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This paper considers the preimage resistance of 4-round Keccak-224/256/384/512 in the

quantum setting. In order to effectively find the corresponding rotational number for the

rotational counterpart of preimage, we first establish a probabilistic algorithm based on
the Grover search to guess a possible rotational number by using the fixed relations of bits

pairs in some coordinates. This is committed to achieving that each iteration of searching

the rotational counterparts contains only one run of 4-round Keccak variant applied for
the verification, which can reduce the attack complexity in the quantum setting. Based

on finding the rotational number under an acceptable randomness, we construct two
attack models to focus on the recovery of preimage. In the first model, the Grover’s

algorithm serves as finding out a rotational counterpart of the preimage. Through 64

attempts, the desired preimage can be obtained. In the second model, we abstract the
finding of rotational counterparts into searching vertexes on a hypercube, and then,

the SKW quantum algorithm is used to deal with the finding of the vertexes acted as

rotational counterparts. As a result of quantum preimage attacks on the round-reduced
Keccak, the first attack model is superior to the generic quantum preimage attack for

4-round Keccak-224/256/384/512, and second model has slightly lower attack effect but

more practicality on the 4-round Keccak-512/384, that is, the model is exponentially
easier to implement in quantum circuit than both our first attack model and the generic

quantum preimage attack.

Keywords: Keccak, Rotational Cryptanalysis, Preimage Attack, Grover’s Algorithm,

SKW Algorithm

1 Introduction

Since the security flaws of SHA-1 [1] and the uncertain security of SHA-2, the National

Institute of Standards and Technology (NIST) announced a public contest aiming at the

standardization of next generation cryptographic hash function in 2007. The Keccak sponge

function family [2] became a candidate for the SHA-3 competition in 2008 [3] and eventually

was selected as the winner of competition in 2012. In 2015, Keccak has been standardized

as the Federal Information Processing Standards (FIPS) by NIST [4].

In recent years, there are many works of preimage attack on round-reduced Keccak in the

field of classical cryptanalysis. Among these preimage attacks, Bernstein et al. proposed the

8-round preimage attack [5], which has higher computational complexity and more memory

consumption compared with the parallel exhaustive search. By introducing the cross-linear

structures, Li et al. proposed the preimage attacks on the round-reduced Keccak variants in

[6]. With the aid of rotational cryptanalysis, Morawiecki et al. mainly tracked the propagation

of the bits relations between the preimage and its rotational counterparts, and finally provided

an indirect idea [7] to find the preimages on the round-reduced Keccak variants. In [8] Guo

et al. linearized the underlying permutation of Keccak up to 3 rounds with large number

of variable spaces, and gave several preimage attacks on 4-round Keccak variants. The

allocating approach is introduced in preimage attacks on 4-round Keccak variants by Li

et al. [9], and improved by He et al. [10]. The main idea of this attack is to allocate the

complexity into two stages in order that fewer constraints are considered, and the complexity

is lowered in each stage. More recently, with the help of solving the Boolean multivariate

quadratic (MQ) system, Wei et al. [11] reached the best attack complexities so far for the

preimage attacks on the 4-round Keccak-224 and 4-round Keccak-256.

As for the quantum cryptanalysis, the known attacks are mainly classified into two models

[12, 13, 14]: Q1 and Q2 models. In the Q1 model, it is assumed that the attacker is equipped
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with a quantum computer to perform any offline computation and can only have access to

make online classical queries. In the Q2 model, on top of the help of quantum computer,

the attacker is allowed to make online superposition queries to a cryptographic primitive. In

recent years, many interesting results have appeared under the Q2 model. For instance, in

[15] Simon’s algorithm was first used by Kaplan et al. for the forgery attack on MACs and

the exponential speed-up of slide attacks. Leander et al. combined the Grover’s algorithm

and Simon’s algorithm to greatly reduce the effective key-length of FX-construction in [16].

These works described above are based on the following assumption that cryptographic prim-

itives in the quantum setting will provide a superposition query interface for the attacker. In

practice, the designers of cryptographic primitives do not have enough motivation to expose

such powerful interfaces to attacker. Therefore, Bonnetain et al. proposed the improvement

of Grover meets Simon in [17] to bring the work of Leander et al. into the Q1 model. More

recently, an increasing number of cryptographers paid attention to the attack of keyless prim-

itives which are intrinsically belong the Q1 model. Hosoyamada et al. mounted a quantum

rebound attack to find a collision of AES-Like hash function in [18] and then a better ver-

sion was given by Dong et al. in [19]. Subsequently, Hosoyamada et al. further proposed a

quantum collision attack for SHA-2 in [20]. However, previous to our achievements presented

in this paper, there had been no dedicated quantum preimage attack on the round-reduced

Keccak variants. The latest relevant work of SHA-3 is proposed in [21] which estimated the

cost of generic quantum preimage attacks on SHA-3.

Our contributions. Firstly, we show the original preimage attack in [7] cannot be simply

generalized to the quantum setting. To determine the correctness of the guessed rotational

counterpart for the certain preimage, the attacker needs to find the corresponding rotational

number by verifying whether the fixed relations at some positions all are satisfied. However,

it is noteworthy that this satisfaction is accompanied by some randomness, which is deeply

related to the number of these positions. Consequently, for a guessed rotational counterpart,

the attacker needs to check all the 64 values of rotational number one by one. Once for some

value that leads to the satisfaction of all the fixed relations, a verification with a high-cost

running of Keccak must be required to verify the correctness of the guessed rotational coun-

terpart, resulting in the increase of attack complexity. In the quantum setting, owing to the

generally used quantum technology called the uncompute trick, this heavy workload about

these verifications needs to be doubled, which is unbearable.

In order to show that the rotational cryptanalysis can still derive a better quantum preim-

age attack compared with the generic quantum preimage attack, we need to greatly reduce

the number of the high-cost verifications in the quantum setting. We design a unitary ora-

cle operator by using the fixed relations of bits pairs at some positions, which can be used

to mark a possible rotational number for a given guessed rotational counterparts. This al-

lows us to guess the corresponding rotational number of a rotational counterpart with a

high probability by using the Grover’s algorithm. Therefore, our core idea is to change the

checking of rotational numbers one by one into a unique detection of this high-prob value,

which can roughly reduce the number of verifications by 64 times. Under the foundation of

this probabilistic algorithm, the Grover’s algorithm and the SKW algorithm are introduced

to search the rotational counterparts respectively, so as to give a quadratic speedup on the

searching of rotational counterparts, which are interpreted as two preimage attack models:
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The Grover-with-Grover model and the SKW-with-Grover model. The first attack model lays

particular emphasis on improving the attack effect of our algorithm. The second attack model

is dedicated to reducing the implementation threshold of quantum preimage attack.

The following Table 1 summarizes the best-known preimage attacks on the round-reduced

Keccak. Compared to the generic quantum preimage attack that directly uses the Grover’s

algorithm to find the preimage, our quantum preimage attack on 4-round Keccak-512 has

roughly 4 times better attack effect. Even for the 4-round Keccak-224, our preimage attack

still reduces the attack complexity by at least 25%.

Table 1. Summary of best-known preimage attacks on the round-reduced Keccak variants.

