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Entanglement is an important quantum resource, which can be used in quantum tele-
portation and quantum computation. How to judge and measure entanglement or sep-

arability has become a basic problem in quantum information theory. In this paper, by

analyzing the properties of generalized ring Z[i]2n , a new method is presented to judge the
entanglement or separability of any quantum state in the discrete quantum computing

model proposed by Gatti and Lacalle. Different from previous criteria based on matrices,

it is relatively simple to operate in mathematical calculation. And if a quantum state
is separable, it can calculate the separable mathematical expression. Taking n = 2, 3

as examples, the concrete forms of all separable states in the model are presented. It

provides a new research perspective for the discrete quantum computing model.

Keywords: Entangled states; Separable states; Discrete quantum states; The ring of
Gaussian integers

1 Introduction

Quantum entangled state is a special kind of quantum state, but exists ubiquitous in the

multipartite systems [1]. It is one of the wonderful properties of quantum mechanics, which

enables quantum information to realize new functions that cannot be realized by classical

information. As the carrier of quantum teleportation and quantum computation, entangled

states are widely used in quantum cryptography [2], dense coding [3], quantum teleportation

[4], quantum correction [5], fault-tolerant computing [6], large number factoring algorithm

aThe corresponding author.
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542 Criteria for entanglement and separability of discrete quantum states

[7], Grover searching algorithm [8] and other fields. When a certain amount of entangled

states are shared between the two places, the entangled owners can perform the functions

of quantum teleportation and quantum computation by performing local operations on the

entangled states and be supplemented by classical communication. The purpose of quantum

information research is to develop and use entanglement to a great extent. Therefore, the

study of quantum entanglement is of great significance to promote quantum informatics and

has very important applications in some cutting-edge technologies.

Quantum entanglement is the inevitable result of quantum mechanics theory. The term

“entanglement” can be traced back to the beginning of the birth of quantum mechanics.

Historically, the cat paradox of Schrödinger [9] first proposed the concept of “entangled state”,

that is, the states of two entangled particles are interrelated and determined by each other.

In 1935, Einstein, Podolsky and Rosen discovered the wonderful nonclassical property of

entanglement [10], and they proposed the following quantum state

Ψ(x1, x2) =

∫ +∞

−∞
exp [i/h (x1 − x2 + x0) p] dp

where x1, x2 refer to the coordinates of two particles respectively. The basic feature of such

a quantum state is that it cannot be written as the direct product of quantum states in the

two subsystems, namely

Ψ(x1, x2) ̸= ϕ(x1)ϕ(x2).

This property means that there is a kind of global state in the composite system, which

can’t be written as the direct product of quantum states of all the subsystems. This phe-

nomenon is called entanglement. The debate on EPR paradox has prompted people to be

more and more interested in the quantum entangled state. Physicists have studied it for more

than half a century and derived a lot of research work: Bell inequality, Bell theory [11], etc.

However, the clear definitions of entanglement and separability were not given until 1989 by

R.F. Werner [1].

To deeply understand the entangled state, many efforts have been made and many good

results have been obtained, including some effective criteria for entanglement of discrete vari-

ables. Some are easy to operate but not necessary and sufficient conditions for entanglement,

and some are the opposite. For example, the positive partial transpose criterion [12, 13],

the computable cross-norm or realignment criterion [14, 15], the permutation separability

criteria [16, 17, 18], the criterion based on Bloch representations [19], the local uncertainty

relations [20, 21, 22, 23], the covariance matrices approach [24], the entanglement witnesses

[25, 26, 27, 28] and Bell type inequality [29, 30, 31], etc. In addition, the entanglement of

quantum states has been studied from different angles. For general multipartite quantum

systems, the reference [32] proposed using Pauli matrix to construct correlation tensor as the

entanglement criterion. References [33] and [34] studied the entanglement of quantum states

in multipartite systems by using invariants and the decomposition of matrix tensor product.

Although many related results have been obtained, for any given quantum state, determining

whether it is entangled or separable is still a very challenging and unsolved problem.

In 2018, Gatti and Lacalle proposed a model of discrete quantum computing [35], the set

of Gaussian coordinate states. It includes all the quantum states whose coordinates in the
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computation base, except for a normalization factor
√
2
−k

, belong to the ring of Gaussian

integers Z[i] = {a + ib|a, b ∈ Z}. The model has the following properties: It describes real

states in quantum physics, preserves the superposition and entanglement of quantum states

and allows to approximate general quantum states, and, above all, it contains simple quantum

states. For this model, we introduce a new method to judge entanglement and separability of

quantum states. Compared with those classical methods, its operation is relatively simple.

In the first part of the paper, after establishing the required basic knowledge, we define

a generalized ring of Gaussian integers Z[i]2n by analogy with the classical ring of Gaussian

integers Z[i], and conjecture that the ring has similar properties to the classical ring, what’s

more, we can use these properties to explore entanglement and separability of quantum states

in the model of Gatti and Lacalle.

In the second part, we prove some basic properties of the generalized ring Z[i]2n , and

verify our conjecture. That is, the ring has similar properties to the classical ring Z[i]. It is a
Euclidean domain, principal ideal domain and unique factorization domain. In addition, by

analyzing the elements of the integer coordinate part and the complex coordinate part, all

forms of prime elements and irreducible elements in the ring are discussed.

Finally, to go further with the analysis of elements in the extended ring Z[i]2n , we find

that the structure of elements in the ring is related to the entanglement and separability

of quantum states in the discrete quantum model. By discussing prime elements and the

number of prime elements of Z[i] contained in the coordinate states over the ring Z[i]2n , we
obtain a series of criteria for entangled states and separable states. Furthermore, by using

the factorization property of the generalized ring, we show all types of separable states in the

model when n = 2, 3, and assert that any quantum state can be compared with this method

to judge its entanglement and separability in the n-qubits model. In Section 5, We provide a

simple comparison for different methods.

2 Background knowledge

In this section, we will introduce some basic knowledge involved in this paper, including

entangled states, separable states, discrete quantum models and the classical ring of Gaussian

integers.

2.1 Entangled states and separable states

In quantum mechanics, the state of the system is expressed by wave function |ψ⟩. There

are two kinds of quantum states, pure states and mixed states. A quantum state that can

be represented by a unit vector in Hilbert space is called pure state. The system cannot be

described by a certain pure state, but needs to be described by a group of pure state vectors

and their corresponding probabilities, so the quantum system is said to be in a mixed state.

Pure states and mixed states can also be defined by density operator or density matrix.

