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The quantum guesswork quantifies the minimum number of queries needed to guess the

state of a quantum ensemble if one is allowed to query only one state at a time. Previous
approaches to the computation of the guesswork were based on standard semi-definite

programming techniques and therefore lead to approximated results. In contrast, we

show that computing the quantum guesswork of qubit ensembles with uniform probabil-
ity distribution corresponds to solving a quadratic assignment problem and we provide

an algorithm that, upon the input of any qubit ensemble over a discrete ring, after

finitely many steps outputs the exact closed-form expression of its guesswork. While in
general the complexity of our guesswork-computing algorithm is factorial in the num-

ber of states, our main result consists of showing a more-than-quadratic speedup for

symmetric ensembles, a scenario corresponding to the three-dimensional analog of the
maximization version of the turbine-balancing problem. To find such symmetries, we

provide an algorithm that, upon the input of any point set over a discrete ring, after

finitely many steps outputs its exact symmetries. The complexity of our symmetries-
finding algorithm is polynomial in the number of points. As examples, we compute the
guesswork of regular and quasi-regular sets of qubit states.

Keywords: quantum ensemble, quantum measurement, quantum state discrimination,
quantum hypothesis testing, quantum guesswork

1 Introduction

We consider the following communication scenario, described in terms of standard concepts

and results in quantum information theory [1]. Let an ensemble of quantum states be given.

At each round, a referee prepares a state from the ensemble. The task is to guess which state

it is, being allowed to query one state at a time until the referee’s answer is on the affirmative,

at which point a new round begins. The cost function is represented by the average number
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722 Computing the quantum guesswork: a quadratic assignment problem

of queries needed to correctly guess the state of the ensemble, and is therefore referred to as

the quantum guesswork [2–15]. Notice that, if multiple states could be queried at a time, the

corresponding cost function would instead be the entropy [14] of the ensemble.

The most general strategy consists of a sequence of nondemolishing quantum measure-

ments (quantum instruments), each producing as a classical outcome the next query for the

referee. However, as further detailed in Ref. [14], by considering the composition of such

instruments, such a strategy reduces to performing a single quantum measurement (on the

single copy of the state provided by the referee), whose classical outcomes are represented by

tuples of ordered queries for the referee. In other words, one will first query the referee for the

state corresponding to the first entry in the output tuple. If the answer is on the negative,

one will proceed querying for the second entry in the output tuple, and so on, with the goal

of correctly guessing with the minimum number of queries.

The usual approach [13] to compute the guesswork is based on a factorial-size semidefinite

program, outputting a numerically approximated result within any given tolerance in poly-

nomial time in the (factorially growing) problem size. Here, instead, we are interested in an

exact algorithm to compute the guesswork in finite time, where our computational model is a

machine capable of storing integer numbers and of performing additions and multiplication in

finite time. Even the existence of such an algorithm is not guaranteed a priori, given that the

guesswork problem is, by definition, a continuous optimization problem. For the qubit case,

however, the equivalence of the guesswork with a finite optimization problem has recently

been shown [15]. Our analysis begins with the observation that such a finite optimization

problem is an instance of the (generally NP-hard [16]) quadratic assignment problem [17] (see

also [18,19] for reviews).

Our main result consists in showing how the symmetries of the ensemble, for whose char-

acterization we provide an exact polynomial-time algorithm, can be exploited to achieve

a more-than-quadratic speedup in the computation of the guesswork. This scenario corre-

sponds to the three-dimensional analog of the maximization version of the turbine-balancing

problem [20] for a particular vector of coefficients, in which blades are ideally symmetrically

distributed on a sphere instead of a circle. To illustrate our results, we provide implementa-

tions of our symmetries-finding and guesswork-computing algorithms in the C programming

language, and we use them to exactly compute the guesswork of regular and quasi-regular en-

sembles of up to twenty-four states, geometrically corresponding to Platonic and Archimedean

solids in the Bloch sphere.

2 Formalization

Qubit states are in one-to-one correspondence with Pauli vectors, that is, three-dimensional

vectors within the unit sphere. Hence, an ensemble of N qubit states with uniform probability

distribution and without repetitions can be represented by a finite set V of N Pauli vectors,

that is

V ⊆
{
v ∈ R3

∣∣∣ |v|2 ≤ 1
}
.
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Following Ref. [21], we denote with VN the set of N -tuples on V without repetitions, that is

v ∈ VN if and only if

v = (vi)i∈{1,...,N} s.t.
⋃

i∈{1,...,N}

{vi} = V.

