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In [Science 340:1205, (2013)], via entanglement polytopes Michael Walter et al. obtained a finite
yet systematic classification of multi-particle entanglement. It is well known that under SLOCC, pure
states of three (four) qubits are partitioned into six (nine) families. Acin et al. proposed the generalized
Schmidt decomposition for three qubits and partitioned pure states of three qubits into five types. In
this paper,we present a LU invariant and an entanglement measures for the GHZ SLOCC class of three
qubits, and partition states of the GHZ SLOCC class of three qubits into ten families and each family
into two subfamilies under LU. We give a necessary and sufficient condition for the uniqueness of the
generalized Schmidt decomposition for the GHZ SLOCC class.
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1 Introduction

Quantum entanglement is considered as a key quantum mechanical resource in quantum informa-
tion and computation such as quantum teleportation, quantum cryptography, quantum metrology, and
quantum key distribution [1]. To understand entanglement, lots of efforts have contributed to study
the convertibility of two states under local unitary operators (LU), local operations and classical com-
munication (LOCC), and Stochastic LOCC (SLOCC).

Two pure n-qubit states [¢)') and |¢)) are LU (SLOCC) equivalent if the two states satisfy the
following equation,

W) = A1 ® Ay ® - @ Anlt), (1

where 2 by 2 matrices A; are unitary (invertible).

Under SLOCC, pure states of three qubits were distinguished into six equivalence classes GHZ, W,
A-BC, B-AC, C-AB, and A-B-C [2], and pure states of four qubits were partitioned into nine families
or more [3, 4]. Classification of multipartite entangled states by multidimensional determinants were
investigated [5].

Under LU, Acin et al. divided pure states of three qubits into five types [6]. It is known that if two
states are LU equivalent, then they have the same amount of entanglement and can do the same tasks
in quantum information theory [2, 3, 7, 8].

Lots of efforts have devoted to studying the characterization, the quantification, and the classifi-
cation of the entanglement via Schmidt decomposition [6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 28, 29]. Acin et al. proposed the generalized Schmidt decomposition of three qubits [6].
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Carteret et al. discuss the Schmidt decomposition for the multipartite system [15]. Kraus proved that
two states are LU equivalent if and only if they have the same standard forms [7, 8]. Vicente et al.
derived a new decomposition for pure states of three qubits, which is characterized by five parame-
ters (up to local unitary operations) [10]. Liu et al. proposed a practical entanglement classification
scheme for pure states of general multipartite for arbitrary dimensions under LU [20]. Li and Qiao
proposed a practical method for finding the canonical forms for pure and mixed states of arbitrary
dimensional multipartite systems under LU [21]. Via the generalized Schmidt decomposition of three
qubits, Kumari and Adhikari partitioned positive states (i.e. the states with the phase factor § = 0) of
the GHZ SLOCC class into four subclasses and proposed the witness operator for the classification
[28].

The canonical form and the entanglement measure and classification for three qubits have been
widely studied topics [6, 10, 22, 23, 24, 25, 26, 27, 28, 29]. The SLOCC entanglement classification
of three and four qubits has many applications. For example, a one-to-one correspondence between
the SLOCC entanglement classification of three and four qubits and the classification of the extremal
black holes was established [30]. LU classification of black holes corresponding to GHZ SLOCC
class is studied in [31].

In this paper, we present a LU invariant for the GHZ SLOCC class of three qubits, and partition
the GHZ SLOCC class of three qubits into ten families and each family into two subfamilies under
LU. Thus, the infinite LU equivalence classes of the GHZ SLOCC classes are partitioned into 20
subfamilies.

2 Parameters o and . for the GHZ SLOCC class

By means of LU transformations, any pure state of three qubits can be written as

[) = Xo|000) 4+ A;e™|100)
+A2]101) + A3|110) + A4|111), )

where \; > 0, Z?:o )\12 = 1,0 < ¢ < 7, ¢ is referred to as the phase of |¢) [6]. In this paper, ¢
is limited to [0, 27). Eq. (2) is referred to as Acin et al.’s Schmidt Decomposition (ASD) of the state

[¥).