Setting Rounds Variants Time RAM qRAM Reference

Classical

6/7/8 512 2506/2507/2511.5 2176/2320/2508 0 [5]
4 512/384 2506/2378 Negligible 0 [7]
4 256/224 2214 (for 256) / 2182 (for 224) Negligible 0 [11]
4 256 1stblock:2193 2ndblock:2218 Negligible 0 [10]
4 224 1stblock:2129 2ndblock:2192 Negligible 0 [10]

Quantum
4 512/384/256/224 2257/2193/2129/2113 0 Negligible Generic quantum preimage attack
4 512/384/256/224 2255.08/2191.49/2128.57/2112.57 0 Negligible Sect. 4

It is worth noting that when we estimate time complexity of an preimage attack on the

round-reduced Keccak variant, we assume unit of time to be the time required to run

the primitive once (e.g., the time required for one run of 4-round Keccak). Each iteration

operation of generic quantum preimage attack contains 2 runs of 4-round Keccak, and the

iteration operation in our method contains 4 runs. This is why the advantage of using the

generic quantum preimage attack to find the preimage of an n-bit target does not strictly

equal to O(2n/2) here.

2 Preliminaries

In this section we introduce some backgrounds in order that the next section unfolds smoothly.

We first review Keccak, the winner of SHA-3. Then an explicit description is given about

the idea of preimage attack proposed in [7]. Finally, we give a short introduction to quantum

computing and the several technologies it involves.

2.1 The Keccak hash function

A concise description of Keccak is provided in this section. The complete version of speci-

fication can be obtained in [4].

The sponge construction which equips absorbing phase and squeezing phase is the most

distinctive feature of Keccak. Figure 1 shows the details of the construction. We pay close

attention to the sponge construction for cryptographic hashing in the paper (This construction

can also be used as a stream cipher or a pseudorandom bit generator). The bitrate r and

the capacity c are the two main parameters of the Keccak hash function. The relation

among the state size b, bitrate r and capacity c is given as follows: b = r + c, where b ∈
{25, 50, 100, 200, 400, 800, 1600}. For the SHA-3 proposal, the state size is restricted to b =

1600, and there are four different variants as the members of SHA-3 family: SHA3-512, SHA3-

384, SHA3-256, and SHA3-224. For each variant, the capacity c is twice the length of digest

L (also called the hash length), i.e., c = 2L. In this paper we denote these SHA-3 members

by Keccak-512, Keccak-384, Keccak-256, and Keccak-224.



Runsong Wang, Xuelian Li, Juntao Gao, Hui Li, and Baocang Wang 227

pad

!

0

!

"#

$
⋯

sponge

absorbing squeezing

" " " " "

Trunc!

0

Fig. 1. Sponge construction.

For a given resulting input N (The relation between the resulting input N and message

M is given as follows: N = M‖01), it is first necessary to perform a padding operation on

resulting input N so that the length of N is a positive multiple of bitrate r. The purpose

of the absorbing phase is to ensure all the message blocks are processed by the Keccak-f

permutation which consists of 24 iterations of the round function R. In the squeezing phase,

the first r bits of output for each Keccak-f permutation are returned as a part of hash value.

As long as L-bit hash value has been obtained, the squeezing phase is finished.

The round function R consists of 5 sub-step θ, ρ, π, χ and ι.

R = ι ◦ χ ◦ π ◦ ρ ◦ θ,

θ : A(x,y,z) = A(x,y,z) ⊕
⊕

j∈{0,··· ,4}

(
A(x−1,j,z) ⊕A(x+1,j,z−1)

)
,

ρ : A(x,y,z) = A(x,y,z−r(x,y)),

π : A(y,2x+3y,z) = A(x,y,z),

χ : A(x,y,z) = A(x,y,z) ⊕
(
A(x+1,y,z) ⊕ 1

)
·A(x+2,y,z),

ι : A(0,0,z) = A(0,0,z) ⊕RCiz,

where ”A(x,y,z)” denotes a bit value in the state array A, which is indexed by the coordinates

(x, y, z), ”⊕” denotes the bitwise XOR operation, ” · ” denotes the bitwise AND operation,

and ”RCi” denotes the round constant of the ith round.

Recall that the linear operation θ provides diffusion for the state array A. After the

operation ρ, each lane of the state array A deploys a bitwise rotation operation with offset

r(x,y). The operation π only rearranges the position of the lanes. Step χ is the unique non-

linear operation which can be treated as a layer of 5-bits Sboxes and we call the one layer

5-bits χ operation as One-Row χ Operation. Although the last step ι is the simplest operation

among the five processes, which xores round constant with the first lane, the classical preimage

attack based on rotational cryptanalysis have a deep relation with this step. For the five steps

described above, the operations on both x-coordinate and y-coordinate are modulo-5 and the

operations on z-coordinate are modulo-64.
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2.2 The 4-round preimage attack based on rotational cryptanalysis

An important technique known as rotational cryptanalysis is a relatively new type of attack

improved by Morawiecki et al. [7]. This novel method mainly follows the evolution of bits

relations between state A and its rotational counterpart A←, and can be used to mount

preimage attack on 4-round Keccak with a lower computational complexity than the classical

exhaustive search.

Definition 1 [7] A pair of b-bit states (A,A←) is called a rotational pair if and only if each

lane of state A← is created by the rotation operation of corresponding lane of state A with a

fixed number n called rotational number, i.e. ∀(x, y, z) : A(x,y,z) = A←(x,y,z+n). We call state

A← the rotational counterpart of state A.

It is notable that for mostly given state arrays A, there are a total of ω rotational counterparts

A← for rotational numbers n ∈ {0, · · · , ω − 1}(for b = 1600, ω = 1600/25 = 64). However,

if the state array A is a cyclic pattern, the number of rotational counterparts A← is smaller

than ω.

Definition 2 An m-bit string is called cyclic pattern if and only if the m-bit string can be

regenerated by a n-bitwise rotation operation (n < m).

A simple case of cyclic pattern is alternating ’01’ and ’10’.

Definition 3 [7] Set Sn consists of 2b pairs of states (B,B←) which can be generated by

applying slightly different operations on A and A← of all possible rotational pairs, respectively.

The further explanation of ”slightly different operations” is provided later. The ”all possible

rotational pairs” means that given a rotational number n, there are 2b rotational pairs.

Definition 4 [7] P(x,y,z) is the probability that for a pair of states (B,B←) selected from

set Sn randomly, we have B(x,y,z) 6= B←(x,y,z+n), i.e. P(x,y,z)[B(x,y,z) 6= B←(x,y,z+n); (B,B←) ∈
Sn]; 0 6 x, y < 5, 0 6 z < ω.

Obviously for the rotational pair (A,A←), we have P(x,y,z)[A(x,y,z) 6= A←(x,y,z+n)] = 0; 0 6
x, y < 5, 0 6 z < ω. For bit B(x,y,z) of the state array B, the probability P(x,y,z) is used

to describe the relation of corresponding bits between state B and B←. If P(x,y,z) = 0,

B(x,y,z) = B←(x,y,z+n). If P(x,y,z) = 1, B(x,y,z) 6= B←(x,y,z+n).

Definition 5 We can a bits B(x,y,z) the eigenpoint if and only if the corresponding probability

P(x,y,z) = 1 or 0.

If P(x,y,z) = 1
2 , B(x,y,z) and B←(x,y,z+n) are independent. We call these 25 · ω probabilities

P(x,y,z) the bits relations between states B and B←.