Definition 2.1.1 Density matrix ρ is defined as a linear combination of a set of pure state

ensemble {pi, |ψ⟩i} with certain probability, namely

ρ =
∑
i

pi |ψ⟩i ⟨ψ|i ,

where ⟨ψ|i is the conjugate transpose of the state |ψ⟩i, and pi > 0,
∑

i pi = 1.
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It means ρ is composed of a series of pure states |ψ⟩i according to the probability pi.

Then it is easy to determine whether a given quantum state is pure or mixed by using density

matrix. If Trρ2 = 1, ρ is pure. If Trρ2 < 1, ρ is mixed. When the system is in the exact

known pure state |ψ⟩, the density matrix is ρ = |ψ⟩ ⟨ψ|.
Pure states can be classified into two types: separable pure states and entangled pure

states. So are mixed states: separable mixed states and entangled mixed states.

We will first discuss the simple case of the pure state of a bipartite system.

Definition 2.1.2 [36] In a bipartite system HA ⊗ HB , if the coherent superposition state

|Ψ⟩AB can be expressed as the tensor product of |ψ⟩A and |ψ⟩B , namely

|Ψ⟩AB = |ψ⟩A ⊗ |ψ⟩B ,

where |ψ⟩A and |ψ⟩B represent two pure states in Hilbert spaces HA and HB respectively.

Then |Ψ⟩AB is called separable.

If the quantum pure state |Ψ⟩AB cannot be described as the tensor product of quantum

states over the two subsystems, i.e. |Ψ⟩AB ̸= |ψ⟩A ⊗ |ψ⟩B , then the state |Ψ⟩AB is entangled.

For example, 1√
2
(|0⟩A |1⟩B − |1⟩A |0⟩B) is a 2-qubits entangled state.

In a multipartite system HABC···, if the pure state of multiple qubits |Ψ⟩ABC... can be

expressed as

|Ψ⟩ABC··· = |ψ⟩A ⊗ |ψ⟩B ⊗ |ψ⟩C ⊗ · · · ,

where |Ψ⟩ABC··· ∈ HABC···, HABC··· = HA ⊗HB ⊗HC ⊗ · · · , |ψ⟩A ∈ HA, |ψ⟩B ∈ HB , |ψ⟩C ∈
HC , · · · , then |Ψ⟩ABC··· is called separable state, otherwise it is entangled state.

The following is the definition of separability and entanglement of mixed states.

Definition 2.1.3 Suppose that ρAB is a density matrix in the bipartite system. If there are

reduced density matrices ρi
A of subsystem A and ρi

B of subsystem B respectively, such that

ρAB =
∑
i

piρi
A ⊗ ρi

B ,

where ρi
A = TrB(ρAB), ρi

B = TrA(ρAB), TrB and TrA are operator maps. Then ρAB is

separable. Otherwise ρAB is entangled.

In a multipartite system, the necessary and sufficient condition for being separable of

density matrix ρ is that it can be written in the following form

ρ =
∑
i

piρi
1 ⊗ ρi

2 ⊗ · · · ρik ⊗ · · · ,

where ρi
k is the reduced density matrix with the probability pi of the kth subsystem.

In this paper, we will discuss the separability or entanglement of states in the discrete

quantum computing model proposed by Gatti and Lacalle.
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2.2 Gatti & Lacalle discrete quantum computing model E

In 2018, Gatti and Lacalle proposed a discrete quantum computing model, namely the set of

Gaussian coordinate states E [35]. It is the smallest set of quantum states which contains a

computational base and is invariant under the application of the conforming gates H and G.

Let H2 be the state space of single qubit, which is a 2-dimensional Hilbert space,

|ψ⟩i = ci0 |0⟩+ ci1 |1⟩ ∈ H2

is the ith qubit state, then the state with n-qubits composed of them is

|ψ⟩ = |ψ⟩1 ⊗ |ψ⟩2 ⊗ · · · ⊗ |ψ⟩n =

N−1∑
x=0

cx |x⟩ .

Where N = 2n is the dimension of n-qubits state space H2
⊗ = H2 ⊗H2 ⊗ · · · ⊗H2.

Gatti and Lacalle showed that Gaussian integers are used to represent the coordinates of

quantum states in the model. It is an important feature of this model.

The following is the 2n-dimensional Gaussian integer vector set to be used in this paper,

Z[i]2
n

= {(x0 + iy0, · · · , x2n−1 + iy2n−1)|xi, yi ∈ Z, 0 ≤ i ≤ 2n}.

Definition 2.2.1 [35](Set of Gaussian coordinate states E) Let |ψ⟩ be a quantum state.

|ψ⟩ ∈ E if and only if there exists k ∈ N such that
√
2
k |ψ⟩ ∈ Z[i]2n .

The set E can be written as the disjoint union of subsets of E, indexed by the parameter

k. It is denoted by Fk:

Fk = {|ψ⟩ ∈ E|
√
2
k
|ψ⟩ ∈ Z[i]2

n

and
√
2
k−2

|ψ⟩ /∈ Z[i]2
n

}.

The definition above can be rewritten in the following terms.

The state |ψ⟩ of the form |ψ⟩ = 1√
2
k (x0 + iy0, · · · , x2n−1 + iy2n−1) belongs to the level Fk

if the following properties hold:

(i) (x0 + iy0, · · · , x2n−1 + iy2n−1) /∈ Z[i]2n .
(ii) x0

2 + · · ·+ x2n−1
2 + y0

2 + · · ·+ y2n−1
2 =

√
2
k
.

(iii) 2 ∤ gcd(x0, · · · , x2n−1, y0, · · · , y2n−1) (2 does not divide the greatest common divisor of

x0, · · · , x2n−1, y0, · · · , y2n−1).

2.3 The ring of Gaussian integers Z[i]
The number like a+ bi(a, b ∈ Z, i =

√
−1) is called Gaussian integer, which was proposed by

Gauss when studying quadratic indefinite equation. Record as

Z[i] = {a+ bi|a, b ∈ Z, i =
√
−1}.

For ordinary addition and multiplication, it can be proved that it is a domain, which we call

the ring of Gaussian integers [37].

Property 2.3.1 It holds that
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(i) Z[i] is a Euclidean domain.

(ii) Z[i] is a principal ideal domain.

(iii) Z[i] is a unique factorization domain.

Property 2.3.2 There are only four units ±1,±i in Z[i].

Property 2.3.3 There are two types of prime elements in Z[i]:

(i) a2 + b2 is a prime, then a+ bi is a prime element of Z[i].
(ii) p is a prime, x2 + y2 = p has no integer solution, then ±p,±pi are prime elements of

Z[i].

From the properties of the ring of Gaussian integers, we guess that there is a ring of

multiple Gaussian integers, which has similar properties to the classical ring and is related to

the Gaussian coordinate states. Fortunately, our conjecture has been verified in the following.