For simplicity, |¢) is written as
) = (Ao, A€, Az, As, Aa), 3)

which is the set of the coefficients of the five LBPS (local bases product states). The set of the
coefficients in Eq. (3) is called Acin et al.’s Schmidt coefficients (ASC) of |[1).

A state is referred as to an ¢-LBPS state if the state has just ¢ non-vanishing Schmidt coefficients.

Motivation 1. In [6], the authors partitioned pure states of three qubits into five types: Types 1, 2
(2a and 2b), 3 (3a and 3b), 4 (4a, 4b, and 4c), and 5. Specially, states of the GHZ SLOCC class were
partitioned into Types 2b, 3b, 4b, 4c, and 5 [6].

The Schmidt Decomposition for three qubits and the LU classification of three qubits have had a
significant impact on QIC. It is well known that in several aspects the GHZ state %(|000> + [111))
can be regarded as the maximally entangled state of three qubits [2]. Recently, Kumari and Adhikari
divided positive states (i.e. the states with the vanishing phases) of the GHZ SLOCC class into four



404  Partition GHZ SLOCC class of three qubits into ten families under LU

subclasses 1, 2, 3, 4 and compared the maximal teleportation fidelities, the entanglement, and the
tangle in the four subclasses.

Of course, it is fundamental to partition the GHZ SLOCC class completely under LU.

Motivation 2. We want to find a criterion to determine what states have the unique Schmidt
decomposition or not. For the states which have the unique Schmidt decomposition, one can see that
subjected to local random unitary noise, their ASDs do not change.

Motivation 3. It is interesting to study the classification for back holes via the LU entanglement
classification of the GHZ SLOCC class [31]. Lot of research had been done on the relation between
the SLOCC entanglement classification of three and four qubits and the classification of the extremal
black holes [30].

Kallosh and Linde investigated the black holes with 4 non-vanishing integer charges qq, p*, p?,
p>, which correspond to the following states [32].

—p'|001) — p*|010) — p°[100) + go[111). 4

The states in Eq. (4) belong to the GHZ SLOCC class. It is potential to establish a relation
between the classification of the black holes with 4 non-vanishing charges ¢, p*, p?, p* and the LU
classification of the GHZ SLOCC class [31].

We next discuss LU classification of the GHZ SLOCC equivalence class via ASD. |¢)) in Eq. (2)
belongs to the GHZ SLOCC class if and only if AgA4 # 0 [22].

Let

v = M€ — Ag)s. 3)

The parameters o and ¢ were defined for the states with v # 0 of the GHZ SLOCC class [23]. Here,
we define the parameters g and ¢ for the whole GHZ SLOCC class, then show that |In g| is a LU
invariant for the whole GHZ SLOCC class below.

For |¢) in Eq. (2), when AgA4 # 0, we define

o9) = VIt I3 N0Z+ ), ©)
Wl9)) = (Mds +77/0%) /X, @)

where ~* is the complex conjugate of v, J; = |y|?, and J; = (Ao\4)?. J;1 and J, are LU invariants
[6]. Clearly, o(|¢))) > 0.

When it is clear from the context, we write p and ¢ for o(|1)) and ¢(|¢))), respectively. o and ¢ are
used to describe the LU equivalence of two ASD states and partition ASD states of the GHZ SLOCC
class under LU below.

Let us consider the state

Ww) = ((1/9)/\0791’7 Q)‘27Q)\3HQ)\4)- (8)

We say that |1, ,) is obtained by applying ¢ — ¢ transformation to |¢). Note that the phase of the
complex number ¢ is just the phase of [¢,,,). Let o' = o(|9),..)) and ¢’ = ¢(|9),,,)). Then, a calculation
yields

o' =1/o. )
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That is,
odo=1 (10)
Via Egs. (7, 9),
V= ohiet?. (11)

We next show that |1) can also be obtained by applying ¢’ — ¢’ transformation to |1, ,) in Eq. (8).
From Egs. (8, 9, 11), a calculation yields that

(1/)((1/0)X0), @'t 0" (0A2), 0'(0A3), ' (0A4))
= (Mo, A1e™, Ao, Az, Ag) = [9). (12)

Therefore, if |¢/) can be ¢ — ¢ transformed into |1, ), then |1, ,) can also be ¢’ — ¢/ transformed

into [1)).