Any qubit effect can be represented as an affine function from the set of qubit states to [0, 1].

Hence, any VN valued qubit measurement can be represented as a family (πv)v∈VN of such

affine functions indexed by VN such that
∑

v∈VN πv = u, where u is the unit effect, that is

P = (πv : S → [0, 1])v∈VN s.t.
∑

v∈VN

πv = u.

For any such qubit ensemble V and any VN -valued qubit measurement P, the guesswork

G(V,P) is the number of queries needed on average to correctly guess the state of V when

measuring P, that is (see Ref. [15] for more details)

G (V,P) :=
1

N

∑
v∈VN

i∈{1,...,N}

πv (vi) i,

where vi denotes the i-th component of vector v. The minimum guesswork Gmin (V) is the

minimum of the guesswork G(V,P) over any VN -valued measurement P, that is

Gmin (V) := min
P

G (V,P) . (1)

3 Main result

Our first observation is that the optimization problem in Eq. (1) corresponds to a specific

instance of the quadratic assignment problem. Since the former consists of an optimization

over a continuous set, the latter represents its closed-form solution.

Lemma 1. For any ensemble V of N Pauli vectors with uniform probability distribution, the

minimum guesswork Gmin(V) is given by the following quadratic assignment problem

Gmin (V) =
1

2

(
N + 1− 1

N

√
max

X∈Perm(N)
Tr [WXDXT ]

)
,

where Perm(N) denotes the set of N × N permutation matrices, D is the N × N matrix

given by D = ddT , in turn d is the N -dimensional column vector whose i-th entry is given by

2i−N + 1, W is the N ×N Gram matrix given by W := V TV , and in turn V is any 3×N
matrix whose columns are given by the elements of V without repetitions.

Proof. From Theorem 1 and Corollary 1 of Ref. [15] it immediately follows that

Gmin (V) =
1

2

(
N + 1− 1

N

√
max
v∈VN

|〈v〉|22

)
, (2)

where for any N -tuple v of elements of V without repetitions the function 〈v〉 is given by

〈v〉 :=

N∑
i=1

(2i−N + 1) vi. (3)
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The result then follows by observing that, by explicit computation, one has

max
v∈VN

|〈v〉|22 = max
X∈Perm(N)

Tr
[
WXDXT

]
.

To begin with, let us analyze the complexity of solving this quadratic assignment problem

with a naive exhaustive search. The complexity of the exhaustive search is given by the

product of the complexity of generating all tuples v in VN and the complexity of computing

the function 〈v〉 for each tuple. According to Eq. (3), the complexity of computing 〈v〉 is

O(N). This can be improved if the tuples are generated so that each new tuple is obtained

from the previous one by swapping only two elements. This is possible, for example by means

of Heap’s or Johnson-Trotter’s algorithm [21, 22]. In this case, 〈v〉 does not need be entirely

recomputed at each step following Eq. (3): its value can be stored, and after each new tuple is

generated, 〈v〉 can be updated by only taking into account the contributions of the two states

affected by the swapping. From Eq. (3), if tuples v and v′ differ by the swap of elements i

and j with i < j, then we have

〈v′〉 = 〈v〉+ 2 (j − i) (vi − vj) , (4)

that represents a constant-time update of 〈v〉. Hence, the complexity of the algorithm is

O(N !). Since this value also corresponds to the cardinality of set VN , it also represents the

optimal complexity for an exhaustive search. By denoting with nextJT the function that

returns the pair of indexes (i, j) that need to be swapped to generate the next tuple according

to Heap’s or Johnson-Trotter algorithm [21,22] and false if the end of the algorithm has been

reached, we arrive at Algorithm 1.

Algorithm 1 Guesswork (naive exhaustive search)

Require: finite set V of N Pauli vectors
Ensure: Gmin(V) = (N + 1−√g/N)/2

v ∈ VN

v ← 〈v〉
g ← 0
while (i, j)← nextJT(v) do
vi ↔ vj
v ← v + 2(j − i)(vi − vj)
g ← max

(
g, |v|22

)
end while
return g

Our main result consists in showing that, in the presence of symmetries and specifically if

set V is centrally symmetric or vertex transitive, the complexity of Algorithm 1 can be reduced

by a more-than-quadratic factor. This scenario corresponds to the three-dimensional analog

of the maximization version of the turbine-balancing problem [20] for a particular vector of

coefficients, in which blades are ideally symmetrically distributed on a sphere instead of a

circle.
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A set V of Pauli vectors is centrally symmetric if and only if for any v ∈ V also −v ∈ V.

