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In this paper we study the quantum complexity of the integration of a function with an
unknown singularity. We assume that the function has r continuous derivatives, with
the derivative of order r being Hölder continuous with the exponent ρ on the whole
integration interval except the one singular point. We show that the ε-complexity of
this problem is of order ε−1/(r+ρ+1). Since the classical deterministic complexity of this
problem is ε−1/(r+ρ), quantum computers give a speed-up for this problem for all values
of parameters r and ρ.
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1 Introduction

The problem of the integration of functions is well known and investigated for many different
settings and assumptions on the regularity of functions. Many quadrature rules are known,
such as Newton-Cotes rules or Gaussian quadrature. The investigation of the complexity of
the integration on the classical computer in the deterministic and randomized setting started
in 1959 with the work of Bakhvalov [1], where the Hölder class of function is considered. The
Sobolev class of functions is investigated in [2]. The result on the complexity of integration
on the classical computer may also be found in [3, 4, 5].
Besides classical computation, there is also progress in studying computation on a quan-
tum computer. One of the first fundamental works treating quantum computation is that
of Shor [6] presenting the quantum algorithm for discrete factoring. This algorithm has a
polynomial cost in terms of the number of bits of the input and there is no classical algorithm
known with this property. The second milestone work on quantum computation was the
database search algorithm of Grover [7], which shows the quadratic speed-up of a quantum
computer over the classical one for this problem. The advantage of quantum computations is
also shown for other discrete problems, such as computing the mean, median, and quantiles,
see e.g. [8, 9, 10, 11]. Moreover, a number of continuous problems were studied in the quantum
setting. The first work considering the quantum complexity of the continuous problem was
that of Novak [12] treating the integration of a function from the Hölder class. The integration
in the Sobolev class was investigated by Heinrich [13]. Other problems such as maximization,
approximation, path integration, solving ordinary differential equations, searching for roots
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of functions, solving eigenvalue problems were studied, see [14, 15, 16, 17, 18, 19, 20, 21, 22].
It is an interesting task to examine the continuous problem for a function that is losing

regularity at some unknown points. The first rigorous analysis of the problem from that point
of view was the work of Plaskota and Wasilkowski [23] where the integration of a function
with unknown singularities in the deterministic model of computation was investigated. The
approximation of a function in a similar class was considered in [24, 25]. The problem of solv-
ing initial-value problems with a right-hand side function which loses the regularity on some
unknown hypersurface was considered in the series of papers by Kacewicz and Przybyłowicz,
see [26, 27, 28, 29].
In this paper we study a similar problem as in [23]. Here we deal with the complexity of the

integration in the quantum model of computation. We show that the quantum complexity of
the integration of the singular functions under consideration is asymptotically equal to that
of smooth functions. We provide the optimal algorithm which is obtained by a procedure
localizing the singularity similar to that of [23] and [29] combined with ideas found in Novak’s
quantum integration algorithm for smooth functions. We show that for the class F r,ρ

1 of
functions which are r times continuously differentiable with the rth derivative satisfying the
Hölder condition with exponent ρ on whole integration interval except one unknown singular
point, the quantum ε-complexity of this problem is ε−1/(r+ρ+1). It is known that the classical
deterministic complexity of this problem is of order ε−1/(r+ρ), thus quantum computers yield
a speed-up for the whole range of class parameters.
The paper is organized as follows. In Section 2 the problem is formulated and basic defi-

nitions are presented. Section 3 contains the known results on the integration of both smooth
and piecewise regular functions in the deterministic and quantum models of computation. In
Section 4 the algorithm for localizing the singularity and computing the integral of a piecewise
regular function on a quantum computer is presented. The main theorems about the error
and the cost of algorithms and the complexity of the problem can be found in Section 5.

2 Problem formulation and basic definitions

We consider here the problem of Riemann integration of the real-valued function f : [a, b] → R

for a < b. Let I(f) =
∫ b

a
f(x)dx. Let us define first the class of smooth functions i.e. the

Hölder class given by

F r,ρ
reg ([α, β])=

{
f : [α, β] → R | f ∈ Cr([α, β]), |f (i)(x)| ≤ D, i = 0, 1, . . . , r,

|f (r)(x)− f (r)(y)| ≤ H|x− y|ρ for x, y ∈ [α, β]
}
,

where a ≤ α < β ≤ b, Cr([α, β]) is a class of r times continuously differentiable functions on
[α, β], r ≥ 0, 0 < ρ ≤ 1, and D, H are positive constants. Let us now define the class of
functions with at most p unknown singularities. Let

F r,ρ
p ([a, b]) = {f : [a, b] → R | there exist ξ1, ξ2, . . . , ξp ∈ [a, b] :

f ∈ F r,ρ
reg ([a, ξ1)) ∩ F r,ρ

reg ([ξ1, ξ2)) ∩ . . . ∩ F r,ρ
reg ([ξp, b])

}
.