3 LU Partition of the GHZ SLOCC class via g, ¢, and ~

It is known that AgA4 # 0 for the GHZ SLOCC class. Here, the states with non-negative (real and
complex) coefficients are called positive (real and complex) states.

3.1 LU classification of positive states with v =10
3.1.1 Calculating o, , and |1,,,)
When v = 0, |¢) in Eq. (3) can be written as

[9) = (Xos A1, A2, A, Aa), (13)

where A\; Ay = A2 A3 [23]. For |¢) in Eq. (13), a calculation yields that

0 = Xo/y/1-A5, (14)
L= A3/ A= Mg/ =N, (15)
‘w@,» = ((1/Q)A07Q)‘17Q)‘25Q)\37QA4)- (16)

Specially, when ¢ = 1, from Eqgs. (14, 16), we obtain

Ao =
|'(/)Q,L> =

1
7 a7
|¥). (18)

Result 1. In light of Proposition 2 in [23], one can know that |¢)") is LU equivalent to |¢) with
~v = 0if and only if |¢)') = [¢},,) in Eq. (16).

From Result 1, we have the following corollary 1.1.

Corollary 1.1. Tf |’} is LU equivalent to |¢)) with v = 0, then |In g| = | In ¢|, and |¢’) and |¢))
both are positive and have the same kinds of LBPS.
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3.1.2 LU classification of positive states with v = 0

The states with v = 0 are partitioned into four positive families P;,7? = 1, --- , 4. Ref. Table 1.

We next argue that P;,+ = 1,--- ,4, are LU inequivalent.

In light of Result 1 and via Eqgs. (13, 16), one can see that A; and g\;, ¢ = 1, 2, 3, both vanish or
neither does. It guarantees that P;, i = 1,--- ,4, are LU inequivalent. For example, A; # 0 for P;

while Ay = 0 for P;, ¢ = 2, 3, 4. Therefore, P; is LU inequivalent to P;, i = 2, 3, 4.

Again, P; is divided into two subfamilies P/ (states with ¢ = 1) and P}’ (states with g # 1). Ref.
Table 1. Corollary 1.1 implies that P/ and P/, i = 1,2, 3,4, are LU inequivalent. Clearly, each LU
class of P/ is a singleton, and each LU class of P/’ consists of only two states |¢) and |1, ,).

Via Eq. (14), a calculation yields that Ay = % if and only if o = 1. In light of Result 1 and
Corollary 1.1, we have the following Corollary 1.2.

Corollary 1.2. ASD of a positive state with v = 0 is unique if and only if ¢ = 1. In other words,
ASD of a positive state with v = 0 is unique if and only if Ay = %

The contrapositive version of Corollary 1.2 leads to the following. ASD of a positive state with
~ = 0 is not unique if and only if ¢ # 1 (in other words, Ay # %).

[\v]

Table 1. Positive families P;, s = 1,--- ,4, for which~y = 0
o=1 0#1
Py {(Ao, A1, A2, Az, ) bt | Pl Ao = % Py
Py; {(X0,0,0, A3, A\a)} Phlo=— | P
P3:{(X0,0, 2,0, A1)} Pido= o5 | PY
Py; {(X0,0,0,0,24)} P; ={GHZ} | P/
I Each state of P; satisfies that A\; Ay = Ao A3 # 0.
3.2 LU classification of real states with v a3 # 0
Let
[¥) = (Ao, 0A1, A2, Az, Ag), (19)
where § = 1, v # 0, Ao A3 # 0, but A\; may vanish.
3.2.1 Calculating o, ¢, and |1,,,)
A calculation yields that
7= A — A2As, (20)
0 = VIt A3+ )03+ ) @1
L (A2Xs +7/0%) /M, (22)
[Vo.) = ((1/0)Ao, 0L, 0X2, 0A3, 0\4). (23)
One can know that ¢ is real and |1, ,) is a real state.
When ¢ = 1, from Egs. (21, 22, 23), a calculation yields that
L = 6)\17 (24)
1 dA12
Ny o= D% (25)
2 A4

[You) = [¥)- (26)
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Conclusion 1. (i). Via Eq. (24), we can conclude that for a real 5-LBPS state with v £ 0, if o = 1,
then ¢ # 0 because A\; # 0.

