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Recently, proposed algorithms for quantum computing and generated quantum computer

technologies continue to evolve. On the other hand, machine learning has become an

essential method for solving many problems such as computer vision, natural language
processing, prediction and classification. Quantum machine learning is a new field devel-

oped by combining the advantages of these two primary methods. As a hybrid approach

to quantum and classical computing, variational quantum circuits are a form of machine
learning that allows predicting an output value against input variables. In this study,

the effects of superposition and entanglement on weather forecasting, were investigated

using a variational quantum circuit model when the dataset size is small. The use of the
entanglement layer between the variational layers has made significant improvements on

the circuit performance. The use of the superposition layer before the data encoding

layer resulted in the use of less variational layers.

Keywords: Quantum Computing, Machine Learning, Weather Forcasting, Variational

Quantum Circuit, Hybrid Quantum-Classic Neural Network

1 Introduction

The main objective is to solve the optimal solution in the shortest time with the least cost,

when solving natural phenomena or real problems in daily life. Solution methods developed

in counterpart to the degree of difficulty arising from the nature of the problem are accepted

as the scale of success. This approach has emerged as a fundamental goal in the evolution of

computational methods, as well as in all developing fields of science and technology.

Quantum mechanics, which emerged to explain the behavior of subatomic particles, which

cannot be understood by classical physics laws, has has emerged as a powerful approach again

by proposing an alternative computation method to the conventional computers having the

Von Neumann architecture which cannot meet the needs in terms of their ability to solve

complex problems and perform faster processing.

In general, computation is defined as a physical process. Quantum computing is based on

the fundamental postulates of quantum mechanics, while classical computation is built on the
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rules of classical physics [1, 2]. Classical computers, which are getting smaller and faster in

terms of hardware and processing capabilities, are still insufficient in solving problem types

with NP-Hard complexity class. On the other hand, the advantages obtained thanks to the

principles of entanglement and superposition have made quantum computers more attractive.

Developed quantum algorithms [3, 4, 5] and quantum processors exceeding the 100 qubit limit

are important steps for the development of quantum technologies [6].

Machine learning is a modeling that can learn using patterns and relationships between

data. Classical computers have the ability to solve basic algebraic operations and problems

that can be expressed algorithmically at a much faster rate than the human brain. In con-

trast, classical computer algorithms in problems such as estimation, classification, association,

pattern recognition, etc. are quite inefficient in subjects that require thinking like the human

brain. The most important difference between machine learning and classical computer pro-

gramming is that it can perform the learning process through examples without the need for

algorithms with strictly defined rules [7, 8, 9].

The algorithms developed for machine learning, the rapid increase in the processing power

of the classical computer, and the exponentially increasing datasets, the application of machine

learning to many areas such as classification, regression, clustering were provided. The neural

networks, one of the important methods, give very efficient results in estimation problems in

machine learning. Weather forecasting is an example of an estimation problem.

Nowadays, weather forecasts are made on hourly, daily, weekly and monthly time scales

and play an important role in society. Serious weather events such as hurricanes, extreme

heat waves, and tornadoes occur each year, resulting in thousands of deaths and property

damage. As the frequency and intensity of extreme weather events increase, weather fore-

casting becomes even more important. In real life, weather forecasting is a complex process.

It is difficult for humans to make the necessary calculations for forecasting and use them to

predict future weather when faced with complex data. However, the forecast performance

of classical algorithms used for weather forecasting is directly proportional to the size of the

dataset.

Many classical approaches can be used when the dataset size is small. As an alternative

to these approaches, many types of research are carried out in quantum machine learning,

which is the intersection of quantum computers and machine learning [10, 11, 12]. Hybrid

quantum-classical machine learning, which is considered a type of quantum machine learning

and is created by combining classical machine learning tools and quantum circuits, provides

significant advantages over classical machine learning [13, 14, 15]. Furthermore, It is known

that hybrid quantum-classical algorithms developed according to the quantum variational

circuit approach produce efficient results in terms of fault tolerance limits for practical uses.