In [7], Morawiecki et al. carefully analyzed the effect of basic operations on the bits

relations. Suppose the bit B(x′ ,y′ ,z′ ) and the bit B(x′′ ,y′′ ,z′′ ) are used as the input of the

basic operation, and the result of the operation is output bit B(x′′′ ,y′′′ ,z′′′ ). The following

Proposition 2.1 and Proposition 2.2 give the analytical results for basic operations XOR and

AND, respectively. Morawiecki et al. also pointed out that NOT operation and bitwise

rotation operation keep the bits relation P(x,y,z) unchanged.

Proposition 2.1 [7] Given the input bits B(x′ ,y′ ,z′ ) and B(x′′ ,y′′ ,z′′ ), and the output bit

B(x′′′ ,y′′′ ,z′′′ ). After the bitwise XOR operation, probability P(x′′′ ,y′′′ ,z′′′ ) can be acquired as

follows:

P(x′′′ ,y′′′ ,z′′′ ) = P(x′ ,y′ ,z′ ) + P(x′′ ,y′′ ,z′′ ) − 2P(x′ ,y′ ,z′ )P(x′′ ,y′′ ,z′′ ).
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Proposition 2.2 [7] Given the input bits B(x′ ,y′ ,z′ ) and B(x′′ ,y′′ ,z′′ ), and the output bit

B(x′′′ ,y′′′ ,z′′′ ). After the bitwise AND operation, probability P(x′′′ ,y′′′ ,z′′′ ) can be acquired as

follows:

P(x′′′ ,y′′′ ,z′′′ ) =
1

2

(
P(x′ ,y′ ,z′ ) + P(x′′ ,y′′ ,z′′ ) − P(x′ ,y′ ,z′ )P(x′′ ,y′′ ,z′′ )

)
.

Preimage attack. The first four steps(θ, ρ, π, and χ) of round function R consist of the

four basic elements mentioned above. When using rotational cryptanalysis for the preimage

attack on round-reduced Keccak variants, it is always assumed that state array A is input to

an original round-reduced Keccak variant, while the rotational counterpart A← is input to

a modified Keccak variant. The only difference between the round-reduced Keccak variant

and the modified Keccak variant is that the round function R of modified Keccak variant

does not contain the step ι, and we use M -Keccak to denote the modified Keccak variant

in the subsequent content. This is why we said ”slightly different operations” in Definition 3.

It is notable that when the step ι is applied to the state B and nothing is done on the state

B←, the probability P(x,y,z) is changed if and only if the corresponding bit of round constant

is ’1’, and we can obtain the probability P(x,y,z) as follows:

P(x,y,z) = 1− P(x,y,z).

The main reason for Morawiecki et al. to adopt the ”slightly different operations” technique

is to retain more eigenpoints at higher rounds.

Definition 6 For any rotational pair (A,A←), we assume that the 3.5-round Keccak and

3.5-round M -Keccak are applied on state A and rotational counterpart A← respectively. By

tracking and arranging the 25 × ω probabilities P(x,y,z) in a fixed order, we can obtain the

Table of Probabilities Propagation, abbreviated as TPP.

⋮ ⋮3-round Keccak-	#

!← ⋮ ⋮3-round $-Keccak-	#

%%&!"#

!"#

! ⋮ 4th $%

%←

Checking

Fig. 2. The Core of 4-round preimage attack.

Here we briefly describe the idea of 4-round preimage attack on round-reduced Keccak.

As shown in Figure 2, the attacker wants to find the preimage A from a given hash value

B output by the 4-round Keccak. Owing to the step χ and ι are reversible and can be

calculated independently for each row of state array, attacker first can obtain the value B̂

from the hash value B. Before attacking on the 4-round Keccak, the attacker also needs to

find the eigenpoints in the specific lanes of the TPP. In practice, the preimage attack focuses

on finding one of the rotational counterparts A← of the preimage A. For a guess of rotational

counterpart A←, attacker runs the 3.5-round M -Keccak and then checks out whether the

states B̂ and B← satisfy all the relations of eigenpoints about a certain rotational number n.
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Once all the relations of eigenpoints are satisfied at rotational number n = n
′
, attacker rotates

back the guess value of A← by n
′

bits. By running 4-round Keccak on the rotated value to

check whether the output is equal to the hash value B, attacker can verify the correctness of

the guess value of A← and the rotational number n
′
, so as to finally derive the preimage A

from the correct A← and n
′
. For a given hash value B, the attack complexity of the preimage

attack is expected to be always lower than that of the classical exhaustive search since the

preimage A has ω rotational counterparts.

2.3 The quantum computing

In this paper, we use the standard quantum circuit model [22], which represents a sequence of

quantum operations, denoted as quantum gates, applied to a set of qubits. The basic gate set

contains H, CNOT , and T , where H is the single qubit Hadamard gate H : |b〉 7→ 1√
2
(|0〉+

(−1)b|1〉), CNOT is the two-qubit CNOT gate CNOT : |a〉|b〉 7→ |a〉|b⊕ a〉, and T is the π/8

gate T : |0〉 7→ |0〉 and T : |1〉 7→ eiπ/4|1〉. The identity operator on n-qubit states is denoted by

In. As shown in Figure 3, the quantum oracle of a function f : {0, 1}m 7→ {0, 1}n is modeled

as the unitary oracle operator Uf defined by Uf : |x〉|y〉 7→ |x〉|y⊕f(x)〉. When f is a Boolean

⋮ ⋮

|#⟩ |#⨁&(()⟩

|(⟩ |(⟩

⋮ ⋮
*!

Fig. 3. The iterations of Grover search.

function, it is worth mentioning that the qubit |y〉 is usually in the state: |−〉 = |0〉−|1〉√
2

. After

applying the oracle Uf , we have the state |x〉 |0⊕f(x)〉−|1⊕f(x)〉√
2

= (−1)
f(x)|x〉|−〉. Therefore,

the oracle Uf can only be used to mark a state |x〉 that makes f(x) = 1 hold. This efficient

classification method is known as Phase Kickback in the quantum computing, and will be

used frequently later.

When we estimate time complexity of a preimage attack on the round-reduced Keccak

variant, we assume unit of time to be the time required to run the primitive once (e.g., the

time required for one run of 4-round Keccak). The actual time to run a quantum attack

depends mainly on the hardware architecture of the quantum computer, but here we just

take into account the simple computational model where each pair of qubits in a quantum

computer can interact with each other.

Grover’s algorithm. [23, 24] Consider the following database search problem. Grover’s

problem: Given a database X, approximately dlog2(|X|)e qubits are required to generate

the equal superposition 1√
|X|

∑|X|
x=1 |x〉 to represent all the elements of X. Given an oracle

accessing to a function f : X → {0, 1} which the corresponding oracle operator Uf can act f

on
∑|X|
x=1 |x〉 in O (1) time, the solution x ∈ X such that f (x) = 1 is expected to be obtained.

In the classical setting, suppose there are M = 2λ target elements x ∈ X to satisfy

f (x) = 1, the exhaustive search takes an average of accessing |X|/M times function f to

get one. However, in the quantum setting, the principle of search is totally different. With

the foundation of quantum parallel specialty, Grover’s algorithm can increase the probability
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Fig. 4. The iterations of Grover search.

amplitudes of target elements and decrease the probability amplitudes of non-target elements.