(ii). The contrapositive version of the above (i) leads to the following. For a real 5-LBPS state
with v # 0, if ¢ = 0 then ¢ # 1.

When Ay = 0, from Egs. (19, 20, 21, 22, 23), we obtain

[¥) = (Ao,0,A2, A3, A1), 27)
7= —A2lg, (28)
L= Aads(1—1/0%)/ )\, (29)

o = VO T Dha)2/ /(3 + A+ A2)
(30)
Vo) = ((1/0)Aos 0, 0A2, 023, 0A4), (31)

Conclusion 2. (i). For the 4-LBPS state |¢)) with \; = 0, a calculation yields that ¢« = 0 if and
only if o = 1 if and only if A\g = 1/v/2 (i.e. |¢) is of the form (1/v/2,0, A2, A3, Ag)) [23].
(ii). The contrapositive version of the above (i) leads to the following. For the 4-LBPS state |1)
with A\; = 0, ¢ # Oifand only if p # 1ifand onlyif g # 1/v/2 (i.e. [¢) = (Ao(# 1/v/2),0, A2, Az, Ag)).
Result 2. In light of (i) of Proposition 3 in [23], |¢’) is LU equivalent to |¢) in Eq. (19) if and
only if [¢") = |,.,) in Eq. (23).

From Result 2, we have the following corollary 2.1.

Corollary 2.1. If |¢") is LU equivalent to |¢) in Eq. (19), then |¢)') is also real because ¢ is real
and |In o| = |1In ¢/|.

3.2.2  Two states with different number of LBPS may be LU equivalent
When p # 1, then ¢ in Eq. (29) is a non-zero real number and |1, ,) in Eq. (31) is a real 5-LBPS state.
Thus, the 4-LBPS state (A\o(# 1/v/2),0, A2, A3, As) is LU equivalent to a real 5-LBPS state [¢),,,). It
means that the number of LBPS is not a LU invariant.

For example, let

‘¢> = (1/2)(1’())17171)’ (32)
|¢/> = (?afgagvgvg)' (33)

Clearly, |¢) has four LBPS and |¢’) has five LBPS.
Moreover, a calculation yields that

¢") = H® H & H|¢), (34)

where H is the Hadmard matrix. It is well known that the Hadmard matrix is a unitary matrix.
Therefore, |¢') and |¢) are LU equivalent though they have different number of LBPS.

3.2.3 LU classification of real states with yAa A3 # 0

All the real states with yAs A3 # 0 are partitioned into the real families R; and R,. Let R; be the
family consisting of the 5-LBPS real states with v # 0 and ¢ # 0. Let Ry be the family consisting of
the 4-LBPS real states of the form (Ao, 0, A2, A3, A4) (of course, v # 0) and the 5-LBPS real states
with v % 0 and ¢ = 0. Ref. Table 2.
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We next argue that 7, and Ry are LU inequivalent.

Let |¢)) be a state in Ry. Then, |¢) is a 5-LBPS state with v¢ # 0. In light of Result 2, if |¢)
is LU equivalent to [¢), then [¢)') = |, ) in Eq. (23). Thus, |¢)') is also a real 5-LBPS state with
V' = 8o\ # 0 (ref. Eq. (11)). Then, it is not hard to see that Ry and Ry are LU inequivalent.

Table 2. Real families R; and Ry for which v # 0 and A2 A3 # 0
Ry | 5-LBPS real states with v # 0 and ¢ # 0

Ro | 4-LBPS real states with \; = 0

and 5-LBPS real states with v £ 0 and ¢t = 0

Family R; is divided into two subfamilies R} (consisting of the states with o = 1) and R/ (consist-
ing of the states with g # 1). Ref. Table 3. Corollary 2.1 implies that R; and R} are LU inequivalent.
One can know that each LU class of R; is a singleton and each LU class of R/ consists of only two

states |¢) and |1, ,).
Table 3. Family R; is divided into two subfamilies R/, (the states with ¢ = 1) and R}/ (the states with ¢ # 1).

o=1 071,

Rll :{(A035A17A27>\3a)\4)} /1/ :{|¢>’ wQ,L>}

RIQ :{(%707/\27>‘3v)‘4)} /2/ :{‘w>’ W}Q,L>}

In light of Result 2 and Corollary 2.1, we have the following Corollary 2.2.