3 The ring of multiple Gaussian integers Z[i]2n

In this section, we define “+” and “×” for the set

Z[i]2
n

= {(x0 + iy0, · · · , x2n−1 + iy2n−1)|xt, yt ∈ Z, 0 ≤ t ≤ 2n}.

For α, β ∈ Z[i]2n , let

α = (a0 + ib0, · · · , a2n−1 + ib2n−1),

β = (c0 + id0, · · · , c2n−1 + id2n−1).

We have

α+ β ≜ (a0 + ib0 + c0 + id0, · · · , a2n−1 + ib2n−1 + c2n−1 + id2n−1),

α× β ≜ ((a0 + ib0)× (c0 + id0), · · · , (a2n−1 + ib2n−1)× (c2n−1 + id2n−1)).

From the definition of the ring, it is easy to prove that Z[i]2n is a domain. Also, we will

discuss the properties of Z[i]2n . These properties will pave the way for the next exploration

of the model.

For the sake of clarity in the structure of the paper, only the description of relevant

properties is given below, and the detailed proof processes can be found in the Appendix A.

Property 3.1 Z[i]2n is a Euclidean domain.

Property 3.2 Z[i]2n is a principal ideal domain and unique factorization domain.

Property 3.3 There are 42
n

units in Z[i]2n .

The following discussion is about the prime elements for Z[i]2n . The prime elements in the

ring Z[i]2n can be divided into two parts. One part is that the components are all integers,

and the other is that the components contain elements in the form of a+ bi(b ̸= 0). We first

discuss the prime elements whose components are all integers.
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Obviously, because the prime elements require no other factors except itself and units,

the elements containing composite numbers in the components must not be prime elements

according to the definition of multiplication in the ring Z[i]2n . Therefore, only elements

without composite number components can be prime elements in Z[i]2n . However, prime

numbers are prime elements in the ring of integers Z, but they are not necessarily prime

elements in Z[i]. For example, the prime number 2 can be decomposed into 2 = (1+ i)(1− i)

in Z[i], where 1±i are not trivial factors of 2. Therefore, 2 is not a prime element in Z[i].
Generally, except the prime number 2, other prime numbers can be written in two forms,

4n+ 1 and 4n+ 3. Hence we have the following propositions.

Property 3.4 Let pi(0 ≤ i ≤ 2n − 1) be a prime number. The equation x2 + y2 = pi has

no integer solution if and only if the elements in the form of (1, · · · , 1, pi, 1, · · · , 1) are prime

elements in Z[i]2n .

Property 3.5 If the prime number pi(0 ≤ i ≤ 2n − 1) can be written in the form of 4n+ 3,

then the elements shaped as (1, · · · , 1, pi, 1, · · · , 1) are prime elements in Z[i]2n .

Property 3.6 If the prime number pi(0 ≤ i ≤ 2n − 1) is in the form of 4n + 1, then the

elements shaped as (1, · · · , 1, pi, 1, · · · , 1) are nonprime elements in Z[i]2n .

Next, we will discuss the prime elements with the from a+ bi(b ̸= 0) in components.

Property 3.7 Let αj = a+ bi, αj /∈ Z, αj ∈ Z[i], 0 ≤ j ≤ 2n − 1. a2 + b2 is a prime number.

Then the elements in the form of (1, · · · , 1, αj , 1, · · · , 1) are prime elements in Z[i]2n .

Property 3.8 Let αj = a + bi, αj /∈ Z, αj ∈ Z[i], a2 + b2 = p1p2 · · · pn, where pt(1 ≤ t ≤ n)

is a prime number. We have

(i) If n = 1, then the element in the form of (1, · · · , 1, αj , 1, · · · , 1) is a prime element in

Z[i]2n .
(ii) If n ̸= 1, then the element in the form of (1, · · · , 1, αj , 1, · · · , 1) is a nonprime element

in Z[i]2n .

Property 3.9 If an element contains two or more components that are not 1, then the element

is not a prime element in Z[i]2n .

Property 3.10 An element in Z[i]2n is a prime element if and only if it is an irreducible

element.

4 Criteria for entanglement or separability of quantum states in the model E

We have investigated the structure of the ring Z[i]2n . Now we turn our attention to the

quantum states in the model E proposed by Gatti and Lacalle. From Section 2.2, this discrete

quantum computing model is the set of Gaussian coordinate states E. Let |ψ⟩ be a quantum
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state, we have

E = {|ψ⟩ |There exists k ∈ N such that
√
2
k
|ψ⟩ ∈ Z[i]2

n

}.

Hence, judging the entanglement or separability of the state |ψ⟩ in E is the same as judging

the entanglement or the separability of
√
2
k |ψ⟩.

According to Property 3.2, the ring Z[i]2n has the unique factorization property. Each

element that is neither zero nor unit can be uniquely factorized into the product of some

prime elements. Assuming that A is a non-zero and non-unit element in Z[i]2n , it can be

decomposed into:

A = P1P2P3 · · ·Pr,

Pi is a prime element in Z[i]2n . From the properties in Section 3, Pi = (1, · · · , 1, pj , 1, · · · , 1),
where pj is a prime element in Z[i]. By simple deformation, A can also be uniquely expressed

as

A = (p1,1p1,2 · · · p1,k1 , p2,1p2,2 · · · p2,k2 , · · · , pr,1pr,2 · · · pr,kr ),

where pi,j is a prime element in Z[i]. Then do the combination calculation, if there is a

combination about pi,j that can write A as a tensor product, then the corresponding quantum

state is separable, otherwise it is entangled. If it is separable, then the tensor product is the

separable mathematical expression of the quantum state.

From the properties obtained in Section 3, the following are some criteria of separability or

entanglement. Finally, using the unique factorization property and combination calculation,

we present all types of separable states and their representations for n = 2, 3.

Property 4.1 Let |ψ⟩ be a quantum state, |ψ⟩ ∈ E. If
√
2
k |ψ⟩ is a prime element in Z[i]2n ,

then |ψ⟩ is an entangled state.

Proof: Let |ψ⟩ = 1√
2
k (x0 + iy0, · · · , x2n−1 + iy2n−1), then

√
2
k |ψ⟩ = (x0 + iy0, · · · , x2n−1 +

iy2n−1) ∈ Z[i]2n . Since
√
2
k |ψ⟩ is a prime element in Z[i]2n , from Proposition 3.10, we have

that
√
2
k |ψ⟩ is irreducible in Z[i]2n . That is, there is no nontrivial factor. And then the

quantum state |ψ⟩ cannot be expressed in the form of tensor product of subsystems. Thus

|ψ⟩ is an entangled state □ .

Property 4.2 A quantum state of the form 1√
2
k (q0, · · · , qi, 1, · · · , 1), where i is an even

number and qi is a prime element in Z[i], must be entangled.