A set V is vertex transitive if and only if for any pair {v0,v1} ⊆ V, there exists orthogonal

matrix O such that v1 = Ov0 and V = OV. We postpone to Section 5 the discussion of a

polynomial-time algorithm that exactly computes the symmetries of V.

For any N -tuple v = (v1, . . . , vN ), let us define the reversed N -tuple v := (vN , . . . , v1)

and the opposite N -tuple −v := (−v1, . . . ,−vN ), and let T ⊆ VN denote the set of tuples

in which each pair of centrally symmetric vectors appear in symmetric positions within the

tuple, that is

T :=
{

v ∈ VN
∣∣∣ − v = v

}
.

Moreover, for any v ∈ V let Tv ⊆ VN denote the set of tuples with fixed point vN = v, that is

Tv :=
{

v ∈ VN
∣∣∣ vN = v

}
.

The following result holds.

Lemma 2 (Symmetries). For any given set V of N Pauli vectors, if V is centrally symmetric

or vertex transitive, there exists a tuple v attaining the maximum in Eq. (2) such that v ∈ T
or v ∈ Tv, respectively. Moreover, if V is centrally symmetric and vertex transitive, there

exists a tuple v ∈ T ∩ Tv attaining the maximum in Eq. (2).

Proof. Let us consider the centrally symmetric case. By specializing Lemma 4 of Ref. [15] to

the case of qubit ensemble with uniform probability distribution, one has

max
v∈VN

|〈v〉|22 = max
v∈T
|〈v〉|22 ,

that proves the statement.

Let us consider the vertex transitive case. By definition of vertex transitivity, one has that

the range of the squared norm | · |22 is unchanged if the range is restricted from VN to Tv, that

is ∣∣〈VN 〉
∣∣2
2

= |〈Tv〉|22 ,

that proves the statement.

Let us consider the centrally symmetric and vertex transitive case. Due to central sym-

metry, there exists tuple v attaining the maximum in Eq. (2) such that v ∈ T . Due to vertex

transitivity, every tuple v is unitarily equivalent to a tuple in Tv. Hence the statement is

proved.

The set T can be generated as follows. Let set V ′ ⊆ V be any subset of the set V of states,

containing one element for each pair of centrally symmetric elements, that is, for each v ∈ V
either v or −v is in V ′, but not both. Let also set V ′ be the complement of set V, that is

V ′ := V \ V ′ or equivalently V ′ = −V ′. First, we show that sets T and {−1,+1}N/2 × V ′N/2

are in one-to-one correspondence. For any tuple v in T , one has that tuples τ and v′ given

by

τi :=

{
+1 if vi ∈ V ′,
−1 otherwise,
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and

vi :=

{
vi if vi ∈ V ′,
−vi otherwise,

for any i in {1, . . . , N/2}, are in {−1,+1}N/2 and V ′N/2, respectively. Vice-versa, for any

tuple τ ∈ {−1,+1}N/2 and any tuple v′ ∈ V ′N/2 one has that tuple

v := τ � v′ ⊕−τ � v′ (5)

is in T , where � and ⊕ denote the Hadamard (that is, element-wise) product and the direct

sum (that is, concatenation) of tuples, respectively. Moreover, due to Eq. (5) any element of

set T can be generated from the corresponding element of set {−1,+1}N/2×V ′N/2 in constant

time. The complexities [21, 22] of generating the elements of set {−1, 1}N/2 and of set V ′N/2

are O(2N/2) and O((N/2)!), respectively. Moreover, through a Gray code [21] it is possible

to iteratively generate all tuples τ in {−1, 1}N/2 such that each new tuple τ ′ differs from the

previous tuple τ by a single sign flip. If the sign flip occurs in the i-th position, from Eq. (3)

it immediately follows that function 〈v〉 is updated as follows

〈v′〉N = 〈v〉N − 4 (2i−N + 1) vi, (6)

that represents a constant-time update. Since for even N one has N !! = 2N/2(N/2)! (with

N !! := N(N − 2)(N − 4) . . . we denote the double factorial function), central symmetry can

be exploited to reduce the complexity of Algorithm 1 by a factor of (N − 1)!!.