Corollary 2.2. ASD of a real state with YA A3 # 0 is unique if and only if ¢ = 1. In other words,
via Eq. (25), ASD of a real state with yA2 A3 # 0 is unique if and only if A3 + A7 = 1 + ‘S’\i\%

The contrapositive version of Corollary 2.2 leads to the following. ASD of a real state with
~vA2A3 # 0 is not unique if and only if ¢ # 1. In other words, ASD of a real state with yA2A3 # 0 is

not unique if and only if A3 + \? # % + ‘”‘3%.

3.2.4  The number of LBPS is not LU invariant for R}

In light of (ii) of Conclusion 1, the 5-LBPS real states with v # 0 and ¢« = 0 belong to RY.

In light of (i) of Conclusion 2, R, consists of the states of only the form (%7 0, A2, Az, Ag).

In light of (ii) of Conclusion 2, the states of the form (A\o(# 1/v/2),0, A2, A3, A4) belong to RY.

In light of Conclusions 1 and 2, each LU class of RY is a pair of a 4-LBPS state |¢)) of the form
(Mo(# 1/v/2),0, A2, A3, \4) and a real 5-LBPS state with v # 0 and ¢ = 0 (= [t0p..)). For example,
(|9}, |¢')) is a LU class of RY.

Therefore, the number of LBPS is not LU invariant for RY.

3.3 LU classification of complex states with v # 0 and A3 =0
Let |¢)) be the state with v # 0 and AyA3 = 0. Then, clearly A; # 0 for the states with v # 0 and
A2A3 = 0.

3.3.1 Calculating g, 1, and |1),,)

From Appendix A, when A\; # 0 and Ax A3 = 0, the following two states are LU equivalent for any ¢
and y.

[0) = (Ao, M1e™?, A2, A3, Aa), (35)
(Ao, A1e™, A2, Az, A\a), (36)

)
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Note that o(|1))) = o(|ww)). It implies that a state with v # 0 and A2A3 = 0 has infinite ASD.
Appendix A tells us that we don’t need to consider the phases when determining if two states with
v # 0 and Ao A3 = 0 are LU equivalent. That is, we only need to consider the following states with
Y # 0 and )\2A3 =0.

[U) = (Xos A1, Az, Az, Ag) (37)
For |¢) in Eq. (37) with v # 0 and A2 A3 = 0, a calculation yields that
o= M/d% (38)
(S \/A%Jr)\%/\/l—/\%—)\%, (39)
[Vo,.) = ((1/0)Ao, A1/0, 0A2, 023, 0)4). (40)

When o = 1, from Egs. (38, 39, 40), obtain

L= Al (41)
N+ = 1/2, (42)
W’Q,L) = |¢> (43)

Result 3. In light of (ii) of Proposition 3 in [23], one can know that |¢)") is LU equivalent to |¢))
with v # 0 and A2 A3 = 0 if and only if |¢') = |¢,,,) ignoring the phases.

From Result 3, we have the following corollary 3.1.

Corollary 3.1. If |[¢") is LU equivalent to [¢p) with v # 0 and A2A3 = 0, then |Ing| = |In¢/|
and |¢)') and |¢)) have the same kinds of LBPS.

3.3.2 LU classification of complex states with -y # 0 and A 3 = 0

In Table 4, we partition the complex states with v # 0, and A; A3 = 0 into three families C;, i = 1,2, 3.

We next argue that C;, ¢ = 1, 2, 3, are LU inequivalent.

In light of Result 3 and via Eqgs. (37, 40), one can know that \; and p);, ¢« = 2, 3, both vanish or
neither does. But, Ay = 0 for C; and C3 while Ay # 0 for Cs, and A3 = 0 for C3 and C5 while
A3 # 0 for C1. Therefore, C;, i = 1,2, 3, are LU inequivalent.

Each complex Family C; is divided into two subfamilies C} (states with ¢ = 1) and C}’ (states
with ¢ # 1). Note that each LU class includes infinite states with v # 0 and Ao A3 = 0. After ignoring
phase, each LU class of CY is a singleton and each LU class of C}’ consists of only two states |¢) and
|10o,.). Ref. Table 4. Corollary 3.1 implies that C} and C}’, i = 1,2, 3, are LU inequivalent.