As shown in the Figure 4, the equal superposition state |ψ〉 = 1√
|X|

∑
x∈X |x〉 is divided into

the sub-superpositions |ϕ〉 and |φ〉, where |ϕ〉 denotes the superposition of all the M target el-

ements and |φ〉 denotes the superposition of remaining elements. Both two sub-superposition

|ϕ〉 and |φ〉 form a set of orthogonal basis in two-dimensional Hilbert space. The |ψ〉 and

|φ〉 are at an angle θ in the space. The Grover iterate G consists of a diffusion operator

Uψ⊥ = −I + 2|ψ〉〈ψ| and an oracle operator Uf as follows: G = Uψ⊥Uf , where the functions

of Uf and Uψ⊥ are to flip the phase of a certain superposition state along state |φ〉 and |ψ〉,
respectively. It is noteworthy that the diffusion operator Uψ⊥ is applied to the 2n-dimensional

search space. Every time applying Grover iterate G on intermediate state, the current state

is closer to |ϕ〉. After roughly t =
√
|X|/M times Grover iterations, the amplitude of the

superposition of all the target elements approximates 1. Further, we can measure the appro-

priate result with the probability P → 1.

SKW algorithm.[25] This algorithm is also known for providing a quadratic speedup, which

always applied to search the marked nodes in an undirected graph. Concretely, it is based

on the quantum discrete time random walk [26, 27] on the n-cube, i.e., the hypercube of

dimension n. As a graph with N = 2n nodes, the hypercube is the generalization of 3-cube

and has M = 2λ marked nodes in total. Each node can be labelled by a n-bit binary string.

Two nodes on the hypercube can be connected by an edge if and only if the corresponding

bit strings −→x and −→y satisfy |−→x − −→y | = 1, where |−→x | is the Hamming weight of −→x . Figure

5 shows the connection relation of nodes in n = 3 hypercube. Therefore, each node has a

degree n, i.e., it is connected to n other nodes, and the Hilbert space of this algorithm can be

denoted as: H = Hn⊗H2n . Each sate of Hn is used to describe the direction d which specifies

000 111

100

010

001 011

101

110

Fig. 5. The n = 3 hypercube.

the state of the coin, and each state of H2n is used to describe the current position −→x on the

hypercube. Similar to Grover’s algorithm, this algorithm also equips an iterative operator

U called the unitary evolution operator which consists of the shift operator S and the coin
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operator C as follows: U = SC. Specifically, the shift operator S maps the state |d,−→x 〉 onto

the state |d,−→x ⊗−→ed〉, and can be written as: S =
∑n
d=0

∑
−→x |d,

−→x ⊗−→ed〉〈d,−→x |, where −→ed is the

d-th basis vector on the hypercube. The coin operator C applies a marking coin C1 = −I to

the marked nodes and a different coin C0 = Uψ⊥ to the unmarked nodes, where I denotes the

identity operator and Uψ⊥ denotes the diffusion operator applied only to the n-dimensional

coin space. For instance, without loss of generality we assume one of the marked nodes is

|−→x marked〉 =
−→
0 , and the coin operator C becomes: C = Uψ⊥ ⊗ I +

(
−I − Uψ⊥

)
⊗ |−→0 〉〈−→0 |.

Then the evolution operator U is essentially a perturbed coin quantum walk on the hyper-

cube. After roughly t =
√
N/M times iterations, we can expect to get one of the marked

nodes with probability P = 1
2 −O (1/n).

The uncompute trick.[28] This common quantum technique is used to carry out a com-

putation and then retrieve the initial state |0〉. According to the no-deleting theorem [29],

there is no single-qubit unitary operator that sets an arbitrary qubit state to |0〉. In practice,

both the Grover’s algorithm and the SKW algorithm require the implementation of oracle

operator Uf to map the state |x〉|0〉|0〉 to |x〉|g(x)〉|f(x)〉 in each iteration, where the |g(x)〉 is

a garbage state in a working register. To make the oracle operator Uf on the identical working

register still work in the next iteration of quantum search as if the mapping the state |x〉|0〉|0〉
to |x〉|g(x)〉|f(x)〉, we perform the uncompute trick to reset and reuse the working register.

The accessibility of qRAM. The assumption that qRAM can be implemented is highly

controversial in the field of quantum cryptanalysis. The recent progress of qRAM is presented

by Giovannetti et al. [30] in which the author proposes an architecture that exponentially

reduces the requirements for a memory call. The current bottleneck of research on qRAM is

very similar to the research on RAM decades ago. In the realm of cryptanalysis, attackers are

usually assumed to equip excellent capabilities and powerful computing resources. That’s why

there are many recent papers such [18, 19] based on the assumption that qRAM is available

have made many outstanding contributions in the quantum cryptanalysis. In our work, the

qRAM is also assumed to be accessible and we only require a negligible cost of qRAM to store

the information about the eigenpoints.

3 Quantum preimage attack on round-reduced Keccak

We begin with new observations on the preimage attack of 4-round Keccak in the classical

setting, and then elaborate two efficient quantum preimage attack models on the 4-round

Keccak. In the first model, we only focus on the attack effect achieved by using the Grover’s

algorithm. In the second model, we propose an idea that the SKW algorithm serves as

searching on a hypercube to avoid the application of diffusion operator on an exponentially

large space and lower the implementation threshold of our algorithm.

3.1 New observations

When taking the rotational cryptanalysis based preimage attack into the quantum setting,

thanks to the special mechanism of quantum computing, we can not only apply the quantum

search algorithm to deal with the process of finding rotational counterpart A←, so as to

obtain the quadratic speedup on the main loop, but also the quantum algorithm can be used

to greatly reduce the verifications of passing all the relations of eigenpoints. Recall that the

aforementioned attack described in Section 2.2 provides an efficient idea that the attacker can
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transform the process of finding the preimage A into the process of finding some special bit

strings A← which have a definite relation with the preimage A. The attack complexity Θ of

the algorithm can be roughly divided into two parts. A: Running the Keccak in each main

loop. B: Running the Keccak for the case that all the relations of eigenpoints are satisfied.

In the theoretical attack, the attack complexity Θ is mainly determined by the second part

B, which means the second part B will heavily affect the attack effect of the preimage attack.

When guessing the rotational counterpart A←, there are only two cases to happen here:

either the guessed string is indeed a rotational counterpart A← or the guessed string is mean-

ingless to the preimage A. Specifically, in the first case, suppose we guessed one of the ω

rotational counterparts A← with the corresponding rotational number n = i, and this rota-

tional counterpart can be denoted as A←i , where i ∈ {0, · · · , ω − 1}. However, the attacker

can ensure the correctness of A←i only by running the Keccak to obtain the corresponding

state B← and then testing the rotational number i times until in the turn of n = i by checking

all the eigenpoints. In this procedure, it could be the case that for this rotational counterpart

A←i , there is a wrong rotational number n = j < i such that A←i passes the checking of all

the relations of eigenpoints, but cannot obtain the preimage by rotating A←i back j bits. A

!" !←
Fig. 6. The checking for the rotational number.

simplified version of the checking is shown in the Figure 6. When checking whether the state

pair (B̂, B←) meets all the relations of eigenpoints, the attacker needs to match the bit values

of red blocks in the state B̂ with the bit values of red blocks in the state B←. It is noteworthy

that the red blocks shown in B̂ or the black blocks shown in B← can be used to describe

the positions of eigenpoints, and the red blocks(the positions of matched bit values) in B←

are obtained by rotating the black blocks (the positions of eigenpoints) back n bits. Without

loss of generality, we use (x, y, z) to denote a eigenpoint and P(x,y,z) = 0. Therefore the bit

value of B̂ in position (x, y, z) is 100% equal to the bit value of B← in position (x, y, z + i).