Proof: Suppose that 1√
2
k (q0, · · · , qi, 1, · · · , 1) is a separable state, then it can be expressed

as the tensor product of quantum states from n single quantum systems. Since qi is a prime

element in Z[i], only one subquantum state whose component contains qi in the tensor product.

Let

1
√
2
k
(q0, · · · , qi, 1, · · · , 1) = |ψ⟩0 ⊗ |ψ⟩1 ⊗ · · · ⊗ |ψ⟩n−1

= (a0,0, a0,1)⊗ (a1,0, a1,1)⊗ · · · ⊗ (an−1,0, an−2,1) .
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Suppose that (aj,0, aj,1) is the subquantum state. According to the definition of tensor prod-

uct, there are even components with qi in the composite quantum state. It contradicts the

odd number of components with prime element in the proposition □ .

Corollary 4.1 In Proposition 4.2, the conclusion is still valid when qi is a reducible element.

Proof: When qi is reducible in Z[i], the proof is similar to Proposition 4.1. We don’t repeat

it here □ .

Property 4.3 A quantum state like 1√
2
k (q, · · · , q, 1, · · · , 1) is a separable state, where q

is a prime element in Z[i] and the number of q in the quantum state is 2n−1. Especially,
1√
2
k (q, · · · , q) is a separable state.

Proof: For 1√
2
k (q, · · · , q, 1, · · · , 1) and 1√

2
k (q, · · · , q), we have

1
√
2
k
(q, · · · , q, 1, · · · , 1) = 1

√
2
k
(q, 1)⊗ (1, 1)⊗ · · · ⊗ (1, 1),

1
√
2
k
(q, · · · , q) = 1

√
2
k
(q, q)⊗ (1, 1)⊗ · · · ⊗ (1, 1).

Hence the two kinds of quantum states are separable □ .

Corollary 4.2 In Proposition 4.3, the conclusion is still valid when q is a reducible element.

Proof: When q is reducible, the above two equations still hold □ .

Property 4.4 Let |ψ⟩ = 1√
2
k (a0, a1, · · · , a2n−1), |ψ⟩ ∈ E,

√
2
k |ψ⟩ ∈ Z[i]2n , where ai(i =

1, 2, · · · , n) is 1 or a prime element in Z[i]. Except the two types of quantum states in

Proposition 4.2 and the quantum state 1√
2
k (1, · · · , 1), other quantum states in the form of

|ψ⟩ are all entangled states.

Proof: When the components of the quantum state |ψ⟩ contain odd prime elements in Z[i],
by Proposition 4.2, |ψ⟩ is an entangled state. When the number is even, suppose that |ψ⟩ is
a separable state. Then it can be expressed as the tensor product

|ψ⟩ = |ψ⟩0 ⊗ |ψ⟩1 ⊗ · · · ⊗ |ψ⟩n−1 = (a0,0, a0,1)⊗ (a1,0, a1,1)⊗ · · · ⊗ (an−1,0, an−2,1) .

Because ai is 1 or a prime element in Z[i] and the number of prime elements is even, there

are only 1√
2
k (q, · · · , q, 1, · · · , 1) and 1√

2
k (q, · · · , q). The proposition is proved □ .

By analyzing the relationship between the ring of multiple Gaussian integers and the set

of Gaussian coordinate states and using the property that the ring is a unique factorization

domain, we classify the number of reducible elements in Z[i] for the Gaussian coordinate

states, and give all types of separable states in the model when n = 2, 3. Note that it doesn’t
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consider the order of coordinates here. Let the number of reducible elements be t. We obtain

Case 1: When n = 2, all types of separable states in the model are as follows.

When t = 0, there are three types of separable states.

(i) p1, q1 are all prime elements in Z[i],

1
√
2
k
(p1, p1, q1, q1) =

1
√
2
k
(p1, q1)⊗ (1, 1).

(ii) p1 is a prime element in Z[i].

1
√
2
k
(p1, p1, 1, 1) =

1
√
2
k
(p1, 1)⊗ (1, 1).

(iii)

1
√
2
k
(1, 1, 1, 1) =

1
√
2
k
(1, 1)⊗ (1, 1).

When t = 1, the type of separable states is the following.

(i) p1, p2 are all prime elements in Z[i],

1
√
2
k
(p1p2, p1, p2, 1) =

1
√
2
k
(p1, 1)⊗ (p2, 1).

When t = 2, the separable states have the following types.

(i) p1, q1 are all prime elements in Z[i],

1
√
2
k
(p1p2, p1, q1p2, q1) =

1
√
2
k
(p1, q1)⊗ (p2, 1).

(ii) One of p1 and p2 is a prime element in Z[i], and the other is a reducible element,

1
√
2
k
(p1p2, p1, p2, 1) =

1
√
2
k
(p1, 1)⊗ (p2, 1).

(iii) One of p1 and q1 is a prime element in Z[i], and the other is a reducible element,

1
√
2
k
(p1, p1, q1, q1) =

1
√
2
k
(p1, q1)⊗ (1, 1).

(iv) p1 is a reducible element in Z[i],

1
√
2
k
(p1, p1, 1, 1) =

1
√
2
k
(p1, 1)⊗ (1, 1).
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When t = 3, the separable states have the following types.

(i) One of p1 and q1 is a prime element in Z[i], and the other is a reducible element,

1
√
2
k
(p1p2, p1, q1p2, q1) =

1
√
2
k
(p1, q1)⊗ (p2, 1).

(ii) p1, p2 are all reducible elements in Z[i],

1
√
2
k
(p1p2, p1, p2, 1) =

1
√
2
k
(p1, 1)⊗ (p2, 1).

When t = 4, the separable states have the following types.

(i) p1, p2, q1, q2 can be prime elements or reducible elements in Z[i],

1
√
2
k
(p1p2, p1q2, q1p2, q1q2) =

1
√
2
k
(p1, q1)⊗ (p2, q2).

(ii) p1, q1 are all reducible elements in Z[i],

1
√
2
k
(p1p2, p1, q1p2, q1) =

1
√
2
k
(p1, q1)⊗ (p2, 1).

(iii) p1, q1 are all reducible elements in Z[i],

1
√
2
k
(p1, p1, q1, q1) =

1
√
2
k
(p1, q1)⊗ (1, 1).

Case 2: When n = 3, all types of separable states in the model are as follows.

When t = 0, the separable states have the following types.

(i) p1 is a prime element in Z[i],

1
√
2
k
(p1, p1, p1, p1, 1, 1, 1, 1) =

1
√
2
k
(p1, 1)⊗ (1, 1)⊗ (1, 1).