The set Tv can be generated as follows. First, notice that sets Tv and (V\v)N−1 are in one-

to-one correspondence. For any tuple v in Tv, one has that its restriction v′ := v|{1,...,N−1}
is in (V \ v)N−1. Vice-versa, for any tuple v′ in (V \ v)N−1, one has that its extension

vi :=

{
v′i if i ∈ {1, . . . , N − 1},
v otherwise,

(7)

is in Tv. Moreover, due to Eq. (7), any element of set Tv can be generated from the corre-

sponding element of (V \ v)N−1 in constant time. Since all the elements of (V \ v)N−1 can

be generated in (N − 1)! steps [21, 22], vertex transitivity can be exploited to reduce the

complexity of Algorithm 1 by a factor of N .

The set T ∩Tv can be generated by concatenating the two previous methods. Assuming V
is centrally symmetric and vertex transitive, for any v ∈ V, let V ′ ⊆ V\{v,−v} be such that for

any v′ ∈ V one has −v′ 6∈ V ′. Then, sets T ∩Tv and {−1, 1}N/2−1×V ′N/2−1 are in one-to-one

correspondence. The correspondence can be explicitly built as before. Moreover, any element

of T ∩ Tv can be generated from the corresponding element of {−1, 1}N/2−1 × V ′N/2−1 in

constant time. Since the complexities [21,22] of generating the elements of sets {−1, 1}N/2−1

and V ′N/2−1 are O(2N/2−1) and O((N/2 − 1)!), respectively, central symmetry and vertex

transitivity can be exploited to reduce the complexity of Algorithm 1 by a factor of N(N−1)!!,

that represents a more-than-quadratic speedup. By denoting with nextGray the function that

returns the index k that needs to be flipped to generate the next tuple according to the Gray

code [21] and false if one cycle of the code has been completed and the algorithm is back to

the first tuple produced, we arrive at Algorithm 2.

Table 1 summarizes the results of this section.
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Algorithm 2 Guesswork (more-than-quadratic speedup)

Require: finite centrally symmetric and vertex invariant set V of N Pauli vectors
Ensure: Gmin(V) = (N + 1−√g/N)/2

v ∈ VN/2−1 s.t. ∀v ∈ v one has −v 6∈ v
v ← 〈v〉
g ← 0
while (i, j)← nextJT(v) do
vi ↔ vj
v ← v + 2(j − i)(vi − vj)
τ ∈ {−1, 1}N/2−1

while k ← nextGray(τ ) do
vk ← −vk
v ← v − 4(2k −N + 1)vk
g ← max(g, |v|22)

end while
end while
return g

Table 1: Complexity of Algorithms 1 and 2 for the exact computation of the minimum
guesswork of any given qubit ensemble V with uniform probability distribution, as a function
of the symmetries of V.

Symmetries Complexity Speedup (with respect to no symmetries)
No symmetries O(N !) 1
Central symmetry O(N !!) (N − 1)!!
Vertex transitivity O((N − 1)!) N
Central symm. & vertex trans. O((N − 2)!!) N(N − 1)!!

4 Explicit examples

In this section we apply Algorithms 2 and 4 to compute the exact closed-form expression

for the minimum guesswork of regular and quasi-regular qubit ensembles up to twenty-four

vertices. We also provide [23] a C language implementation of such algorithms.

First, let us discuss ensembles of Pauli vectors whose coordinates can be represented (up

to a scaling) by the ring of integers. These are the tetrahedron, octahedron, cube, truncated

tetrahedron, cuboctahedron, and truncated octahedron. The values of the guesswork for

tuples of Pauli vectors on the ring of integers are reported in Table 2.

Second, let us discuss ensembles of Pauli vectors whose coordinates can be represented

(up to a scaling) by the ring

pk (z) := z0 +
√
kz1,

where z = (z0, z1) ∈ Z2 and k is a positive non square integer constant that only depends on

the ensemble. These are the icosahedron, dodecahedron, truncated cube, and rhombicuboc-

taedron. To apply Algorithm 4 on a machine that implements integer arithmetic, we need to

derive integer formulae for the arithmetic operations of sum, difference, multiplication by an
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Table 2: Exact closed-form expression and approximate numerical value of the minimum
guesswork of regular and quasi-regular tuples of qubit states on the ring of integers, as given
by Algorithm 2.