This hybrid computation method provides important opportunities to use the capabilities

of quantum computing already developed in solving practical problems [16]. Additionally,

some related studies in the literature highlight the use of quantum computers for weather

forecasting. Frolov [17] addressed the fundamental limitations that do not allow the develop-

ment of numerical weather and climate forecasting models to be met, and the applicability of

quantum computations and quantum computers to solve numerical weather and climate fore-

casting problems. Safari A. and Ghavifekr A. A. [18], compared Quantum Neural Networks

(QNN) method with other artificial neural network-based techniques in weather forecasting.
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As a result of the comparison, they concluded that quantum technology and QNN have the

potential to be combined with other techniques leading to accurate models with fast process-

ing and execution speed. Quantum neural networks were used as weather forecasting tools

in [19, 20]. Experimental results reveal that quantum computing-based models have better

prediction performance than other machine learning-based prediction models implemented on

classical computers.

Based on the above analysis, this study aims to investigate the effect of two important

quantum properties, entanglement and superposition, on hybrid quantum-classical neural

network performance on small-size training data for weather forecasting. In addition, the

results of using different number of variational layers on the quantum circuit on weather

forecast performance are compared.

2 Background

2.1 Variational Quantum Circuit

It is difficult to integrate the nonlinear mathematical structure of artificial neural networks

with the linearly functioning quantum computing architecture. However, algorithms devel-

oped with a variational quantum circuit solve this integration problem by combining a quan-

tum circuit, which prepares quantum states and is guided by a limited number of qubits, with

a classical optimization algorithm [11, 21]. In Figure 1, the working principle of the quantum

variational algorithm is given schematically.

. .
 .

Fig. 1. The working principle of the variational quantum algorithm [22].

The proposed method with the variational quantum circuitry is similar to the artificial

neural network (ANN) structure by optimizing the expected value obtained from the quantum

processing unit in a classical processing unit, as an application of the hybrid quantum-classical

approach [13, 14, 23].

Quantum algorithms developed with variational quantum circuitry are efficient in terms

of error tolerance thanks to their parameter update feature. This advantage makes the varia-

tional quantum circuit approach prime candidates for implementation on near-term quantum
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processors [15, 16]. The working principle of the variational circuit algorithm consists of the

following steps [13, 21, 24]:

1. {xi} input data is encoded into a quantum state.

{xi} → |Ψ(x)⟩ (1)

2. A new state is obtained by applying rotation operators (unitary quantum operators)

that can take parameters to the prepared quantum state.

|Ψout(xi; θ)⟩ = U(θ)|Ψ(xi)⟩ (2)

3. In variational quantum circuits, Pauli operators are generally used as observables to

measure the expected value of some observables selected on the circuit. The expected

value of a B̂ observable on the circuit;

y(xi; θ) = ⟨ΨU†(θ)B̂U(θ)|Ψ⟩ (3)

4. The expected value obtained from the quantum processing unit with classical calculation

methods is given as an input to a cost function, and the cost function is minimized

with a classical optimization algorithm. The cost value determined for this process is

expressed over the θ parameter, according to the desired values of y (xi; θ) and f (xi) .

This iteration is continued until the desired error level is achieved.

Cost(f(xi), y(xi; θ)) (4)

3 Material and Method

In this study, the effects of superposition and entanglement in a five-qubit quantum variational

circuit model were investigated in weather forecasting, which is a regression problem. In this

framework, variational layers were used in the range 1-8 in five different experiments on the

use of superposition, entanglement, and rotation layers in different places. The characteristics

of the dataset used and the details of the experiments are given in this section.

3.1 Dataset

The dataset includes hourly weather data for the Istanbul-Kireçburnu/Sarıyer region for the

years 2016-2020. In the dataset, there are 43829 data in total, including total precipitation

amount, vapor pressure, relative humidity, cloudiness, current pressure, and temperature.

The characteristics of the dataset are given in Table 1.

3.2 Preprocessing

Attribute data (Total amount of precipitation , Vapor Pressure, Relative Humidity, Amount

of cloudiness , Actual Pressure) were standardized using the following formula:

x̂ =
x− µ

σ
(5)

where, x : attribute data, µ:: attribute mean, σ: attribute standard deviation, x̂: standardized

attribute data.
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3.3 Experimental Implementations

The five-qubit variational quantum circuit used for weather forecasting consists of five stages.

