa) = 〈SWAP〉 ∼= C2,

2. StabG1(p0) ∩ StabG1(qb) = 〈NSWAP〉 ∼= C2,

3. StabG1(p0) ∩ StabG1(q0) = 〈N−1SWAP〉 ∼= C2,

4. StabG1(p0) ∩ StabG1(pb) = 〈NSWAP〉 ∼= C2.

Proof. The table below shows the action of N,N4, N−1,SWAP, NSWAP and N−1SWAP on the
non-local Pauli operators. For simplicity we omit the tensor product notation.

A: non-local Pauli XX XY XZ YX YY YZ ZX ZY ZZ
NAN† XY -YY -ZY XX -YX -ZX -XZ YZ ZZ
N4A(N4)† XX XY -XZ YX YY -YZ -ZX -ZY ZZ
N†AN YX XX -ZX -YY -XY ZY -YZ -XZ ZZ
(SWAP)A(SWAP)† XX YX ZX XY YY ZY XZ YZ ZZ
(NSWAP)A(NSWAP)† XY XX -XZ -YY -YX YZ -ZY -ZX ZZ
(N†SWAP)A(N†SWAP)† YX -YY -YZ XX -XY -XZ -ZX ZY ZZ

Table C.1: The action of some unitaries in StabG1
(p0).

Using table we can show that N4 does not fix pa, q0, qb and pb. On the other hand, SWAP,
N−1SWAP, and N(SWAP) fixes the vertices pa, q0, and qb respectively, and N(SWAP) fixes pb.
Then the statement follows from Lemma C.3. �

Lemma C.5 StabG1(q0) acts transitively on the set of neighbor vertices of q0.

Proof. By Lemma C.4, we have StabG1(q0) ∩ StabG1(p0) ∼= C2. Then the orbit of q0 under the
StabG1(q0) action has |D24|/|C2| = 12 elements, which is the whole set of neighbors of q0. �

Lemma C.6 The action of StabG1(p0) on the set of neighbor vertices of p0 breaks into three orbits
with representatives given by q0 (type 1), pa and pb (both type 2).

Proof. By Lemma C.4, we have StabG1(p0)∩StabG1(q0) ∼= C2. Then the orbit of p0 under the action
of the stabilizer has |D16|/|C2| = 8 elements, which is the whole set of type 1 neighbors of p0. By
Lemma C.4, we have

StabG1(p0) ∩ StabG1(pb) ∼= StabG1(p0) ∩ StabG1(pa) ∼= C2.

Since there are 16 type 2 neighbors of p0, the orbit of StabG1(p0) on pa and pb both have size equal
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Fig. C.1: We compare the canonical vertex p0 and qb. The 8 overlapping zeros are colored
in pink. The 4 zeros on either side of the pink edge cannot all be linearly independent by
Lemma 8; see Eq. (29).

to 8. It remains to check that these orbits are distinct. For this we compute the orbit:

NpbN
† =

1

4
(1 +X ⊗ Y − Y ⊗ Y + Z ⊗X −X ⊗ Z − Y ⊗ Z) = p−1b

(N2)pb(N
2)† =

1

4
(1− Y ⊗ Y + Y ⊗X −X ⊗ Z + Z ⊗ Y + Z ⊗X) = p+5b

(N3)pb(N
3)† =

1

4
(1 + Y ⊗X +X ⊗X + Z ⊗ Y + Y ⊗ Z −X ⊗ Z) = p−6b

(N4)pb(N
4)† =

1

4
(1 +X ⊗X +X ⊗ Y + Y ⊗ Z − Z ⊗X + Z ⊗ Y ) = p−3b

(N5)pb(N
5)† =

1

4
(1 +X ⊗ Y − Y ⊗ Y − Z ⊗X +X ⊗ Z + Y ⊗ Z) = p+1b

(N6)pb(N
6)† =

1

4
(1− Y ⊗ Y + Y ⊗X +X ⊗ Z − Z ⊗ Y − Z ⊗X) = pa

(N7)pb(N
7)† =

1

4
(1 + Y ⊗X +X ⊗X − Z ⊗ Y − Y ⊗ Z +X ⊗ Z) = p+6b

where N = (X ⊗ Y S)(SWAP). Observe that pa does not belong to the orbit of pb. Thus, the orbits
of pa and pb are distinct. �

We apply the stabilizer computation to show that the type 1 vertices in Fig. (19b) are not
neighbors.