Now, we need to discuss the probability that the bit value of B̂ in position (x, y, z) is equal

to the bit value of B← in position (x, y, z + j), j < i. Obviously, the probability can also be

used to describe the case where the bit value of B← in position (x, y, z+ i) is equal to the bit

value of B← in position (x, y, z + j), which is completely random. Suppose there are ξ eigen-

points, for the n = j < i, the probability that the state pair (B̂, B←) satisfies all the relations

of eigenpoints is equal to 1/2ξ. In the second case, suppose we couldn’t guess a rotational

counterpart A← which means there is no rotational number for the guessed random string.

Therefore, the corresponding state B← which is derived from A← makes no sense to the state

B̂. For each n ∈ {0, · · · , ω − 1}, the probability that the bit values of B̂ in the ξ positions

(x, y, z) defined by all the eiginpoints are matched with the bit values of B← in the positions

(x, y, z + n) is also equal to 1/2ξ. In the theoretical preimage attack, heavy calculations of
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running the 4-round Keccak ω × (1+ω)·ω
2 × 2−ξ + (2L − ω) × ω × 2−ξ times on average are

usually required to verify these cases where all the relations of eigenpoints are met, as a result

of the less number ξ of eigenpoints.

Fortunately, these heavy calculations can be 64 times decreased in the quantum setting

in order that the effect of B on the attack complexity can be reduced. Different from the

traversal of classical exhaustive search, the keys of quantum search are parallel computing

and iteration. Therefore, we use the Grover’s algorithm to find the corresponding rotational

number n for a rotational counterparts A← and return an expected value with a relatively high

probability in order that each iteration of searching rotational counterparts A← contains only

one verification which requires 4-round Keccak to determine the correctness of the rotational

counterpart A← and rotational number n. The randomness on the return value of searching

the corresponding rotational number n results in the less marked rotational counterparts in

each iteration of searching the A←, which requires little additional iterations on the A← such

that the desired preimage can still be obtained and always keeps a lower cost compared with

the quantum exhaustive search on the preimage A. Later, we will show that even in the

worst case, attacking the variant Keccak-224, the attack complexity with respect to our new

algorithm is still better than the generic quantum preimage attack.

3.2 The detailed settings and precomputation

Detailed settings. Since the most expensive step of round function R is the unique non-

linear operation χ which can be treated as a layer of 5-bit Sboxes (Note that the imple-

mentation of χ on the quantum circuit does not require the access to Sboxes which requires

additional cost of qRAM), a reasonable assumption can be obtained that the 5 · ω · r times

One-Row χ Operations can be treated as one time computation of r-round Keccak. The

consumption of the remaining steps is considered negligible.

Now, we first give a quantum version of precomputation to store the information of eigen-

points. It is worthy to mention that if there still are eigenpoints after r − 1 round R and

θ, ρ, π operations of rth round, we can mount an r-round preimage attack.

Precomputation for the eigenpoints. We perform the following precomputation and

store the results of eigenpoint in the qRAM in order that these data are accessible in the form

of quantum superposition later to execute the checking of eigenpoints. The pseudo-code is

shown below:

Algorithm 1 Precomputation for the eigenpoints.

Output: l
1: Generate the TPP: T ;
2: Record all the eigenpoints (x, y, z) for which ω (5y + x) + z < L and P(x,y,z) equals 0 or

1;
3: Let l be empty list of size ξ · (3 + 3 + ε+ 1);
4: for all ξ coordinates do
5: Convert the coordinates (x, y, z) and the corresponding values of P(x,y,z) to a binary

string x1x2x3‖y1y2y3‖z1z2 · · · zε‖p and store string in l ;
6: end for
7:

8: return l .
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where ξ denotes the number of eigenpoints, and ε denotes the logarithm of ω (The lane size

of state array in bits). Since the values of state B̂ matched later are in the first L/ω lanes of

state arrays, we require the restriction about ω (5y + x) + z < L described in the third step

of precomputation to ensure the collected eigenpoints are also in the first L/ω lane of state

arrays.

Complexity analysis for the precomputation. Even in the classical setting, the computational

complexity is negligible. Therefore, we also believe that this workload is still negligibly small

in the quantum setting. The only quantum memory cost of precomputation is to allocate

memory for l. We require roughly ξ · (3 + 3 + ε+ 1) ≈ 2ζ qRAM to store the information of

eigenpoints which are converted into bit strings.

3.3 Implementation of the quantum oracle UQ for finding rotational number

The core of verifying the correctness of the guessed rotational counterpart A← is to judge

whether there is a corresponding rotational number n that causes the guessed A← to satisfy all

the relations of eigenpoint. We use the Grover’s algorithm to find the corresponding rotational

number n for the derived B← from the guessed rotational counterpart A←. We first define the

oracle function Q(n,B←) : {0, 1}ε → {0, 1} to support the marking of rotational number n.

Note that function Q can be converted to the unitary operator UQ implemented efficiently in

the quantum circuit if there exists an efficient classical circuit to compute Q [31, 19]. To build

the quantum circuit of UQ, we first construct an efficient reversible classical circuit of Q and

then substitute quantum gates for each of the reversible gates involved. The implementation

of oracle operator UQ is shown in the following pseudo-codes:

Algorithm 2 Implementation of oracle operator UQ.

Input: |n〉|B←〉|y〉
Output: |n〉|B←〉|y ⊕Q(n,B←)〉

1: For the given state B← derived from the guessed rotational counterpart A←, set flag = 0;
2: For the given n, check if these matched values of B← satisfy all the ξ relations with the

corresponding values of B̂ by accessing the information of these eigenpoints stored in
qRAM. If so, set flag = 1. Do nothing otherwise;

3: Return 1 as the value of oracle function Q (n,B←) if and only if flag = 1, and return 0
otherwise;

4: Uncompute Step 2.

Then, the Grover iteration operator GQ = Uψ⊥UQ can be quickly obtained, and we will

embed GQ into the implementation of the next oracle operator which is dedicated to marking

the rotational counterpart A←. Note that the B← is a fixed value as the input of G in every

execution of the Grover’s algorithm performed on the oracle function Q. In the searching

process, the diffusion operator Uψ⊥ is applied to the 2ε-dimensional search space. Owing to

the scale of 2ε is always small than 26, we believe that the implementation of this diffusion

operator Uψ⊥ on quantum circuits is relatively easy. However what needs to be explained

is that this method doesn’t work well since the eigenpoints are always not enough. The

following Lemma 1 describes how the number of eigenpoints affects the correctness of finding

the corresponding rotational number n of rotational counterpart A←.
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Lemma 1 If the guessed string A← is a rotational counterpart, then the Grover search on

oracle operator UQ outputs the corresponding rotational number n with probability 2ξ

2ξ+2ε−1 .

Later, we will show how the acceptable randomness of finding n weakens the efficiency of

marking the rotational counterparts A←.

3.4 Preimage attack on Keccak using Grover’s algorithm only

Now, we turn to look for one of the ω rotational counterparts A← and provide a detailed

description about our first attack model: the Grover-with-Grover model. An intuitive idea is

to use the Grover search again to find the correct rotational counterpart A←. We define the

oracle function F (A←) : {0, 1}L → {0, 1} for the oracle operator UF which is committed to

marking the rotational counterparts A←. As shown below, we give the pseudo-codes of the

implementation of oracle operator UF :

Algorithm 3 Implementation of oracle operator UF .