(ii) p1, q1 are all prime elements in Z[i],

1
√
2
k
(p1, p1, p1, p1, q1, q1, q1, q1) =

1
√
2
k
(p1, q1)⊗ (1, 1)⊗ (1, 1).

(iii)

1
√
2
k
(1, 1, 1, 1, 1, 1, 1, 1) =

1
√
2
k
(1, 1)⊗ (1, 1)⊗ (1, 1).
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When t = 1, there is no separable state.

When t = 2, the type of separable states is the following.

(i) p1, p2 are all prime elements in Z[i],

1
√
2
k
(p1p2, p1p2, p1, p1, p2, p2, 1, 1) =

1
√
2
k
(p1, 1)⊗ (p2, 1)⊗ (1, 1).

When t = 3, there is no separable state.

When t = 4, the separable states have the following types.

(i) One of p1 and q1 is a prime element in Z[i], and the other is a reducible element,

1
√
2
k
(p1, p1, p1, p1, q1, q1, q1, q1) =

1
√
2
k
(p1, q1)⊗ (1, 1)⊗ (1, 1).

(ii) p1 is a reducible element in Z[i],

1
√
2
k
(p1, p1, p1, p1, 1, 1, 1, 1) =

1
√
2
k
(p1, 1)⊗ (1, 1)⊗ (1, 1).

(iii) One of p1 and p2 is a prime element in Z[i], and the other is a reducible element,

1
√
2
k
(p1p2, p1p2, p1, p1, p2, p2, 1, 1) =

1
√
2
k
(p1, 1)⊗ (p2, 1)⊗ (1, 1).

(iv) p1, q1 are all prime elements in Z[i],

1
√
2
k
(p1p2, p1p2, p1, p1, q1p2, q1p2, q1, q1) =

1
√
2
k
(p1, q1)⊗ (p2, 1)⊗ (1, 1).

(v) p1, p2, p3 are all prime elements in Z[i],

1
√
2
k
(p1p2p3, p1p2, p1p3, p1, p2p3, p2, p3, 1) =

1
√
2
k
(p1, 1)⊗ (p2, 1)⊗ (p3, 1).

When t = 5, the type of separable states is the following.

(i) There is only one prime element among p1, p2, p3 in Z[i],

1
√
2
k
(p1p2p3, p1p2, p1p3, p1, p2p3, p2, p3, 1) =

1
√
2
k
(p1, 1)⊗ (p2, 1)⊗ (p3, 1).

When t = 6, the separable states have the following types.
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(i) p1, p2 are all reducible elements in Z[i],

1
√
2
k
(p1p2, p1p2, p1, p1, p2, p2, 1, 1) =

1
√
2
k
(p1, 1)⊗ (p2, 1)⊗ (1, 1).

(ii) One of p1 and q1 is a prime element in Z[i], and the other is a reducible element,

1
√
2
k
(p1p2, p1p2, p1, p1, q1p2, q1p2, q1, q1) =

1
√
2
k
(p1, q1)⊗ (p2, 1)⊗ (1, 1).

(iii) There are two reducible elements among p1, p2, p3 in Z[i],

1
√
2
k
(p1p2p3, p1p2, p1p3, p1, p2p3, p2, p3, 1)

=
1

√
2
k
(p1, 1)⊗ (p2, 1)⊗ (p3, 1).

(iv) p1, q1 are all prime elements in Z[i],

1
√
2
k
(p1p2p3, p1p2, p1p3, p1, q1p2p3, q1p2, q1p3, q1)

=
1

√
2
k
(p1, q1)⊗ (p2, 1)⊗ (p3, 1).

When t = 7, the separable states have the following types.

(i) p1, p2, p3 are all reducible elements in Z[i],

1
√
2
k
(p1p2p3, p1p2, p1p3, p1, p2p3, p2, p3, 1)

=
1

√
2
k
(p1, 1)⊗ (p2, 1)⊗ (p3, 1).

(ii) One of p1 and q1 is a prime element in Z[i], and the other is a reducible element,

1
√
2
k
(p1p2p3, p1p2, p1p3, p1, q1p2p3, q1p2, q1p3, q1)

=
1

√
2
k
(p1, q1)⊗ (p2, 1)⊗ (p3, 1).

When t = 8, the separable states have the following types.

(i) p1, q1 are all reducible elements in Z[i],

1
√
2
k
(p1, p1, p1, p1, q1, q1, q1, q1) =

1
√
2
k
(p1, q1)⊗ (1, 1)⊗ (1, 1).



554 Criteria for entanglement and separability of discrete quantum states

(ii) p1, q1 are all reducible elements in Z[i],

1
√
2
k
(p1p2, p1p2, p1, p1, q1p2, q1p2, q1, q1)

=
1

√
2
k
(p1, q1)⊗ (p2, 1)⊗ (1, 1).

(iii) p1, q1 are all reducible elements in Z[i],

1
√
2
k
(p1p2p3, p1p2, p1p3, p1, q1p2p3, q1p2, q1p3, q1)

=
1

√
2
k
(p1, q1)⊗ (p2, 1)⊗ (p3, 1).

(iv) p1, p2, q1, q2 can be prime elements or reducible elements in Z[i],

1
√
2
k
(p1p2, p1p2, p1q2, p1q2, q1p2, q1p2, q1q2, q1q2)

=
1

√
2
k
(p1, q1)⊗ (p2, q2)⊗ (1, 1).

(v) p1, p2, p3, q1, q2 can be prime elements or reducible elements in Z[i],

1
√
2
k
(p1p2p3, p1p2, p1q2p3, p1q2, q1p2p3, q1p2, q1q2p3, q1q2)

=
1

√
2
k
(p1, q1)⊗ (p2, q2)⊗ (p3, 1).

(vi) p1, p2, p3, q1, q2, q3 can be prime elements or reducible elements in Z[i],

1
√
2
k
(p1p2p3, p1p2q3, p1q2p3, p1q2q3, q1p2p3, q1p2q3, q1q2p3, q1q2q3)

=
1

√
2
k
(p1, q1)⊗ (p2, q2)⊗ (p3, q3).

Note that p1, p2, p3, q1, q2, q3 are prime elements or reducible elements in Z[i].
To sum up, for the general n-qubits Gatti & Lacalle discrete quantum computing model

E, we can assert that any quantum state can be judged its entanglement or separability

by the unique factorization property of the ring Z[i]2n . Only the bigger the n is, the more

complicated the situation becomes.