In the singular points ξi (i = 1, 2, . . . , p) the derivative is understood as the right-hand side
derivative. It is easy to see that

F r,ρ
reg ([a, b]) ⊂ F r,ρ

1 ([a, b]) ⊂ F r,ρ
2 ([a, b]) ⊂ . . . .
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We are especially interested in the class F r,ρ
1 ([a, b]) with at most one singular point. For

that class of functions, we show how to localize the singular point to construct a quantum
algorithm that preserves the order of convergence of the smooth case.
First, we present the model of computation. Let us start with the classical deterministic

setting. We assume we can obtain information about a function by evaluating it at a number
of points. These points may be selected non-adaptively or adaptively. For nonadaptive
information, the points at which the function is evaluated are given a priori and do not
depend on the function. Thus, the information is given by

Nnon(f) = [f(t1), f(t2), . . . , f(tn)].

For adaptive information Nad(f), we allow the number of evaluations and the successive
evaluation points to depend on the previously computed values. Thus, n = n(f), t1 is given
and ti = ti(t1, . . . , ti−1) for i = 2, 3, . . . , n(f). For a given information vector N(f) the
approximation is obtained by some algorithm U(f) = φ(N(f)), where φ : Rn → R is some
mapping. We are using the worst-case setting, thus the error of approximation U in the class
of functions F is given by

edet(U,F ) = sup
f∈F

|I(f)− U(f)|.

The cost of the method U for a given function f denoted by costdet(U, f) is defined as the
number of function evaluations n. Again, the global cost in class F is defined by the worst
behavior

costdet(U,F ) = sup
f∈F

costdet(U, f).

We are ready to define the complexity of the problem, that is the minimal cost needed to
solve the problem within a given precision ε > 0.

compdet(ε, F ) = inf{costdet(U,F ) : U such that edet(U,F ) ≤ ε}.

A detailed definition of the deterministic model of computation may be found in [5].
In the quantum setting the information is gathered by applying the so-called quantum

query or quantum oracle call, which is some unitary operation that plays the role of computing
the function values. The output of a quantum algorithm is a random variable Uω on some
probabilistic space (Ω, P ). For a detailed explanation of the quantum query and the quantum
model, the reader is referred to [30, 31]. The error in the quantum model of computation is
defined by

equant(U,F ) = sup
f∈F

inf{ε : P (|I(f)− Uω(f)| ≥ ε) ≤ 3/4}.

We consider hybrid quantum algorithms, which combine classical and quantum computations.
The cost is, thus, defined as a sum of a number of classical function computations (adaptive or
not) and the number of quantum queries. It is known that any hybrid quantum algorithm with
many measurements may be rewritten as a pure quantum algorithm with one measurement,
see [30, 13]. The ε-complexity is defined similarly to the deterministic setting

compquant(ε, F ) = inf{costquant(U,F ) : U such that equant(U,F ) ≤ ε}.
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3 Known results

We present in this section the useful results treating the integration of smooth functions and
the known classical complexity bounds for integrating piecewise regular functions.
Consider first the integration in the classical deterministic setting. Let QN (α, β, f) be the

N points midpoint rule approximating the integral
∫ β

α
f(x)dx, that is

QN (α, β, f) =
β − α

N

N∑
i=1

f

(
α+

2i− 1

2N
(β − α)

)
.

It is well known that for f ∈ F 0,ρ
reg ([α, β])∣∣∣∣∣

∫ β

α

f(x)dx−QN (α, β, f)

∣∣∣∣∣ ≤ C(β − α)1+ρN−ρ, (1)

where C is some constant.
There are known complexity bounds for the integration problem both for smooth and

piecewise smooth functions. For a smooth function form the Hölder class the complexity
bounds are given int the following theorem (see [4]).
Theorem 1 There exist constants c and C, such that for sufficiently small ε > 0

c ε−
1

r+ρ ≤ compdet(ε, F r,ρ
reg ([a, b])) ≤ C ε−

1
r+ρ .