V N g Gmin

Tetrahedron 4 80
3 ∼ 1.8545

Octahedron 6 140 ∼ 2.5140
Cube 8 1344

3 ∼ 3.1771
Truncated tetrahedron 12 25168

11 ∼ 4.5070
Cuboctahedron 12 4560

2 ∼ 4.5104
Truncated octahedron 24 183440

5 ∼ 8.5096

integer, and square. They are clearly given by

pk (z)± pk (z′) = pk (z0 ± z′0, z1 ± z′1) ,

z pk (z) = pk (zz) ,

and

pk (z)
2

= pk
(
z20 + kz21 , 2z0z1

)
.

We also need an integer formula to compare numbers. By direct inspection one has pk(z) ≥ 0

if and only if (
z0 ≥ 0 and z20 ≥ kz21

)
or
(
z1 ≥ 0 and z20 ≤ kz21

)
.

The values of the guesswork for tuples of Pauli vectors on this ring are reported in Table 3.

Table 3: Exact closed-form expression and approximate numerical value of the minimum
guesswork of regular and quasi-regular tuples of qubit states on the ring z0 +

√
kz1, as given

by Algorithm 2.

V N g Gmin

Icosahedron 12 16544+7392
√
5

10+2
√
5

∼ 4.5081

Dodecahedron 20 106272+47456
√
5

12 ∼ 7.1741

Truncated cube 24 47040+23168
√
2

5−2
√
2

∼ 8.5062

Rhombicuboctahedron 24 146128+100128
√
2

5+2
√
2

∼ 8.5059

5 An exact symmetries finding algorithm

In this section we present an algorithm that, upon the input of any arbitrary-dimensional

complex point set, after finitely many-steps outputs its exact symmetries. The complexity of

our algorithm is polynomial in the number of points.

Previous works [24–27] approached the problem of finding the symmetries of any given

point set (and the related problem of testing the congruence of two sets) from the geometric
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viewpoint, that is, by looking for unitary transformations that act as permutations of the set.

As a consequence, previous symmetries-finding algorithms depend on the full field structure

(in particular, they depend on the arithmetic operation of division). To this aim, they assume

the real computational model, that is, an unphysical machine that can exactly store any real

number and can exactly perform arithmetic, trigonometric, and other functions over reals in

finite time.

We instead approach the symmetries-finding problem from the viewpoint of combinatorics,

that is, by looking for permutations of the set that act as unitary transformations. In fact, by

using well-known results on Gram matrices, we avoid explicitly dealing with unitary transfor-

mations altogether. This way, we present a symmetries-finding algorithm (that can also be

trivially adapted to congruence-testing) that only depends on the weaker ring structure (that

is, division is not assumed). Ours is therefore an integer computational model that solely

assumes the ability to store integer numbers and to perform additions and multiplication in

finite time, thus allowing us to achieve closed-form analytical results on physical machines.

The factorial growth of the number of permutations in the cardinalityN of the set dooms to

factorial complexity any algorithm based on a naive exhaustive search. However, by exploiting

a well-known rigidity property of simplices, we show that without loss of generality it suffices

to search over a polynomial-sized subset of permutations. The complexity of our symmetries-

finding algorithm is therefore O(Nd+2), where d denotes the dimension of the complex space.

For any given arbitrary-dimensional spanning set V of complex vectors, we denote with

Sym(V) the group of permutations of V. A permutation σ in Sym(V) is called a geomet-

ric symmetry (in the following, symmetry for short) of V if and only there exists unitary

transformation U such that

σ (v) = U (v) , (8)

where v ∈ VN denotes an N -tuple on V without repetitions. We denote the group of all

symmetries of V with Geom(V). Notice that the fact that V is a spanning set guarantees that

the mapping between σ and U satisfying Eq. (8) is bijective.

Since the computation of the unitary transformation U in Eq. (8) requires divisions in

general (take for example v to be the vertices of a square and U to correspond with a π/2

rotation), we need an approach where U remains implicit. It is a well-known fact that two

tuples of vectors are unitarily related if and only if their Gram matrices coincide, where the

Gram matrix G(v) of an N -tuple v := (vi)i of vectors is the N × N matrix whose (i, j)-th

entry is given by the inner product vi · vj , that is

[G (v)]i,j = vi · vj . (9)

Hence, tuples σ(v) and v satisfy Eq. (8) if and only if

G (σ (v)) = G (v) . (10)

Since Eq. (9) can be clearly computed without divisions, this observation immediately

leads to a division-free exact symmetries-finding algorithm through an exhaustive search over

the set Sym(V) of permutations. The complexity of the exhaustive search is given by the

product of the complexity of generating all permutations σ ∈ Sym(V) and the complexity
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of computing and comparing the corresponding Gram matrices. According to Eq. (9), the

latter complexity is O(N2). Hence, the complexity of the algorithm is O(N !N2). By denoting

with nextJT the function that returns the pair of indexes (i, j) that need to be swapped to

generate the next tuple according to Heap’s or Johnson-Trotter’s algorithm [21] and false if

the end of the algorithm has been reached, we arrive at Algorithm 3.