5 Comparisons of different criteria

Now there are many separability criteria, but there is no universal method to determine

whether a quantum state is separable or entangled. There are some classical criteria for

quantum entanglement in discrete quantum state systems. For example, the positive partial

transpose criterion [12, 13], the computable cross-norm or realignment criterion [14, 15], the

permutation separability criterion [16, 17, 18], the covariance matrices criterion [24], the
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entanglement witnesses [25, 26, 27, 28] criterion and Bell type inequality criterion [29, 30,

31], etc. However, they are all used to determine whether a quantum state is separable

or entangled, and do not give the decomposition formula of a separable quantum state in

mathematics. The following briefly describes these determination methods and their scope of

use.

The positive partial transpose criterion is only applicable to bipartite quantum states and

a necessary condition for the separation of quantum states. It can be expressed as: if a

bipartite state ρAB is separable, then the new matrix ρTB

AB formed by partial transposition of

B system about the density matrix ρAB must satisfy inequality∥∥∥ρTB

AB

∥∥∥ ≤ 1,

where ∥·∥ is the trace norm, and ∥A∥ = Tr
√
AA†.

The computable cross-norm criterion is also called realignment criterion. It is very similar

to the positive partial transpose criterion. It describes: if a bipartite state ρAB is separable,

then the new matrix R(ρAB) formed by realigning the indices of the density matrix ρAB must

satisfy inequality

∥R(ρAB)∥ ≤ 1,

where R is the realignment operation. This criterion is usually regarded as a supplement to

the positive partial transpose criterion, but both them are the bipartite state criteria.

The permutation separability criterion actually covers the positive partial transpose cri-

terion and the computable cross-norm criterion, and is applicable to the multipartite system.

Take the example of the 3-partite system to show how this criterion works. If a 3-partite

state ρABC is separable, then the new matrix L(ρABC) formed by swapping arbitrary indices

of the density matrix ρABC must satisfy inequality

∥L(ρABC)∥ ≤ 1,

where L refers to any index exchange operation.

In fact, all of these permutation criteria can only determine complete separability, that

is, they can only tell us that a quantum state is completely separable or not, and no further

information can be obtained. Moreover, the entanglement detection of multipartite system is

a complex problem, and many separability criteria applicable to multipartite system are not

simple, or even difficult to calculate, without operability.

The covariance matrices criterion also applies only to bipartite quantum states. It is

relatively computationally complex. First, define the covariance matrix. If ρAB is a given

quantum state, and {Mk : k = 1, · · · , N} is the observed measurement, then the N × N

covariance matrix R is defined as:

γi,j = (⟨MiMj⟩+ ⟨MjMi⟩)/2− ⟨Mi⟩ ⟨Mj⟩ .

If choose {Mk} = {Ak ⊗ I, I ⊗ Bk} and the Hilbert-Schmidt orthogonal basis {Ak}({Bk})
based on the operator space HA(HB), then the covariance matrix has the following block
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structure,

γ(ρAB , {Mk}) =
[
A B
CT D

]
,

where A = γ(ρAB , {Ak}) and B = γ(ρAB , {Bk}) are covariance matrices of reduced den-

sity matrices, and matrix C is composed of Ci,j = ⟨Ai ⊗Bj⟩ − ⟨Ai⟩ ⟨Bj⟩. The covari-

ance matrices criterion is defined as: if a bipartite state ρAB is separable, there must be

states |ak⟩ ⟨ak| (|bk⟩ ⟨bk|) and weight coefficients pk satisfying κA =
∑

k pkγ(|ak⟩ ⟨ak|)(κB =∑
k pkγ(|bk⟩ ⟨bk|)). Then the following inequality holds

γ(ρAB , {Mk}) ≥ κA ⊗ κB .

otherwise ρAB is entangled.

Entanglement witnesses is a good tool for detecting entanglement in experiments. The-

oretically, there is an entanglement witness for any entangled state, but the construction of

entanglement witness is not an easy task. The idea comes from geometry and Hahn. Banach

theorem, that is, the convex closed set and a point outside the set always have a hyperplane

to divide the two. For example, if the entangled witness operator W is constructed, for any

quantum state ρ, if

Tr(Wρ) ≥ 0,

Then the quantum state ρ is determined as separable state by W , otherwise it is entangled

state.

Bell-type inequality is also an effective tool for detecting entanglement in experiments.

The violation of Bell inequality shows that the state is entangled. The basic idea of Bell

inequality is as follows: When measuring a bipartite system, it is assumed that there is a

measurement result locally on each side before the measurement, and then a quantitative

limit of the correlation degree of the results when two associated particles are measured at

the same time can be obtained. But it is not easy to use in practice, and the measurement

process cannot simply measure preexisting local results.

The above are the criteria for judging entanglement or separability of quantum states

under different conditions. At present, there is no universal separability criterion for either

bipartite system or multipartite system. Each method has specific limitations. And they can

only judge whether a quantum state is entangled or separable. When a quantum state is

separable, they cannot give a specific mathematical separable expression.

By analyzing the properties of the ring Z[i]2n , we find that it has a subtle relationship

with Gatti & Lacale discrete quantum computing model E. If |ψ⟩ ∈ E, there exists k ∈ N

such that
√
2
k |ψ⟩ ∈ Z[i]2n . We can use the unique factorization property of the ring Z[i]2n

to judge the entanglement or separability. That is, each element A ∈ Z[i]2n which is neither

zero nor unit can be uniquely factorized into the product of some prime elements,

A = P1P2P3 · · ·Pr,

where Pi is a prime element in Z[i]2n . By simply deforming A, it can be uniquely expressed

as

A = (p1,1p1,2 · · · p1,k1 , p2,1p2,2 · · · p2,k2 , · · · , pr,1pr,2 · · · pr,kr ),
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where pi,j is a prime element in Z[i]. Through combination calculation, if there is a combina-

tion about pi,j that can write A as a tensor product, then the corresponding quantum state is

separable, otherwise it is entangled. If it is separable, then the tensor product is the separable

mathematical expression of the quantum state. Different from the previous criteria based on

matrices, this method is relatively simple to operate in mathematics. But, at present, it is

only valid for the discrete quantum model proposed by Gatti and Lacale. It is still an open

problem for the general criterion.

6 Conclusions

Quantum entanglement is an arduous and challenging research. Some remarkable achieve-

ments have been made, but quantum entanglement still has many problems to be further

studied.

In this paper, we present a new judgment method of entanglement and separability for the

discrete quantum computing model proposed by Gatti and Lacalle. It is relatively simpler than

previous methods in mathematical calculation. We find that the properties of quantum states

are related to the Euclidean domain Z[i]2n in the model. Using the factorization property

of the ring, a series of criteria are verified. In addition, we present all types of separable

states when n = 2, 3, and assert that any quantum state can be compared with this method

to determine entanglement or separability in the n-qubits model. From the perspective of

quantum communication, the proposed method is significative. It provides a novel way to

study the entanglement and separability of discrete quantum states.
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4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres andW. K. Wootters (1991), Teleporting
an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys Rev
Lett. Vol 67, 661–663.