In light of Result 3 and Corollary 3.1, we have the following Corollary 3.2.

Corollary 3.2. Ignoring phases, ASD of a complex state with v # 0 and A2A3 = 0 is unique if
and only if o = 1. In other words, via Eq. (42), ASD of a complex state with v # 0 and Ay A3 = 0 is
unique if and only if A2 + A\? = 1/2 ignoring phases.

The contrapositive version of Corollary 3.2 leads to the following. ASD of a complex state with
v # 0 and A2 A3 = 0 is not unique if and only if ¢ # 1 (in other words, A3 + \? # 1/2) ignoring
phases.

Table 4. Complex families C'1, C2,and C'3 for which v # 0 and Ag A3 = 0
Y # 0,223 =0 o=1]0#1
Cl;{(>‘07)‘16wa0»)‘37>‘4)} Ci;<1 C{I’{|¢>’ |1/JQ,L>}
Coi{( Mo, A1e™?, X2, 0, M)} | Chi | CY{[9), [,0)}
CB;{(AO?)‘lewaO»O’AO} Cé;<] Cél’{|7/]>’ |1/JQ,L>}
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AN+ N =1/2.

3.4 LU classification of complex 5-LBPS states with the phases p #0 or w
Let |¢)) be a complex 5-LBPS state with the phases ¢ # 0 or . We write |1)) as follows.

‘¢> = (A07Aleiw7A23A37A4)7 (44)

3.4.1 Calculating o, t, and the state |1),,,)
For the complex 5-LBPS states with the phases ¢ # 0 or 7, via Egs. (5, 6, 7, 8), we have the following

Y= Ae’® — g, (45)
o= Az +77/0%)/ M, (46)
¢ = VIFRA M08+ X)), @)

[Vo) = ((1/0)Xo, 01, 0A2, 0X3, 0)4). (48)

It is not hard to see that v # 0 and the imaginary part of ¢ does not vanish. Thus, |1, ,) is also a
complex 5-LBPS state whose phase is not 0 or 7.
When ¢ = 1, from the above equations a calculation yields that

L= e, (49)
o) = (Ao, A1e7%, A2, A3, \s) (50)
= ") (5D

7 [¥). (52)

where [1)*) is the complex conjugate of |)).

Result 4.

In light of (i) of Proposition 3 in [23], |¢’) (£ |#)) is LU equivalent to the complex 5-LBPS state
|¢) with the phase ¢ # 0 or  if and only if |¢)') = |4, ,) in Eq. (48).

From Result 4, we have the following Corollaries 4.1.

Corollary 4.1. If |¢") is LU equivalent to the complex 5-LBPS state |¢)) with the phase ¢ # 0 or
7, then | In o| = |1n ¢’| and |¢)") is also a complex 5-LBPS state whose phase is not 0 or 7.

3.4.2 LU classification of complex 5-LBPS states with the phases p # 0 or

Let Family C4 consist of complex 5-LBPS states with the phases ¢ # 0 or 7. It implies that for those
states, v # 0 and ¢ # 0.

We next argue that Cy is LU inequivalent to C;, i = 1,2, 3.

In light of Corollary 4.1, if [¢)") is LU equivalent to the complex 5-LBPS state |¢)) with the phase
¢ # 0 or m, then [¢') is also a complex 5-LBPS state. From Table 4, one can see that C;, i = 1,2,
consist of 4-LBPS states and C3 consists of 3-LBPS states. Therefore, C, is LU inequivalent to C},
1=1,2,3.

C, is divided into two subfamilies C (states with o = 1) and C (states with ¢ # 1). Ref. Table
5. Via Eq. (51) and in light of Result 4, each LU class of C) consists of a state and its complex
conjugate, while each LU class of C}’ consists of only two states |¢) and |1, ,), where [, ,) # |{%).

In light of Result 4 and Corollary 4.1, we have the following Corollary 4.2.
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Corollary 4.2. Considering |¢) and its complex conjugate |)*) to be the same, ASD of a complex
5-LBPS state with the phases ¢ # 0 or 7 is unique if and only if o = 1.