Input: |A←〉|y〉
Output: |A←〉|y ⊕ F (A←)〉

1: For the given guessed state A←, set flag = 0;
2: Run r − 1 rounds R and the step θ on the state A←;
3: Run the Grover’s algorithm with certainty on the oracle function Q (n) : {0, 1}ε → {0, 1}.

Let n be the output;
4: Rotate back the guessed state A← by n bits and run r rounds R on it to check whether

the result is the hash value B. If so, set flag = 1. Do nothing otherwise;
5: Return 1 as the value of F (A←) if and only flag = 1. Return 0 otherwise;
6: Uncompute Steps 2− 4.

Note that, the reason why we do not operate the ρ and π of 4th round is that the two

operations cannot change the value of TPP, and only the positions of coordinates are changed.

We still can verify these matched values for the ξ eigenpoints by coding easily. So, the overall

framework about our first attack model is clear: we nest the Grover search acting on the or-

acle operator UQ into the design of oracle operator UF to focus on the marking of rotational

counterparts A←. Then, we can find one of the rotational counterparts A← by performing the

Grover’s algorithm on the obtained oracle operator UF . As shown in step 3 of Algorithm 3,

each execution of the Grover iteration operator GF = Uψ⊥UF contains a measurement to ob-

tain a possible value of rotational number n. Benefit from the general deferred measurement

principle of quantum computation [31], we can postpone the measurement in the Grover’s

algorithm acting on the oracle operator UQ to the very end of our entire quantum algorithm

to avoid the collapse driven by the observer effect. The detailed quantum circuit model is

shown in the Figure 7.

Complexity analysis for the Grover-with-Grover model. When we apply the Grover search

on the oracle function F (A←), no additional qRAM consumption is required. And the fac-

tors affecting attack complexity for this process are mainly concentrated in the iteration of

searching rotational counterparts A←. For a given cyclic-pattern preimage A, the number of

the corresponding rotational counterparts A← is always less than a normal one, and for some

extreme instances there are only 2 corresponding counterparts. For these cases, the preimage

attack based on the rotational cryptanalysis keeps little effect. However, the following lemma
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Fig. 7. The Grover-with-Grover model.

2 tells us that the number of b-bit cyclic patterns is negligible compared with 2b possible state

arrays.

Lemma 2 For 2n-bit string α ∈ Sα = {0, 1}2n , n ∈ {1, 2, · · · }, there are 22
n−1

cyclic patterns

in total.

Therefore, it is only necessary to carry out some additional calculations in advance to verify

whether the preimage is in those cyclic patterns, and the complexity is far less than the non-

cyclic one. If there is no preimage after these calculations in advance, we need to deploy our

first attack model on the finding of preimage A. In the step 3 of Algorithm 3, we apply the

Grover’s algorithm on the oracle operator UQ to return a possible rotational number n. For a

given non-rotational counterpart A←, the return value n of this Grover search is completely

meaningless even there is a value n ∈ {0, · · · , ω − 1} that leads to the satisfaction of all

the relations of eigenpoints. Therefore, this state A← given cannot be marked by the oracle

operator UF in the step 4. For a given rotational counterpart A←, as long as n is not the

corresponding rotational number n, there is a 1/2ξ probability that A← passes all the checking

of ξ eigenpoints, resulting in the oracle operator UQ cannot distinguish the possible wrong

rotational number with the really corresponding one. According to the Lemma 1, the return

of correct rotational number n for the rotational counterpart A← given with the probability
2ξ

2ξ+2ε−1 . Consequently, in each iteration of GF the oracle operator UF can mark roughly

ω · 2ξ

2ξ+2ε−1 = 2ξ+ε

2ξ+2ε−1 of all the ω rotational counterparts A←. The details of cost estimation

about our first preimage attack model can be given in the following theorem:

Theorem 1 Given an L-bit hash value B, suppose there are ξ eigenpoints. With the cost

of 2ζ qRAM, the preimage A can be recovered with the attack complexity of r−1
r ·

√
2ξ+2ε−1

2ξ
·

2
L−ε

2 +2.

Note that the attack complexity shown in Theorem 1 is a conservative estimate, and the

concrete effect is better. All the proofs about the conclusions appeared in this section can be

found in the Appendix A. It is notable that the diffusion operator Uψ⊥ of GF is applied to

the 2L-dimensional search space. In practice, even attacks on Keccak-224, the scale of 2L

is theoretically equal to 2224, and the diffusion operator Uψ⊥ under this scale is universally

considered to be difficult to implement [25]. However, in the recent field of quantum cryptog-

raphy the difficulty of large-scale diffusion operator implementation is generally ignored. In

order to improve the applicability of our algorithm, we take into account this difficulty and

introduce the second attack model from another perspective based on quantum random walk.
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3.5 Preimage attack on Keccak using SKW algorithm

Our main idea is to abstract the process of searching the rotational counterparts A← of

preimage A as finding some marked nodes in an undirected graph. The oracle operator UF
defined in the Algorithm 3 still plays a key role to mark these nodes acted as rotational

counterparts A←. Then, by using the SKW algorithm based on quantum random walk, we

can expect to obtain a correct counterpart A←. We call the second attack model the SKW-

with-Grover model.

Concretely, we use Γ = {0, 1}L to denote the search space of rotational counterparts

A←. Each element of Γ is an L-bit string representing a node of graph, and we connect

two nodes if and only if the Hamming weight |−→x −−→y | of corresponding strings −→x and −→y is

equal to 1. Therefore, each node of Γ is connected to other L nodes, and we can obtain the

hypercube of search space Γ . The Hilbert space of our second attack model can be described

as H = HL⊗H2L . Each state of H2L is used to describe the current node on the graph acted

as a guessed rotational counterpart, and each state of HL is used to determine one of the

neighbor nodes. Then we can define the shift operator S for our algorithm as:

S =

L∑
d=0

2L∑
A←=0

|d,A← ⊗−→ed〉〈d,A←|.

Recall that the coin operator C applies the identity coin operator C1 = −I for the marked

nodes, and applies the diffusion coin operator C0 = Uψ⊥ for the unmarked nodes. Therefore,

we use the oracle operator UF to assist the coin operator C in deploying the operator I

(Uψ⊥) on the marked nodes (unmarked nodes), and obtain the unitary evolution operator

Λ = SCUF . The following theorem gives the analysis of cost about the SKW-with-Grover

model, whose proof is similar to that of the Theorem 1.

Theorem 2 Given an L-bit hash value B, suppose there are ξ eigenpoints. By costing 2ζ

qRAM, the preimage A has a 1/2 probability of being recovered with the attack complexity of
r−1
r ·

√
2ξ+2ε−1

2ξ
· 2L−ε2 +2.