For a function with at most one irregularity point the rate of convergence from the smooth
case is preserved when an adaptive algorithm is used (see [23, 32]). The complexity bounds
are given in the following theorem.

Theorem 2 There exist constants c and C, such that for sufficiently small ε > 0

c ε−
1

r+ρ ≤ compdet(ε, F r,ρ
1 ([a, b])) ≤ C ε−

1
r+ρ .

It is known that the nonadaptive algorithms cannot preserve this rate of convergence. There
are the following bounds (see [23]).

Theorem 3 For every deterministic approximation U using m nonadaptive function evalu-
ations

edet(U,F r,ρ
1 ([a, b])) ≥ D(b− a)

2m
.

Let us now pass to the quantum setting. We need the following results on the summation
problem. Let g : {0, 1, . . . , N − 1} → [0, 1]. Consider the problem of computing the discrete

mean, that is the number
1

N

N−1∑
i=0

g(i) with precision ε > 0. Denote the quantum ε-complexity

of this problem by compquant(ε,N). There are known complexity bounds for this problem,
see[33, 11, 3]

compquant(ε,N) = Θ(min{N, ε−1}). (2)

There are the following bounds on the quantum complexity of integration of Hölder regular
functions, see [4].
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Theorem 4 There exist constants c and C, such that for sufficiently small ε > 0 it holds

c ε−
1

r+ρ+1 ≤ compquant(ε, F r,ρ
reg ([a, b])) ≤ C ε−

1
r+ρ+1 .

The integration algorithm of Novak first approximate f by a piecewise polynomial Pn(f)

using n classical deterministic evaluations of the function. Then∫ b

a

f(x)dx =

∫ b

a

Pn(f)(x)dx+

∫ b

a

[f − Pn(f)](x)dx.

Since the integral of the polynomial can be computed exactly it suffices to approximate the
last integral. This is done using a quantum algorithm. Hence, the function integration
error is equal to that of the quantum algorithm approximating the third integral. Since
the nonadaptive approximation algorithms cannot preserve the rate of convergence for the
approximation problem when the function is piecewise regular (see [24, 25]) this algorithm
cannot be used directly in the class F r,ρ

1 ([a, b]). Our aim is to adapt the algorithm of Novak
for functions with at most one singularity.

4 Algorithm

We will present in this section the quantum algorithm for integrating a piecewise smooth
function with one unknown singularity. First, we will define a test for localizing the singular
point. For a function f ∈ F r,ρ

1 ([a, b]) let ws
f (α, β) be Lagrange polynomial of order s defined

on s+ 1 equidistant points in [α, β], i.e.

ws
f (α, β)(x) =

s∑
i=0

f(ti)ϕi(x),

where ti = α+ i (β−α)/s, and ϕi(x) =
∏s

j=0,j ̸=i
x−xj

xi−xj
, i = 0, 1, . . . , s. Then we define a test

as

Af (α, α̂, β̂, β) = max
0≤i≤r

∣∣∣wr
f (β̂, β)(zi)− wr

f (α, α̂)(zi)
∣∣∣

ĥr+ρ
,

where α < α̂ < β̂ < β, zi = α̂ + i (β̂ − α̂)/r and ĥ = β − α. This quantity has the following
properties (see [29, 32]).

Lemma 1 There exists constant C > 0, such that for a ≤ α < α̂ < β̂ < β ≤ b, β − α ≤
2(β̂ − α̂), f ∈ F r,ρ

1 ([a, b]), if ξ1 ∈ (α̂, β̂] then we have

sup
x∈[α̂,β̂]

∣∣∣f(x)− wr
f (α̂, β̂)

∣∣∣ ≤ C(1 +Af (α, α̂, β̂, β)) ĥ
r+ρ.

Lemma 2 There exists constant C∗ > 0, such that for a ≤ α < α̂ < β̂ < β ≤ b and
f ∈ F r,ρ

reg ([α, β])

Af (α, α̂, β̂, β) ≤ C∗.

We are now ready to define the algorithm localizing the singularity and computing the
quantum approximation of the integral. Let ε1 > 0 be the algorithm parameter. The algo-
rithm for computing the integral I(f) =

∫ b

a
f(x)dx works in the following steps.
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1. Set m =
⌈
ε
−1/(r+ρ+1)
1

⌉
, h = (b − a)/m, δ = hr+ρ+2, ti = a + i h for i = 0, . . .m, and

M = {t0, t1, . . . , tm}.