5. J. Kempe (2007), Quantum Decoherence, Springer, Berlin.
6. A. Steane (1998), Quantum computing. Reports on Progress in Physics, Vol 61, 117–173.
7. A. Ekert and R. Jozsa (1996), Quantum computation and Shor’s factoring algorithm, Reviews of

Modern Physics, Vol 68, 733–753.
8. L. K. Grover (1997), Quantum mechanics helps in searching for a needle in a haystack, Phys Rev

Lett. Vol 79, 325–328.
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21. O. Gühne, M. Mechler, G. Tóth and P. Adam (2006), Entanglement criteria based on local uncer-
tainty relations are strictly stronger than the computable cross norm criterion, Phys. Rev. A. Vol
74, 010301-010305.

22. Y. Y. Zhao, G. Y. Xiang, X. M. Hu, B. H. Liu, C. F. Li, G. C. Guo, R. Schwonnek and R.
Wolf (2019), Entanglement Detection by Violations of Noisy Uncertainty Relations: A Proof of
Principle, Phys. Rev. Lett. Vol 122, 220401-220407.

23. C. J. Zhang, H. Nha, Y. S. Zhang and G. C. Guo (2010), Entanglement detecion via tighter local
uncertainty relations, Phys. Rev. A. Vol 81, 012324-012329.

24. O. Gittsovich, O. Giihne, P. Hyllus and J. Eisert (2009), Covariance matrix criterion for separa-
bility, AIP Conference Proceedings, Vol 1110, 63-66.

25. C. J. Zhang, Y. S. Zhang, S. Zhang and G. C. Guo (2007), Optimal entanglement witness based
on local orthogonal observables, Phys. Rew. A. Vol 76, 012334-012340.

26. K. C. Ha and S. H. Kye (2012), Optimality for indecomposable entanglement witnesses, Phys. Rew.
A. Vol 86, 034301-034305.

27. A. Rutkowski and R. Horodecki (2014), Tensor product extension of entanglement witnesses and
their connection with measurement-device-independent entanglement witnesses, Phys. Lett. A. Vol
378, 2043-2047.

28. S. Q. Shen, T. R. Xu, S. M. Fei and M. Li (2018), Optimization of ultrafine entanglement witnesses,
Phys. Rew. A . Vol 97, 032343-032347.

29. R. F. Werner and M. M. Wolf(2001), Bell inequalities and entanglement, Quantum Information
& Computation, Vol 1, 1-25.

30. C. J. Zhang, Y. S. Zhang and G. C. Guo (2007), Genuine entanglement of generalized Bell diagonal
states, Phys. Lett. A. Vol 363, 57-56.

31. M. Li, S. M. Fei and X. Li-Jost (2011), Bell inequality, separability and entanglement distillation,
Chinese Science Bulletin, Vol 56, 945-954.

32. H. Lee, S. D. Oh, D. Ahn (2005), The entanglement criterion of multiqubits, arXiv:quant-ph,
0506127-0506135.

33. S. Alheverio, S. M. Fei and D. Goswami (2001), Separability of rank two quantum states, Phys.
Lett. A. Vol 286. 91-96.

34. S. M. Fei, X. H. Gao, X. H. Wang, Z. X. Wang and K. Wu (2002), Separability of rank two quantum



Miao Wang, Zhenfu Cao and Xiaolei Dong 559

states on multiple quantum spaces, Phys. Lett. A. Vol 300, 559-566.
35. L. N. Gatti and J. Lacalle (2018), A model of discrete quantum computation, Quantum Inf. Process.

Vol 17, 1-18.
36. J. Y. Zeng (2014), Quantum Mechanics, volume (II), 5th Edition. Science Press, Beijing.
37. M. Rosen and I. Kenneth (2013), A Classical Introduction to Modern Number Theory, GTM, Vol.

84. Springer Science & Business Media.

Appendix A

Property 3.1 Z[i]2n is a Euclidean domain.

Proof: Let α ∈ Z[i]2n , α ̸= 0, α = (x0 + iy0, · · · , x2n−1 + iy2n−1),

Φ : α −→ x0
2 + · · ·+ x2n−1

2 + y0
2 + · · ·+ y2n−1

2.

Since Z[i] is a Euclidean domain, there is a mapping from the set of nonzero elements of

Z[i] to the set of nonnegative integers, and any element b can be written in the form of

b = qa+ r(q, r ∈ Z[i]) for a given nonzero element a in Z[i] , here r = 0 or φ(r) < φ(a). Easy

to prove that φ : a→ x2+y2(a = x+ iy) meets the above requirements. Thus the mapping Φ

can be written as Φ = φ0+φ1+ · · ·+φ2n−1, where φi is the above mapping corresponding to

the component element αi of α to satisfy the Euclidean domain in Z[i]. For each φi, there is

a pair of elements qi, ri, so that φi(ri) < φi(αi). Hence, for any β ∈ Z[i]2n , there is a pair of

elements Q = (q0, · · · , q2n−1), R = (r0, · · · , r2n−1) making R = 0 or Φ(R) < Φ(α). So Z[i]2n

is a Euclidean domain □ .

Property 3.2 Z[i]2n is a principal ideal domain and unique factorization domain.

Proof: Because every Euclidean domain is a principal ideal domain, and thus a unique

factorization domain. It can be seen from Proposition 3.1 that Z[i]2n is a Euclidean domain,

so it is a principal ideal domain and unique factorization domain □ .

Property 3.3 There are 42
n

units in Z[i]2n .

Proof: Suppose that α is a unit, α ∈ Z[i]2n . Then there is an element β ∈ Z[i]2n that makes

β · α = I = (1, · · · , 1), namely Φ(αβ) = Φ(I) = 2n. From the definition of multiplication in

Z[i]2n , we have Φ(α) = 2n and the component of α is ±1 or ±i. Obviously, there are exactly

42
n

such elements □ .

Property 3.4 Let pi(0 ≤ i ≤ 2n − 1) be a prime number. The equation x2 + y2 = pi has

no integer solution if and only if the elements in the form of (1, · · · , 1, pi, 1, · · · , 1) are prime

elements in Z[i]2n .

Proof: Sufficiency: Let P = (1, · · · , 1, pi, 1, · · · , 1). Suppose that the equation x2 + y2 = pi
has the integer solution (x0, y0), then we have pi = (x0 + iy0)(x0 − iy0), where x0, y0 ̸= 0.

Thus P has nontrivial factors (1, · · · , 1, x0 + iy0, 1, · · · , 1) and (1, · · · , 1, x0 − iy0, 1, · · · , 1)
This contradicts the fact that P is a prime element. So the equation x2 + y2 = pi has no

integer solution.