First, all qubits are initialized in the initial state |0⟩. Then, optionally, all qubits are placed

in an equal amplitude superposition (this was investigated in Experiment 3). Then, feature

mapping is performed by embedding the five features of the weather dataset into the α

angles of the Ry(α)) rotation gates with the data coding circuit consisting of Ry(α) rotation

gates. Then, N variational layers are added and finally, the measurement is performed for the

expected value on the basis of ⟨Z⟩. With |ψ⟩ being the quantum state before the measurement,

the expected value is calculated as follows:

⟨Z⟩ = ⟨ψ|Z|ψ⟩ =
∫
dxψ∗(x)Zψ(x) (6)

where ψ(x) = ⟨x|ψ⟩. The spectral decomposition of Z is

⟨Z⟩ = ⟨ψ|Z|ψ⟩ =
∑
i

zi⟨ψ|ψi⟩⟨ψi|ψ⟩ =
∑
i

zi|⟨ψi|ψ⟩|2 (7)

with

Z =
∑
i

zi|ψi⟩⟨ψi|. (8)

where Z|ψi⟩ = zi|ψi⟩. The obtained measurement results are fed to the output layer. Al-

though the output layer consists of a neuron, the initial weights have a normal distribution.

In addition, in the hybrid quantum-classical models used in the study, all parameters are

trained by the back propagation method and the mean square error function was used as the

error function. Then, the estimation result is obtained with the models obtained as a result

of the training.The basic quantum variational circuit model is given in Figure 2. A detailed

representation of the circuits used in the variational layer is given in Figure 3.

In the first experiment performed in this study, the entanglement layer types 1 circuit and

rotation layer given in Figure 3 were used in the variational layer in the quantum variational

circuit architecture given in Figure 2. The entanglement layer types 1 circuit indirectly

entangles all qubits by entanglement transfer. The parameters of the rotation gates in the

rotation layer are trainable by a classical optimization algorithm. The circuit architecture

used in this experiment is given in Figure 4.

In the second experiment, the effect of entanglement was investigated by removing the

entanglement sublayer in the variational layer used in the first experiment. The circuit archi-

tecture used in this experiment is given in Figure 5.

Table 1. Weather dataset properties

Total amount of Vapor Relative Amount of Actual Temperature
precipitation pressure humidity cloudiness pressure (°C)
(kg/m2) (hPa) (%) (8 okta) (hPa)

Mean 0,09 14,43 79,33 3,89 1008,8 15,41
Standard Deviation 0,71 6,43 14,35 2,74 7,99 7,61
Variance 0,51 41,36 205,86 7,58 63,83 57,84
Mod 0 9,3 99 7 1007,8 23,2
Median 0 13 81 4 1008,3 15,4
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In the third experiment, the effect of removing the superposition layer used in the first

experiment and using the Hadamard gate before the data encoding layer was investigated.

The circuit architecture used in this experiment is given in Figure 6.
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Fig. 6. Quantum variational circuit architecture for experiment 3.

In the fourth experiment, the entanglement layer type 2 circuit given in Figure 3 was used

instead of the entanglement layer type 1 in the variational layer used in the first experiment.

The entanglement layer types 2 circuitry entangles all qubits directly with each other. In

this experiment, the effect of two different entanglement sublayer relative to each other was

investigated. The circuit architecture used is given in Figure 7.

In the last experiment, in the variational layer in the variational circuit model given in

Figure 2, a variational sublayer array consisting of rotation layer-entanglement layer type 2

layer was defined. In this experiment, the effect of a different variational layer structure was

investigated. The circuit architecture used is given in Figure 8.

3.4 Experiment procedure

Pennylane quantum computing simulator [23] was used in the study. In all experiments

performed, 9% of the dataset was reserved for training, 1% for validation, and 90% for testing.

The Adam stochastic gradient algorithm was used as the classical optimization algorithm.

Initially, it started with a large learning rate of 0.1 and since there was no reduction in the

validation error for 3 training periods, it was dynamically reduced by a factor of 0.1 and the

minimum learning rate was set to 0.00001. The number of training periods (epoch) was taken

as 30 for all experiments and the mean square error function was used as the error function.
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4 Discussion

The variation of the training and validation stages of the 1, 2, 3, 4 and 5th experiments

carried out in the study according to the number of training periods is given in Figure 9-13.

In addition, the test results of each experiment are shown in Table 2.
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Fig. 9. Variation of training loss and validation loss for Experiment 1 with respect to the number

of training periods.
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Fig. 10. Variation of training loss and validation loss for Experiment 2 with respect to the number
of training periods.

It can be seen that the training and validation errors decrease as the number of variation

layers increases in experiment 1 from Figure 9. Looking at Table 2 for Eexperiment 1, there is

no regular increase or decrease in test results as the number of layers increases. However, the

lowest error was obtained in the 6-layer model. This error is the lowest error value obtained

among all experiments performed. The increase in error values after the 6th layer indicates

that the distance of the model to the data points increases, as can be understood from the

R2 score.