In the overall framework about our second attack model is clear: all the guessed rotational

counterparts A← works as some certain nodes to form a hypercube. Nest the Grover’s al-

gorithm performed on the oracle operator UQ into the design of oracle operator UF . The

key unitary oracle operator UF assists the coin operator C to distinguish which nodes acted

as the rotational counterparts A← and mark them. Then, the unitary evolution operator Λ

provides a perturbed coin quantum walk on the obtained hypercube to search the rotational

counterpart nodes. It is noteworthy that the use of diffusion operator Uψ⊥ throughout whole

algorithm is the diffusion coin operator C0 = Uψ⊥ which is applied to the L - dimensional coin

space for the unmarked nodes. The scale of diffusion coin operator C0 is reduced exponentially

compared with 2L of the first attack model. Therefore, we believe that the quantum circuit

of second model is easier to realize than the previous one. However, the better practicability

and the efficient attacks, the two cannot have both in the second attack model. We need

to execute the second attack model twice on average in order to expect a correct rotational

counterpart A←. The detailed quantum circuit model is shown in the Figure 8.
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Fig. 8. The SKW-with-Grover model.

4 Preimage attacks on 4-round Keccak variants

This section shows that our two quantum preimage attack models can be used to attack the

4-round Keccak-224 and 4-round Keccak-512. Owing to the least eigenpoints obtained in

the case of 4-round Keccak-224, the Grover-with-Grover model is applied to this situation

to show the performance of our first attack model. Then, we perform the SKW-with-Grover

model on the 4-round Keccak-512 to show that our second attack model still achieves a good

attack effect on the top of more practicality. The results of attacking 4-round Keccak-384

and 4-round Keccak-256 are also briefly given. Before the preimage attack, we need to

calculate the TPP in advance. Note that the identical TPP for different Keccak variants

is shown in Appendix B. The only difference among these cases is that how many lanes are

required to be checked.

4.1 Preimage attack on 4-round Keccak-224 under the first attack model

We first consider the padding function and the Keccak parameters of SHA-3 standard. For

the Keccak-224, the bitrate r = 1152, capacity c = 448 and the hash length is set to 224

bits. In our preimage attack, the structure of message is restricted as follows: the message

length is 1152 bits, of which only the first 3.5 lanes(224 bits) are unknown for us, and the

remaining 14.5 lanes (928 bits) can be set to the known fixed bits value.

By accessing the TPP, we can find a total of 3 eigenpoints in the first 3.5 lanes. We suppose

the claimed Algorithm 1 can help us store the information of the eigenpoints in the qRAM

for the later superposition accessing. According to the Algorithm 2, we can expect to obtain

the corresponding rotational number of a rotational counterparts with a probability of 8/71,

which further means that, for the rotational counterpart, the oracle operator UF can mark it

with the same probability. Recall that the certain preimage has 64 rotational counterparts.

Therefore, each Grover iterate of searching the rotational counterparts has roughly 64 × 8
71

items to be marked. With the help of Theorem 1, we know that the attack complexity is

approximately equivalent to running of 4-round Keccak-224 2112.57 times, and at most 26

qRAM are required. An obvious result is that the attack complexity of the generic quantum

preimage attack is approximately equivalent to running of 4-round Keccak-224 2113 times,

which as a result of the uncompute trick on the corresponding oracle operator. That means

our method reduces the attack complexity at least 25%.

The result in other variants. We also estimated the attack complexities against the

4-round Keccak-512/384/256 under the first attack model. Specifically, for the 4-round

Keccak-512, the attack complexity is 2255.08, which reaches the best effect. For the 4-round
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Keccak-384, the attack complexity is 2191.49. The improvement of attack effect on the 4-

round Keccak-256 over the generic quantum preimage attack is same to the case of 4-round

Keccak-224. It is worth mentioning that the qRAM consumptions are negligible in all the

cases.

4.2 Preimage attack on 4-round Keccak-512 under the second attack model

For the Keccak-512, the bitrate r = 576, capacity c = 1024 and the hash length is set to

512 bits. Same as above-mentioned, we also restrict the structure of message as follows: the

message length is 576 bits, of which only the first 8 lanes (512 bits) are unknown for us and the

remaining 1 lane (64 bits) is set to the known bits value. By accessing the TPP, we can obtain

9 eigenpoints in the first 8 lanes, and store the eigenpoints with at most 27 consumption of

qRAM.

According to the Algorithm 2 and Algorithm 3, we can use the unitary oracle operator

UF to mark a rotational counterpart successfully with a probability of 512/575, which allows

us to distinguish most rotational counterparts. Therefore, the coin operator C can efficiently

perform an identity operator I on the nodes marked by the operator UF in each iteration of the

unitary evolution operator Λ. By using the SKW algorithm twice to search for the rotational

counterparts, we can expect to obtain a correct one. Therefore, the attack complexity is

approximately equivalent to running of 4-round Keccak-512 2256.08 times, which is consistent

with that described in the Theorem 2. Compared to the generic quantum preimage attack,

this result reduces the attack complexity by about 2 times.

The result in other variants. We still estimated the attack complexities against the 4-

round Keccak-384/256/224 under the second attack model. For the 4-round Keccak-384,

with at most 27 qRAM costs, the attack complexity is 2192.49, which means our method

reduces the attack complexity roughly 29%. However, due to the SKW algorithm has success

probability of only 1/2, the attack effects of the second attack model are not as good as those

of the generic quantum preimage attack in the cases of 4-round Keccak-224/256.

5 Conclusion

In this work we have shown the dedicated quantum preimage attack based on the rotational

cryptanalysis against the round-reduced Keccak. We have proposed a probabilistic algo-

rithm to guess the rotational number of rotational counterpart with a high probability such

that the high-cost verifications have been reduced by 64 times in the quantum setting. With

the aid of the probabilistic algorithm, we have obtained two effective models for the preim-

age attack on Keccak variants: The Grover-with-Grover model and the SKW-with-Grover

model. The first attack model pays close attention to reach the lowest attack complexity,

and achieves the advantage that the attack effect on 4-round Keccak-512 is 4 times better

than the generic quantum preimage attack, and still works well in other variants. The second

attack model is dedicated to reducing the implementation threshold of our algorithm. We

have transformed the searching of the rotational counterpart into the finding of vertexes acted

as rotational counterparts on a hypercube in order that the second model has better practi-

cability. Fortunately, our second attack model still has pretty good attack effects against the

4-round Keccak-512 and 4-round Keccak-384.

For the future, there is a lot of work for us to confront with. For the classical algorithms,
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there is a huge improvement with the application of classical Markov chains which provid-

ing new approximation and optimization algorithms. By analogy, we believe the quantum

counterparts of classical Markov chains which called quantum random walk can acts as an

indispensable role in the quantum cryptanalysis. The quantum walk based SKW algorithm

has been shown that can be used to improve the implementation of our quantum preimage

attack. We believe that any breakthrough about quantum random walk will greatly enhance

the performance of our achievements.
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Appendix A

Proof of Lemma 1.

Recall that we hope to find the corresponding rotational number n of a rotational counterpart

A← by this quantum search. Given a rotational counterpart A←, suppose n ∈ {0, · · · , ω− 1}
is the corresponding rotational number and any other value i ∈ {0, · · · , ω − 1}/n becomes a

wrong rotational number with a probability 1/2ξ. We can roughly obtain a total of 1 + (2ε−
1) × 1/2ξ values, including the rotational number and the wrong rotational numbers, which

lead the rotational counterpart A← to pass the checking of eigenpoints. It is notable that

once the rotational counterpart A← has the wrong rotational numbers, the oracle operator UQ
cannot distinguish the corresponding rotational number with the wrong rotational numbers.