2. Compute i0 = argmax0≤i≤m−1 Af (ti, ti + δ, ti+1 − δ, ti+1). If the maximum is achieved
for two distinct indicators then go to Step 6.

3. Set B = ∅ and [α, β] = [ti0 , ti0+1].

4. If β − α ≤ 4δ go to Step 6. Otherwise, compute v = (α+ β)/2 and put B B B ∪ {v}.

5. Compute Af (α, α + δ, v − δ, v) and Af (v, v + δ, β − δ, β). If these quantities are equal
then go to Step 6. Else choose as a new working interval [α, β] the interval [α, v] or
[v, β] for which the value of the test is greater. Go to Step 4.

6. Let M BM ∪B C {t̂0, t̂1, . . . , t̂m′}.

7. Let B′ = {t̂i+ δ : t̂i+1− t̂i > 4δ, i = 0, 1, . . . ,m′−1} and B′′ = {t̂i+1− δ : t̂i+1− t̂i >

4δ, i = 0, 1, . . . ,m′ − 1}. Set M BM ∪B′ ∪B′′ C {t̄0, t̄1, . . . , t̄m′′}.

8. Define the approximation

q(x) =

{
wr

f (t̄i, t̄i+1)(x),if x ∈ [t̄i, t̄i+1) and t̄i ∈ B′;

0, if x ∈ [t̄i, t̄i+1) and t̄i /∈ B′.

with q(b) given by continuity.

9. LetQNi(t̄i, t̄i+1, f−q) for t̄i ∈ B′ be the midpoint rule withNi = ⌈(t̄i+1−t̄i)ε
−ρ⌉ approx-

imating integral
∫ t̄i+1

t̄i
(f(x)−q(x))dx. Let Q̃ be the approximation of

∑
t̄i∈B′ QNi

(t̄i, t̄i+1, f−
q) computed by the optimal quantum algorithm for computing the mean within the pre-
cision ε1 with a probability not less than 3/4. We will describe in more detail how to
compute Q̃ in the proof of Theorem 5 in the following section.

10. The final approximation U is given by

U(f) = I(q) + Q̃.

The algorithm uses the bisection method to localize the singularity. The number of bisec-
tion steps is O(log(m)). Thus, the total number of subintervals generated by the algorithm
is O(m + log(m)) = O(m). The aim of the bisection part of the algorithm is to catch the
singularity point within a small interval of length O(δ). Due, to Lemma 1, we may still miss
the dangerous singularity in the marginal part of the interval. That is why the additional
points are added in Step 7. If the algorithm still misses the singularity, then we are sure that
the singularity is not dangerous in the sense that function f is properly approximated by q.
This will be shown in Lemma 3.
Note that the value of q on the marginal subintervals of length δ is set to 0 only to simplify
the proof and may be changed to any bounded value. The values of q at points t̄i ∈ M are
also irrelevant.
We will show that such constructed q is a good approximation of f on all intervals such

that q is not identically equal to 0.
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Lemma 3 There exists constant C ′ > 0 such that for every f ∈ F r,ρ
1 ([a, b]) and every t̄i ∈ B′

we have
sup

x∈[t̄i,t̄i+1]

|f(x)− q(x)| ≤ C ′hr+ρ.

Proof. We proceed in a similar way as in [29, 32]. Suppose first that ξ1 /∈ (t̄i, t̄i+1]. So,
f ∈ F r,ρ

reg ([t̄i, t̄i+1]). From the well-known bounds on the error of polynomial interpolation of
a smooth function we have

sup
x∈[t̄i,t̄i+1]

|f(x)− q(x)| = sup
x∈[t̄i,t̄i+1]

|f(x)− wr
f (t̄i, t̄i+1)| ≤

D

r!
hr+ρ

Suppose know that ξ1 ∈ (t̄i, t̄i+1]. Using Lemma 1 with α = t̄i−1, α̂ = t̄i, β̂ = t̄i+1, β = t̄i+2

we have

sup
x∈[t̄i,t̄i+1]

|f(x)− q(x)|= sup
x∈[t̄i,t̄i+1]

|f(x)− wr
f (t̄i, t̄i+1)|

≤C (1 +Af (t̄i−1, t̄i, t̄i+1, t̄i+2)) (ti+2 − ti−1)
r+ρ

≤C (1 +Af (t̄i−1, t̄i, t̄i+1, t̄i+2))h
r+ρ.