As the number of layers increased in experiment 2, the training and validation error

decreased until the 11th training period, but no improvement was observed thereafter. As

can be seen in Table 2, the increase in the number of layers did not cause a downward effect on

the test errors. In this context, it is observed that the use of the entanglement layer according

to Table 2 has a great effect on the test results.

As the number of layers increased in experiment 3, a decrease in training and validation

error was observed, but when compared to experiment 1, it was observed that this decrease
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Fig. 11. Variation of training loss and validation loss for Experiment 3 with respect to the number

of training periods.
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Fig. 12. Variation of training loss and validation loss for Experiment 4 with respect to the number

of training periods.
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Fig. 13. Variation of training loss and validation loss for Experiment 5 with respect to the number
of training periods.
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was not a remarkable decrease. However, when the test error results in Table 2 are compared,

it can be said that experiment 1 showed higher performance with lower error up to the eighth

layer compared to experiment 3. In this context, it has been determined that the use of the

superposition layer before the data coding layer allows us to use less variational layers.

In experiment 4, as the number of layers increases, the training and validation error is

similar to experiment 1. However, looking at Table 2, it is seen that the error results obtained

in experiment 1 are generally lower.

In experiment 5, on the other hand, as the number of layers increased, there was a decrease

in the training and validation errors, but according to the test results in Table 2, it is seen

that it has a higher error result when compared to experiments 1 and 2.

5 Conclussion

As quantum computer technologies progress, quantum machine learning develops in parallel

and is applied to new areas. It is known that by using fast processing power of quantum

computing on variational quantum circuit algorithms, which is a hybrid modelling, better re-

sults are obtained than classical machine learning. In this study, the effect of two important

quantum properties, entanglement and superposition, on hybrid quantum-classical machine

learning performance using small-size training data for weather forecasting is investigated.

The use of the entanglement layer between the variational layers has made significant im-

provements on the circuit performance (see Table 2). In terms of fault tolerance performance,

the effect of the indirect (transfer) entanglement layer is better than the direct entanglement

effect (see Table 2). The use of the superposition layer before the data encoding layer en-

ables the use of fewer variational layers (see Table 2). It is suitable for near-term quantum

technologies in terms of computational complexity and fault tolerance.

Data and code availability
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Table 2. Mean square error, R2 score, and standard deviation results on test data for all experi-

ments.

Experiment 1
# Layer MSE R2 Score Standard Deviation

1 33.7237 0.4171 46.7110
2 5.4962 0.9050 7.2614
3 4.2573 0.9264 7.3165
4 3.242 0.9440 7.3420
5 4.0139 0.9295 7.3265
6 3.0793 0.9468 7.3356
7 3.3926 0.9414 7.3463
8 4.1031 0.9291 7.4942

Experiment 2
# Layer MSE R2 Score Standard Deviation

1 5.3956 0.9067 7.2827
2 5.3896 0.9068 7.2925
3 5.402 0.9066 7.2985
4 5.4459 0.9059 7.2886
5 5.4136 0.9064 7.2869
6 5.3996 0.9067 7.2958
7 5.4203 0.9063 7.2854
8 5.4148 0.9064 7.2896

Experiment 3
# Layer MSE R2 Score Standard Deviation

1 28.3449 0.5101 48.5700
2 8.4131 0.8546 7.1925
3 4.4781 0.9226 7.2786
4 4.4672 0.9228 7.3231
5 4.084 0.9294 7.3505
6 4.0592 0.9298 7.3525
7 3.6647 0.9367 7.3556
8 3.99 0.9311 7.3448

Experiment 4
# Layer MSE R2 Score Standard Deviation

1 36.3256 0.3721 42.1010
2 4.5752 0.9209 7.3308
3 3.6155 0.9375 7.3252
4 4.1919 0.9275 7.4157
5 4.0221 0.9305 7.3322
6 4.0032 0.9308 7.3472
7 4.238 0.9267 7.3423
8 3.9611 0.9315 7.3467

Experiment 5
# Layer MSE R2 Score Standard Deviation

1 5.6709 0.9020 4.2380
2 4.1363 0.9285 7.3147
3 4.0384 0.9302 7.3366
4 3.9693 0.9314 7.3562
5 4.096 0.9292 7.3530
6 4.0213 0.9305 7.3064
7 3.9637 0.9315 7.4283
8 4.0156 0.9306 7.3475