The contrapositive version of Corollary 4.2 leads to the following. Considering |¢) and its com-
plex conjugate |1)*) to be the same, ASD of a complex 5-LBPS state with the phases ¢ # 0 or 7 is
not unique if and only if p # 1.

Table 5. Complex Family C4 (5-LBPS states with ¢ 7# 0 or 7).

Cy: 5-LBPS states with ¢ # 0,7 | each LU class
C, ={ states with o = 1} ={|), [v*)}
Cy ={states with o # 1} ={[¥), [tho.)}

3.4.3 C) (CY) is the set of states being (not being) LU equivalent to their complex conjugates

For the 5-LBPS state 1)) with o(|¢))) # 1, one can also verify that [¢,,) is not |¢*) as follows.
Clearly, o(|1)) = o(|1*)), thus o([¥)))e(|¢*)) # 1 when o(|¢)) # 1. ViaEq. (10), [¢),,,) is not [)*).
Thus, each state of C} is LU inequivalent to its complex conjugate.

A twelfth degree complex polynomial invariant g, introduced by Grassl [14], can distinguish
among two complex conjugate ASD states which are LU inequivalent [9]. The bipartite operational
measure [; is also used to determine if a state is LU equivalent to its complex conjugate [10]. For a
complex 5-LBPS state |¢) with the phases ¢ # 0 or 7, the value of o(|¢/)) determines whether or not
|1} is LU equivalent to its complex conjugate |¢)*). Note that p is positive and simpler than Is and
E1 .

It is known that |1) and |1)*) possess the same entanglement properties [7]. The class of states not
being LU equivalent to their complex conjugates is referred to as NCLU [10]. The existence of NCLU
states is a surprising property of multipartite system which does not exist for the bipartite system [10].
Clearly, one can see that CY/ is just NCLU, and it is easy to find C.

Remark 1: 5-LBPS states are partitioned into four families : the positive family P, the real fami-
lies Ry and Rs, and the complex family C. Furthermore, each family is divided into two subfamilies.
Thus, 5-LBPS states are partitioned into seven subfamilies: P;, P;’, R}, Ry, Ry, C} and C}.

Remark 2. The number of LBPS is a LU invariant for the GHZ SLOCC class except for only
R} . Thus, two states of the GHZ SLOCC class except for R} with different number of LBPS are LU
inequivalent.

Remark 3. For any state of the GHZ SLOCC class, when o # 1 then its ASD is not unique, while
o = 1, its ASD is unique for the families P;,7 = 1,2, 3,4, Ry, and R, for the families C;,7 = 1,2, 3,
ignoring the phases, and for the family Cy considering the state and its complex conjugate to be the
same. Therefore, for the GHZ SLOCC class, ASD is unique if and only if o = 1. Thus, we can call
o the uniqueness parameter. When ¢ # 1, from |4) and |4, ,), we choose the one with ¢ < 1 as the
canonical ASD.

3.5 The argument for the complete LU classification of the GHZ SLOCC class

We partition the positive states with v = 0 into four positive families P;, ¢ = 1, 2, 3, 4, the real states
with v # 0 and A2A3 # 0 into two real families Ry and Rs, the complex states with v # 0 and
A2A3 = 0 into three complex families C;, ¢ = 1,2, 3, and let C4 include the complex 5-LBPS states
with ¢ # 0 or 7. Note that for 5-LBPS states with ¢ # 0 or 7, v # 0 and ¢ # 0.

In total, we partition the GHZ SLOCC class of three qubits into 10 families. Each family is
partitioned into two subfamilies one of which has ¢ = 1 while the other one has ¢ # 1.
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(1). Since J; is LU invariant, where J; = |~y\2, and v = 0 for Py, P, P3, and P, while v # 0 for
Ry, Ry, Cq, Co, Cs, and CYy, the positive families Py, P>, P3, and P, are LU inequivalent to Ry, Ro,
Cl, CQ, C3, and 04.

(i1). In light of Results 2 and 3, the real families R; and Ry are LU inequivalent to the complex
families C;, © = 1, 2, 3. For any state in R; and Rs, the phase is 0 or 7, while for any state of Cy, the
phase is neither O nor 7. In light of Results 3 and 4, Cy is LU inequivalent to the real families R; and
RQ.