The test Af (t̄i−1, t̄i, t̄i+1, t̄i+2) was computed in Step 2 or Step 5 of the algorithm and was
not selected as the largest. So, in this step, some other interval was selected, with a larger
value of the test, but then due to Lemma 2 it is less than C∗ (f is smooth on the selected
interval since the singularity is unique). Thus, we have Af (t̄i−1, t̄i, t̄i+1, t̄i+2) ≤ C∗ and

sup
x∈[t̄i,t̄i+1]

|f(x)− q(x)| ≤ C (1 + C∗)hr+ρ.

5 Main result

The algorithm presented in the previous section has the following properties.

Theorem 5 There exist constants C1 and C2, such that for sufficiently small ε1 > 0 we
have

equant(U,F r,ρ
1 ([a, b])) ≤ C1ε1

and
costquant(U,F r,ρ

1 ([a, b]) ≤ C2ε
− 1

r+ρ+1

1 .

Proof. Let us find the bounds on the error of the algorithm presented in the previous
section. The difference between the output of the algorithm and the true value of the integral
is bounded by

|U(f)− I(f)| = |I(q) + Q̃− I(f)| = |I(q) + Q̃− I(q)− I(f − q)|

≤

∣∣∣∣∣∣Q̃−
∑
t̄i∈B′

QNi
(t̄i, t̄i+1, f − q)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
t̄i∈B′

QNi
(t̄i, t̄i+1, f − q)−

∫ b

a

(f(x)− q(x))dx

∣∣∣∣∣∣
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≤

∣∣∣∣∣∣Q̃−
∑
t̄i∈B′

QNi
(t̄i, t̄i+1, f − q)

∣∣∣∣∣∣+
∑
t̄i∈B′

∣∣∣∣∣QNi
(t̄i, t̄i+1, f − q)−

∫ t̄i+1

t̄i

(f(x)− q(x))dx

∣∣∣∣∣
+

∑
t̄i∈M\B′

∫ t̄i+1

t̄i

|f(x)− q(x)|dx C I1 + I2 + I3. (3)

We start with the bounds on I3. For x ∈ [t̄i, t̄i+1), where t̄i ∈ M \ B′ we have q(x) = 0.
The length of such an interval is equal to δ when the interval was created by adding the points
from B′ or B′′ and is less than 4δ if the interval is the result of the bisection. Thus, taking
into account the fact that f is bounded by D, we have for t̄i ∈ M \B′∫ t̄i+1

t̄i

|f(x)− q(x)|dx =

∫ t̄i+1

t̄i

|f(x)|dx ≤ D(t̄i+1 − t̄i) ≤ 4δD = 4Dhr+ρ+2.

Since the number of intervals is O(m), we get

I3 = O
(
m4Dhr+ρ+2

)
= O

(
m−(r+ρ+1)

)
= O(ε1). (4)

We will now find the bounds on I2 – the error of the midpoint rule for the function f − q.
Consider interval [t̄i, t̄i+1) for t̄i ∈ B′. Suppose now that [t̄i, t̄i+1] does not contain the singular
point ξ1. In this case f ∈ F r,ρ

reg ([t̄i, t̄i+1]) and q is a polynomial, so f − q ∈ F 0,ρ
reg ([t̄i, t̄i+1)).

From (1) we get∣∣∣∣∣QNi
(t̄i, t̄i+1, f − q)−

∫ t̄i+1

t̄i

(f(x)− q(x))dx

∣∣∣∣∣ ≤ C(t̄i+1 − t̄i)
1+ρN−ρ

i

for some constant C. Since Ni = ⌈ε−1/ρ
1 (t̄i+1 − t̄i)⌉, we have∣∣∣∣∣QNi(t̄i, t̄i+1, f − q)−

∫ t̄i+1

t̄i

(f(x)− q(x))dx

∣∣∣∣∣≤C(t̄i+1 − t̄i)
1+ρ(t̄i+1 − t̄i)

−ρε1

=Cε1(t̄i+1 − t̄i). (5)

On the interval [t̄i, t̄i+1] containing the singular point ξ1, we use Lemma 3. We have that
for x ∈ [t̄i, t̄i+1] we have |f(x)− q(x)| ≤ C ′hr+ρ. Since the midpoint rule is the mean of the
function values multiplied by the length of the interval, we get∣∣∣∣∣QNi