Algorithm 3 Symmetries finding (exhaustive search)

Require: d-dimensional spanning set V of N complex vectors
Ensure: S = Geom(V)(v), for some v ∈ VN

v ∈ VN

v′ ← v
S ← ∅
while (i, j)← nextJT(v) do
v′i ↔ v′j
if G(v′) = G(v) then
S ← S ∪ v′

end if
end while
return S

We proceed now to improve the complexity of Algorithm 3 from factorial to polynomial.

Let d-tuple e := (ei)
d
i=1 ∈ Vd on V without repetitions be a basis, that is, the determinant

detG(e) of its Gram matrix is non null. Division-free algorithms for the computation of

the determinant are known; for a particularly simple one, see Ref. [28]. Due to Eq. (10), a

necessary condition for any permutation σ of V to be a symmetry is that

G (σ (e)) = G (e) . (11)

For any d-tuple e′ satisfying G(e′) = G(e), the permutation σ such that Eq. (10) holds, if it

exists, is unique and can be explicitly derived as follows.

For some basis e and any vectors v0, v1 ∈ Cd we say v0 ≺e v1 if and only if

ek · (v0 − v1) ≤ 0,

where k is the minimum over {1, . . . , d} such that ek · (v0 − v1) is not null, and we call e-

order the order induced by ≺e. Since e is a basis, e-order is total. Let v ∈ VN be the

e-ordered N -tuple on V without repetitions. Due to Eq. (8), for any k in {1, . . . , d} and any

i in {1, . . . , N}, the inner product ek · vi equals the inner product σ(ek) · σ(vi). Hence, tuple

σ(v) is the σ(e)-ordered N -tuple of all the elements of V without repetitions. This explicitly

and uniquely identifies permutation σ.

The complexity of the algorithm is given by the product of the complexity of generating

all d-tuples in Vd and the complexity of processing each tuple. Since the combinations of d

elements out of N are
(
N
d

)
, and for each combination there are d! differently ordered tuples,

the complexity [21, 22] of generating the d-tuples is O(
(
N
d

)
), that is, a polynomial of degree

d in N . The complexity of processing each tuple is the sum of the complexity of generating

r′-ordered N -tuple v′, computing the Gram matrix G(v′), and comparing it with G(v), hence
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it is O(N2). Hence, the complexity of the algorithm is O(Nd+2). By denoting with nextChase

the function that returns the pair of indexes (i, j) that need to be swapped to generate the

next combination according to the Chase’s sequence [21] and false if the end of the algorithm

has been reached, we arrive at Algorithm 4.

Algorithm 4 Symmetries finding (polynomial time)

Require: d-dimensional spanning set V of N complex vectors
Ensure: S = Geom(V)(v′), for some v′ ∈ VN

v← e-ordered N -tuple in VN

S ← ∅
while (i, j)← nextChase(v, e′) do
e′i ← vj
while (k, l)← nextJT(e′) do
e′k ↔ e′l
if G(e′) = G(e) then

v′ ← e′-ordered N -tuple in VN

if G(v′) = G(v) then
S ← S ∪ v′

end if
end if

end while
end while
return S

6 Conclusion

We showed that the computation of the guesswork of qubit ensembles with uniform probabil-

ity distribution corresponds to a quadratic assignment problem. We presented a division-free

algorithm for the exact analytical computation of the guesswork with a more-than-quadratic

speedup in the presence of symmetries, that is, for the three-dimensional analog of the max-

imization version of the turbine-balancing problem. As examples, we computed the exact

closed-form expression for the guesswork of regular and quasi-regular ensembles of qubit

states.
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18. E. Dragoti-Çela, The quadratic assignment problem: Theory and algorithms (Kluwer Academic

Publishers, 1998, Dordrecht, The Netherlands).
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