560 Criteria for entanglement and separability of discrete quantum states

Necessity: Suppose that the equation x2 + y2 = pi has no integer solution. We should

prove P must be a prime element. If P is not a prime element, then P can be decomposed.

Let P = (1, · · · , 1, a+ ib, 1, · · · , 1)(1, · · · , 1, c+ id, 1, · · · , 1), and a2+ b2 ̸= 1, c2+d2 ̸= 1, then

pi = (a + ib)(c + id). By φ(pi) = φ((a + ib)(c + id)), we have pi
2 = (a2 + b2)(c2 + d2), thus

a2 + b2|pi2, c2 + d2|pi2. So a2 + b2 = pi
2 or pi. By c2 + d2 ̸= 1, we get a2 + b2 = pi. And

because a, b ∈ Z, the equation x2 + y2 = pi has integer solutions (a, b), which contradicts the

supposition □ .

Property 3.5 If the prime number pi(0 ≤ i ≤ 2n − 1) can be written in the form of 4n+ 3,

then the elements shaped as (1, · · · , 1, pi, 1, · · · , 1) are prime elements in Z[i]2n .

Proof: From Proposition 3.4, we just need to prove that the equation 4n + 3 = x2 + y2

has no integer solution. Suppose (x0, y0) is the integer solution of the above equation. Let

x0 = 2m + j, y0 = 2n + k,m, n ∈ Z, j, k = 0 or 1, then 4n + 3 = (2m + j)2 + (2n + k)2 =

4(m2 + n2 + mj + nk) + j2 + k2. j2 + k2 can only be 0,1,2 , it cannot be 3. So the front

formula cannot be true. Therefore, 4n+3 = x2+y2 has no integer solution. This proposition

is proved □ .

Property 3.6 If the prime number pi(0 ≤ i ≤ 2n − 1) is in the form of 4n + 1, then the

elements shaped as (1, · · · , 1, pi, 1, · · · , 1) are nonprime elements in Z[i]2n .

Proof: Obviously, pi is an odd prime number. If (1, · · · , 1, pi, 1, · · · , 1) is not a prime element

in Z[i]2n . from Proposition 3.4, the equation x2 + y2 = pi has an integer solution. Let the

solution be (x0, y0). Then x0, y0 cannot have the same parity. Otherwise, there must be 2|pi.
This contradicts the fact that pi is an odd prime number. So one of x0 and y0 must be odd

and the other even. Suppose that x0 = 2j, y0 = 2k + 1, then x0
2 + y0

2 = (2j)
2
+ (2k + 1)2 =

4(j2 + k2 + 2k) + 1. That is, x0
2 + y0

2 is a prime number in the form of 4n + 1. Hence the

elements shaped as (1, · · · , 1, pi, 1, · · · , 1) are nonprime elements in Z[i]2n □ .

Next, we will discuss the prime elements with the from a+ bi(b ̸= 0) in components.

Property 3.7 Let αj = a+ bi, αj /∈ Z, αj ∈ Z[i], 0 ≤ j ≤ 2n − 1. a2 + b2 is a prime number.

Then the elements in the form of (1, · · · , 1, αj , 1, · · · , 1) are prime elements in Z[i]2n .

Proof: Let a2 + b2 = p, (1, · · · , 1, αj , 1, · · · , 1) = P . Now we prove that P has only trivial

factors. By the definition of multiplication in Z[i]2n , we just need to prove αj has no nontrivial

factor in Z[i]2n . Suppose that β is a factor for αj , now prove that β is a trivial factor. Let

αj = βγ, we have φ(αj) = φ(βγ) = φ(β)φ(γ) = p. Since p is a prime number, φ(β) = 1 or

p. If φ(β) = 1, then β is a unit in Z[i]. Also, if φ(β) = p, then β is an associated element.

Thus P has only trivial factors. Namely the elements in the form of (1, · · · , 1, αj , 1, · · · , 1)
are prime elements in Z[i]2n □ .

Property 3.8 Let αj = a + bi, αj /∈ Z, αj ∈ Z[i], a2 + b2 = p1p2 · · · pn, where pt(1 ≤ t ≤ n)

is a prime number. We have

(i) If n = 1, then the element in the form of (1, · · · , 1, αj , 1, · · · , 1) is a prime element in
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Z[i]2n .
(ii) If n ̸= 1, then the element in the form of (1, · · · , 1, αj , 1, · · · , 1) is a nonprime element

in Z[i]2n .

Proof: (i) From Proposition 3.7, this conclusion is established.

(ii) Obviously, b ̸= 0, a2+b2 = (a+bi)(a−bi) = p1p2 · · · pn. Suppose that there exists a prime

number in the form of 4n+ 1 or 2, and let p2 be this prime number. By Proposition 3.6, we

get p2 = (x0 + y0i)(x0 − y0i), x0, y0 ∈ Z, y0 ̸= 0, and (a + bi)(a − bi) = p1(x0 + y0i)(x0 −
y0i)p3 · · · pn. Since Z[i] is a unique factorization domain, a + bi is either x0 + y0i or it can

still be factored. Because p1 is a prime number, a + bi cannot be x0 + y0i. Thus a + bi is

reducible in Z[i]. According to the definition of multiplication in Z[i]2n , (1, · · · , 1, αj , 1, · · · , 1)
is a nonprime element. If p1p2 · · · pn are all prime numbers of the form 4n+3, then p1p2 · · · pn
is a factorization of a2 + b2. From the property of Z[i], a+bi can still be factored. Hence the

element in the form of (1, · · · , 1, αj , 1, · · · , 1) is a nonprime element □ .

Property 3.9 If an element contains two or more components that are not 1, then the element

is not a prime element in Z[i]2n .

Proof: Let (α0, α1, · · · , α2n−1) ∈ Z[i]2n , then

(α0, α1, · · · , α2n−1) =

2n−1∏
j=0

(1, · · · , 1, αj , 1, · · · , 1)

If (α0, α1, · · · , α2n−1) contains two or more components that are not 1, Then at least two ele-

ments (1, · · · , 1, αj , 1, · · · , 1) and
(
1, · · · , 1, αj′ , 1, · · · , 1

)
in the above formula are nontrivial

factor of (α0, α1, · · · , α2n−1). Thus (α0, α1, · · · , α2n−1) is not a prime element in Z[i]2n . This
proposition is proved □ .

Property 3.10 An element in Z[i]2n is a prime element if and only if it is an irreducible

element.

Proof: In the unique factorization domain, the element is an irreducible element if and only

if it is a prime element. Because Z[i]2n is a unique factorization domain, the element in the

ring is a prime element if and only if it is irreducible □ .