3.6 A LU invariant for the GHZ SLOCC class

In the above section, for the positive states (resp. the real states and the complex states) of the GHZ
SLOCC class, we show that |In g| is a LU invariant. Thus, the state with ¢ = 1 and the state with
o # 1 are LU inequivalent. Then, we can conclude that

(1). | In | is a LU invariant for the whole GHZ SLOCC class.

(2). For any two states |11 ) and |1)) of the GHZ SLOCC class, if o(|1)1))o(|1)2)) # 1, then [t1)
and |1)2) are LU inequivalent.

‘We propose m as a measure of the entanglement for the GHZ SLOCC class. For the measure,
the GHZ state has the maximal entanglement m = 1. For |$), 0 = 1/+/2 and for |¢'), o' = /2.

Thus, for |¢) and |¢'), tr1mg = 155+

3.7 Some states with the unique ASD

For the positive or real state |¢)) with o = 1, subjected to local random unitary noise, the ASD of |))
does not change. That is, U; ® Uy ® Us|t) and |¢) have the same ASD.
We give the following positive states for which o = 1.

(1/+/2)(]000) + [111))
(1/v/2)]000) 4 (1/2)[101) + (1/2)|111)
(1/+/2)|000) + (1/2)[110) + (1/2)[111)

L1000y + L j101) + —L|110) + 2111y
V2 2v2 22 2

€ 1100y + [101) + [110) + [111))

\/Q|ooo>+ N

4 Summary

It is well known that pure states of three qubits are partitioned into six SLOCC equivalence classes,
two of which are the W SLOCC equivalence class and the GHZ SLOCC equivalence class [2]. Acin
et al. partitioned pure states of three qubits into five types [6]. The positive states of the GHZ SLOCC
class were partitioned into four subclasses [28].

We propose the LU invariant | In g| and the entanglement measure m for the GHZ SLOCC
equivalence class of three qubits. Via parameters p, ¢, and 7y, we partition positive, real, and complex
states of the GHZ SLOCC class into ten families, and each family into two subfamilies under LU.

Each LU class of C} is a pair of a complex 5-LBPS state with the phases ¢ # 0 or 7 and its

complex conjugate. C} is the set of states not being LU equivalent to their complex conjugates. But,
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(' does not exist for the bipartite system. It is interesting to find criteria to partition C and C}
furthermore.

Each LU class of R} is a pair of a 4-LBPS state |1)) of the form (A\o(# 1/v/2),0, A2, A3, A4) and
a real 5-LBPS state with v # 0 and ¢ = 0 (= |1,,)). We show that the number of LBPS is a LU
invariant for the GHZ SLOCC class except for only RY.

We show that for the GHZ SLOCC class, ASD of a state is unique if and only if p = 1. Thus,
subjected to local random unitary noise, ASD of a state with ¢ = 1 does not change. We give some
positive states with o = 1.

A. Kumari and S. Adhikari partitioned positive states (i.e. the states with the phase factor § = 0)
of the GHZ SLOCC class into four subclasses. Via this LU classification of the GHZ SLOCC class, it
is easy to see that the four subclasses are inequivalent under LU.
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Appendix A LU equivalence of some special ASD states

Let
1) = (X0, A1e™, A2, Az, Ag), (B1)

[90') = (Ao, A1e™’, Az, Az, M) (B2)

When A2 A3 = 0 and AgA 1 Ay # 0, we can show that [¢') is LU equivalent to |1)).
Case 1. A3 = 0 and AgA1 Aoy # 0 Let

UA = diag (ewl’ei(zmwz)) ’
UP = diag (e*i‘Zsl , e*im) ,
UC = diag(1,e("92791), (B3)

where ¢ + ¢1 = w’' — w. Via U4, U, and U in Eq. (B3), a calculation yields that |¢/) =
UA @ UB @ UC|y)). Therefore, |1') is LU equivalent to [1)).
Case 2. Ay = 0 and AgA1AsAg # O or Ay = A3 = 0 and A\pA1 Ay # 0. Let

U4 = diag (ei"‘, em) ,
UP = diag (e_ia,e_w) ,
v = 1,

B—a = W —w.

Then, ') = U4 @ UB @ U|4).