Therefore, the running of the Grover’s algorithm on the iteration operator GQ will return
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one of the 1 + (2ε − 1)× 1/2ξ values and hit the corresponding rotational number n with the

probability of 2ξ

2ξ+2ε−1 .

Proof of Lemma 2.

Recall that we have defined the cyclic pattern in Definition 2, and we need to find out the

number of 2n-bit cyclic patterns. Thanks to the special length of the bit string, all the possible

2n-bit cyclic patterns can be divided into:

Ai : αi‖αi‖ · · · ‖αi︸ ︷︷ ︸
2n−i

where αi is sub-string and αi ∈ Sαi = {0, 1}2i , i ∈ (0, 1, · · · , n− 1). For instance, if i = 0,

there are 2n sub-strings α0 to form the 2n-bit string. So, the number of α0 : |Sα0 | is equal to

the number of cyclic patterns A0 : |A0|. For the case of i, there are 2n−i sub-strings αi to form

the 2n-bit string. The same as above, the number of αi : |Sαi | is also equal to the number of

cyclic patterns Ai : |Ai|. Namely, |Sαi | = |Ai| = 22
i

. However, there are many overlapping

values among them, we cannot get the number of cyclic patterns by summing up all the |Ai|
for i directly. For example, if α1 = 01, the α2 = 0101 = 01‖01 = α1‖α1;α2 ∈ Sα2

= {0, 1}22 ,

and if α2 = 0110, the α3 = 01100110 = 0110‖0110 = α2‖α2;α3 ∈ Sα3
= {0, 1}23 .

Therefore, we need to find the exclusive cyclic patterns for each Ai and denote the new set

by Bi. Fortunately, there is an interesting fact that the factor of 2i can be listed as follows:

20, 21, · · · , 2i−1. And the number of Bi : |Bi| can be obtained easily as follows:

|B0| = |A0| = 22
0

;

|Bi| = 22
i

− |Bi−1| − · · · − |B1| − |B0|, i = 1, . . . , n− 1.

Finally, we can get the number of cyclic patterns for Sα by:
∑n−1
i=1 |Bi| = 22

n−1

.

Proof of Theorem 1 and Theorem 2.

From the Lemma 2, we know that there are 22
ε−1

2ε-bit cyclic patterns. So, the number of

combinations of cyclic patterns in first L/ω lanes is:

22
ε−1

· 22
ε−1

· · · · · 22
ε−1︸ ︷︷ ︸

L/ω times

= 2L/2

Any of these cyclic patterns has only λ ∈ {1, 2, · · · , ω/2} rotational counterparts, resulting in

the lower efficiency about the using of preimage attack based on the rotational cryptanalysis.

Therefore, we perform the quantum exhaustive search on these 2L/2 cyclic patterns in advance

to check whether the desired preimage A is one of these cyclic patterns, and the computational

complexity is 2 ·
√

2L/2 = 2L/4+1 times calculations of r round Keccak. If the preimage A

is not obtained in the previous calculation, which means the corresponding value of A has all

the ω rotational counterparts A←, our claimed attack models can be effective.

We first pay attention on the proof of Theorem 1. Recall that in each iteration of operator

GF , the oracle operator UF can mark roughly 2ξ+ε

2ξ+2ε−1 of all the ω rotational counterparts

A← in the step 4 of Algorithm 3. Conservatively, we believe that there are roughly 2ξ+ε

2ξ+2ε−1
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rotational counterparts in total. With the help of quadratic speed up, we can find one of the

rotational counterparts A← in roughly:√
2L/(

2ξ+ε

2ξ + 2ε − 1
) =

√
2ξ + 2ε − 1

2ξ
· 2

L−ε
2

times Grover iterations. Each iteration we do 4 times r − 1 round Keccak and require

4 · 5 · ω · (r − 1) times One-Row χ Operations. Therefore, the whole process of Grover search

needs around: 20 · ω · (r − 1) ·
√

2ξ+2ε−1
2ξ

· 2L−ε2 times One-Row χ Operations. Owing to r

round Keccak have 5 ·ω · r One-Row χ Operations, the computational complexity of Grover

search is equal to

r − 1

r
·
√

2ξ + 2ε − 1

2ξ
· 2

L−ε
2 +2

times calculations of r round Keccak.

Note that we only obtain the rotational counterpart A← of preimage A up to now. We

still require nearly 2ε times calculations of Keccak to determine the corresponding rotational

number n, and further recover the preimage A for the given hash value B. Therefore, in the

first attack model the upper bound of attack complexity is equal to

r − 1

r
·
√

2ξ + 2ε − 1

2ξ
· 2

L−ε
2 +2 + 2L/4+1 + 2ε ≈ r − 1

r
·
√

2ξ + 2ε − 1

2ξ
· 2

L−ε
2 +2

times calculations of r round Keccak. It is notable that throughout the preimage attack

we only use 2ζ qRAM to store the information of ξ eigenpoints. The only difference between

the second attack model and the first attack model is that the former has the lower success

probability of 1/2. The running of the second attack model twice ensures the recovery of

desired preimage A, and the conclusion described in Theorem 2 is undoubtedly logical.

Now, we’d like to explain why the concrete complexity can be lower than the given upper

bound. In the original Grover search, the diffusion operator Uψ⊥ involved by the Grover

iteration operator: G = Uψ⊥ · Uf plays a vital role in the whole algorithm. For any su-

perposition state |φ〉: |φ〉 =
∑2n−1
x=0 αx · |x〉, the average value of amplitudes is denoted by

µ = 1
2n

∑2n−1
x=0 αx. After applying the diffusion operator Uψ⊥ on the superposition state |φ〉,

we have Uψ⊥ |φ〉 =
∑2n−1
x=0 (2µ− αx) · |x〉. If the oracle operator Uf has flipped the phases

of several states |x〉 in the superposition state |φ〉, the diffusion operator Uψ⊥ can increase

the amplitudes of these target elements. Suppose the oracle operator Uf can flip the phases

of all the target elements effectively, the average value of amplitudes µ will decrease as the

accumulation of iterations, as a result of the amplitudes of target elements increase gradually

and the amplitudes of the non-target elements decrease gradually. That’s why the efficiency

of amplitude amplification decays in the original Grover’s algorithm.

In practice, the oracle operator UF defined in Algorithm 3 flips roughly 2ξ+ε

2ξ+2ε−1 of all

the 2ε rotational counterparts A←, and the marked rotational counterparts A← are different

in each iteration with a certain probability. Let µF,i and µf,i denote the average values of

amplitudes in the ith iteration under the practice and the conservative case, respectively.

After the first Grover iterate, the values of µF,1 and µf,1 are obviously equal. However, in the

second Grover iterate, the oracle operator UF doesn’t flip the identical states marked in the
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last iteration with a probability of at least 1−( 2ξ

2ξ+2ε−1 )
b 2ξ+ε

2ξ+2ε−1
c
. So, in the practice case, the

rotational counterpart states that have not been marked by the UF in the last iteration can

be expected to be marked in this iteration, and resulting in the value of µF,2 is higher than

µf,2. By analogy, as the increase of the iterations, the attenuation of value µF,i is slower than

that of value µf,i with a certain probability related to the number of eigenpoints. Therefore,

we believe the practice attack effect is better than the given upper bound.

Appendix B

It is notable that the 4-th round only applies the steps: θ, ρ and π. We use the black blocks

to represent the positions of the eigenpoints.

Fig. 9. The TPP of our preimage attacks.