Lemma C.7 The vertices in Fig (19b) are not neighbors of p0.

Proof. Consider the vertex qb given in Eq. (38) from the list of vertices in Fig (19b). By Lemma C.4
part (2), we have StabG1(p0) ∩ StabG1(qb) ∼= C2. Then the orbit of qb under the StabG1(p0) action
has |D16|/|C2| = 8 elements since StabG1(p0) ∼= D16 by Lemma C.2. This covers the whole set of
vertices in Fig (19b).

As discussed in Section 4.2, for two distributions q1 and q2 to be neighbors they must share 8
linearly independent tight inequalities. Let us consider q1 = p0 and the type 1 vertex q2 = qb, and
compare the number of overlapping zeros; see Fig. (C.1). There are precisely 8 such zeros. However,
by Lemma 8, the two adjacent triangles on either side of the shaded edge cannot have rank 4, thus
the overlapping zeros have rank < 8. Therefore p0 and qb cannot be neighbors. Transitive action of
StabG1(p0) on the set of Fig. (19b) implies that this holds when q2 is one of the other vertices listed
in Fig (19b) as well. �
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q ∈ N1(p0) U ∈ StabG1
(p0)

q0 1, N7SWAP

q+
4a N4, N3SWAP

q+
5a N7, N6SWAP

q−5a N3, N2SWAP

q+
8a N6, N5SWAP

q−8a N2, NSWAP

q+
9a N, SWAP

q−9a N5, N4SWAP

(a) The action of StabG1(p0) on the type 1
neighbors of p0. See Lemma C.4. The left
column are q ∈ N1(p0), type 1 neighbours
of p0. The right column are elements U ∈
StabG1(p0) such that Uq0U

† = q.

q in Fig (19b) U ∈ StabG1
(p0)

qb 1, N(SWAP)
q0 N2, N3SWAP
q0
2b N6, N7SWAP
q0 N4, N5SWAP

q+
4b N7,SWAP

q−4b N5, N6SWAP
q0
4b N,N2SWAP
q0 N3, N4SWAP

(b) The action of StabG1(p0) on the vertices
in Fig (19b). See Lemma C.4. The left column
are q, which are vertices in Fig (19b). The
right column are elements U ∈ StabG1(p0)
such that UqbU

† = q

p ∈ N2(p0) U ∈ StabG1
(p0) U ∈ StabG1

(p0)
pb 1, NSWAP None

p−3b N4, N5SWAP None

p+
1b N5, N6SWAP None

p−1b N,N2SWAP None

p+
5b N2, N3SWAP None
pa N6, N7SWAP None

p+
6b N7,SWAP None

p−6b N3, N4SWAP None
pa None 1,SWAP
p0 None N4, N4SWAP

p+
7a None N2, N2SWAP

p−7a None N6, N6SWAP

p+
2a None N,NSWAP

p−2a None N5, N5SWAP
pa None N7, N7SWAP

p−3a None N3, N3SWAP

(c) The action of StabG1(p0) on the type 2
neighbors of p0. See Lemma C.4 . The left col-
umn are p ∈ N2(p0), vertices of type 2 neigh-
bours of p0. The middle column are elements
U ∈ StabG1(p0) such that UpbU

† = p. The
right column are elements U ∈ StabG1(p0)
such that UpaU

† = p

p ∈ N(q0) U ∈ StabG1
(q0)

p0 1, AR
p+

4a A6, A7R

p+
7a A2, A3R

p−7a A8, A9R

p+
9a A11, R

p−9a A5, A6R

p+
2a A10, A11R

p−2a A4, A5R

p+
1a A3, A4R

p−1a A9, A10R

p+
5a A7, A8R

p−5a A,A2R

(d) The action of StabG1(q0) on the neighbors
of q0. See Lemma C.1. The left column are
vertex p ∈ N(q0), neighbors of q0. The right
column are elements of U ∈ StabG1(q0) such
that Up0U

† = p.

Table C.2: The action of StabG1(q0) on the neighbours of q0 and the action of StabG1(p0) on
type 1 and type 2 neighbours of p0 and vertices in Fig (19b); respectively.
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