(t̄i, t̄i+1, f − q)−
∫ t̄i+1

t̄i

(f(x)− q(x))dx

∣∣∣∣∣
≤ |QNi(t̄i, t̄i+1, f − q)|+

∣∣∣∣∣
∫ t̄i+1

t̄i

(f(x)− q(x))dx

∣∣∣∣∣ ≤ 2C ′hr+ρ(t̄i+1 − t̄i)

= O(hr+ρ+1) = O(ε1). (6)

Summing up the bounds (5) and (6) for t̄i ∈ B′ we get

I2 =
∑
t̄i∈B′

∣∣∣∣∣QNi(t̄i, t̄i+1, f − q)−
∫ t̄i+1

t̄i

(f(x)− q(x))dx

∣∣∣∣∣ ≤ (b− a)Cε1 +O(ε1) = O(ε1). (7)
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Let us now bound I1. First, we will show how to compute Q̃. Note that from the definition
of the midpoint rule we have

Q B
∑
t̄i∈B′

QNi
(t̄i, t̄i+1, f − q) =

∑
t̄i∈B′

t̄i+1 − t̄i
Ni

Ni∑
j=1

(f − q)(zji ),

where zji = t̄i +
2j−1
2Ni

(t̄i+1 − t̄i) and Ni = ⌈ε−1/ρ
1 (t̄i+1 − t̄i)⌉. Let N =

∑
i:t̄i∈B′ Ni. Then

Q =
1

N

∑
t̄i∈B′

Ni∑
j=1

(t̄i+1 − t̄i)N

Ni
(f − q)(zji ).

Since (t̄i+1−t̄i)N
Ni

≃ b−a and due to Lemma 3 (f−q)(zji ) ≤ C∗hr+ρ, Q is a mean of N numbers
of order O(hr+ρ). Let Q̄ be the quantum approximation of

h−(r+ρ)Q =
1

N

∑
t̄i∈B′

Ni∑
j=1

h−(r+ρ) (t̄i+1 − t̄i)N

Ni
(f − q)(zji ),

the mean on N numbers of order O(1), computed by the optimal quantum algorithm for
computing the mean within the precision ε1h

−(r+ρ) with a probability not less than 3/4.
Then, Q̃ = hr+ρQ̄. So, we have

I1 =
∣∣∣Q̃−Q

∣∣∣ = hr+ρ|Q̄− h−(r+ρ)Q| ≤ hr+ρε1 h−(r+ρ) = ε1 (8)

with a probability not less than 3/4. Returning to (3) with bounds (4), (7), and (8) we get
|U(f)− I(f)| = O(ε1) with a probability not less than 3/4. Thus,

equant(U,F r,ρ
1 ([a, b])) ≤ C1ε1

for some constant C1.
We will now find the bounds on the cost of the algorithm. Let us start with the cost

of classical computations. The test is computed on each of m initial subintervals, and each
of log(m) bisection steps. Each test needs 2r + 2 function values. So, the total cost of
computing tests is O(m). To construct q, the Lagrange polynomial of order r is computed on
every interval t̄i, t̄i+1 for t̄i ∈ B′. Thus, the total cost of computing q is O(m). So, the total
classical cost is O(m) = O(ε

−1/(r+ρ+1)
1 ).

On a quantum computer the approximation Q̄ of the mean of N numbers within the precision
ε1h

−(r+ρ with probability at least 3/4 is computed. Due to (2) the total quantum cost
is O(ε−1

1 hr+ρ) = O(ε−1
1 ε

(r+ρ)/(r+ρ+1)
1 ) = O(ε

−1/(r+ρ+1)
1 ). The total cost is a sum of the

classical and the quantum cost, so

costquant(U,F r,ρ
1 ([a, b]) ≤ C2ε

− 1
r+ρ+1

1

for some constant C2, which finishes the proof.

From the theorem above and the lower complexity bound for the smooth case it follows.
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Theorem 6 For sufficiently small ε > 0

compquant(ε, F r,ρ
1 ([a, b])) = Θ

((
1

ε

) 1
r+ρ+1

)
.

Proof. The upper bound is a direct result of Theorem 5. To get error bound ε1 one needs
to take ε1 = ε/C1. Then, the cost is bounded by C2C

1/(r+ρ+1)
1 ε−1/(r+ρ+1).

Since F r,ρ
1 ⊂ F r,ρ

reg , the lower complexity bounds follow from Theorem 4.
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