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We give a simple proof of a Chernoff bound for the spectrum of a k-local Hamiltonian

based on Weyl’s inequalities. The complexity of estimating the spectrum’s ε(n)-th quan-

tile up to constant relative error thus exhibits the following dichotomy: For ε(n) = d−n

the problem is NP-hard and maybe even QMA-hard, yet there exists constant a > 1

such that the problem is trivial for ε(n) = a−n.
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1 Introduction

A fundamental problem in the intersection of quantum physics and computer science is that of

computing the energy levels of a system of n interacting particles. These are the eigenvalues

of the local Hamiltonian H, a conjugate-symmetric (Hermitian) linear operator acting on the

tensor product H ' (Cd)⊗n. The locality property means that H is a sum of terms Hη ⊗ I
where Hη is an operator on k = O(1) tensor factors and I is the identity on the remaining

factors. The locality structure gives rise to a hypergraph G = (V, E) with |V| = n and with

the Hη indexed by m hyperedges η ∈ E . Standard diagonalization procedures to compute the

energy levels would take exponential time due to the dimension of the tensor product space.

The most famous problem in this category focuses on computing the lowest eigenvalue, the

ground state energy. This generalizes the problem MAX-CSP of computing the optimal value

of a constraint satisfaction problem, but now the “variable assignments” are vectors with

exponentially many parameters. Computing the lowest eigenvalue up to a certain inverse

polynomial accuracy in known to be complete for QMA [1], a quantum analogue of NP. A

major open problem is the quantum PCP-conjecture [2] which posits that it is QMA-hard to

even approximate the ground state energy of the Hamiltonian H =
∑
η∈E Hη up to constant

relative error γm. Here, ‖Hη‖ ≤ 1 for each of the m interactions η ∈ E , and γ is a small

constant.

A number of approximation algorithms for local Hamiltonians have been put forth [3, 4,

5, 6]. Successful approximation algorithms imply no-go theorems for the quantum PCP con-

jecture, imposing restrictions on the possible hard instances that would make the conjecture

true. Indeed it suffices to place the approximation problem in NP which is thought to be
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strictly smaller than QMA. Conversely, the recent proof of the NLTS conjecture [7] provides

evidence in favor of the quantum PCP conjecture and may represent and important step

towards its proof.

A related classic question in physics asks about the distribution or density of energy levels.

[8] recently proposed quantum algorithms for this question, which can be phrased in terms

of computing the number of eigenvalues in a given interval. The complexity of the spectral

density for local Hamiltonians was studied in [9], where it was shown that computing the

number of eigenvalues in an interval of inverse polynomial length is no harder than #P,

subject to an inverse-polynomial gap around the interval. [10] gives classical algorithms to

compute partition functions of local Hamiltonians, which similarly characterizes the aggregate

behavior of many eigenvalues.

Combining the ideas of approximation algorithms and spectral density estimation raises

the question: Can we construct an efficient approximation algorithm for the spectral distribu-

tion of a local Hamiltonian? The empirical spectral distribution (ESD) of H is the probability

distribution σ = 1
dimH

∑
i δλi where δλi is the point probability measure at the ith eigenvalue

λi (with multiplicity, in non-decreasing order). By approximation we mean that we allow

errors along the horizontal (eigenvalue) axis when viewing the distribution as a histogram.

We compare with a result from high-dimensional statistics [11]: Given i.i.d. samples of a

D-dimensional random vector Y , estimate the spectrum of Y ’s covariance matrix. [11] showed

that the spectrum of the covariance matrix can be approximated using a number of samples

sublinear in the dimension, and hence with much fewer samples than would be needed to

approximate the covariance matrix itself (in particular the sample covariance matrix is low-

rank so most of its eigenvalues are 0). The quality of approximation in [11] is evaluated in

terms of the earth-mover’s distance (also called Wasserstein-1 distance, written W 1), which

allows but penalizes errors along the horizontal eigenvalue axis of the histogram. The spectrum

estimation is achieved by estimating the low-degree moments of the spectrum.

We now note that in the setting of local Hamiltonians we are also able to compute the

constant-degree moments efficiently. For operators acting on a vector space H introduce the

normalized trace t̄r = 1
dimH tr. Consider the rescaled Hamiltonian h = 1

mH and its empirical

spectral distribution σ̃h. The rth moment of h’s spectrum can be written as:∫
trdσ̃h(t) = t̄r(hr) = Eη1 · · ·Eηr t̄r(Hη1 · · ·Hηr ), (1)

where the ηi are sampled i.i.d. from the uniform distribution on interactions η ∈ E . As

is convention we use Hη as a shorthand for Hη ⊗ I. Note that, unlike the standard trace,

t̄r is unchanged when tensoring with the identity. This follows easily from noticing that

t̄r(H) = E〈ψ|H|ψ〉,bwhere |ψ〉 is chosen uniformly at random from an orthonormal basis.

Since Hη1 · · ·Hηr acts on the set η1∪· · ·∪ηr of at most rk qudits, each term t̄r(Hη1 · · ·Hηr )

can be computed in time O(rd2.38rk). (1) immediately yields an algorithm to approximate the

spectrum of H up to small relative error γ in time independent of m. Indeed, [11] proposition

1 implies that for a distribution of bounded support (the spectrum of h in this case), knowing

the first r = bCγ−1c moments gives an γ-approximation in W 1 distance. Moreover, it suffices

to approximate each moment up to an error exponentially decreasing in r. So it suffices

bThe row vector 〈ψ| is the dual, or conjugate transpose, of column vector |ψ〉.
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to sample 2O(r) terms in (1) and compute each in time dO(rk) = dO(k/γ) for a total time

complexity of dO(k/γ).

The questions remains: does the output of the above moment-based algorithm give us

nontrivial information about the spectrum of H, or will it instead be an expression of a

universal property of a local Hamiltonian’s spectrum which could be known without running

the algorithm? It turns out that the latter is the case, as shown by the following simple

computation: Let µη = t̄r(Hη). Applying the r = 2 case of (1) to the centered interaction

terms Hη − µη we get

Var σ̃h = EηEη′ t̄r
(
(Hη − µη)(Hη′ − µη′)

)
≤ 4P(η ∩ η′ 6= ∅), (2)

since the terms evaluate to t̄r(Hη − µη)t̄r(Hη′ − µη′) = 0 · 0 when the interactions do not

overlap. Assume for simplicity that every vertex is involved in g interactions η and every

interaction involves k qudits. Then any η overlaps with at most kg other hyperedges in the

interaction hypergraph, fixing η we have P(η′ ∩ η 6= ∅|η) ≤ kg/m. Writing mk = gn, (2)

implies,

Var σ̃h ≤ 4k2/n. (3)

Note that (3) does not depend on the vertex degree g. It follows that the point measure at

µ̃ = t̄r(h) approximates σ̃h up to error 4k2/n in L2-distance, and 2k/
√
n in earth-mover’s

distance, by Cauchy-Schwartz or Jensen’s inequality (The W 1 distance coincides with the

L1-distance since one distribution is a point). This makes the output of the aforementioned

moment-based algorithm trivial for low-degree moments. Indeed, it would require degree

r �
√
n moments and time complexity eω(

√
n) to improve on the trivial estimate δµ̃ of σ̃h.

We will not use the rescaled operator h in the remainder of the paper.

1.1 Spectrum estimation in terms of quantiles

We relate the problem of spectrum estimation to the topic of ground states: Generalize the

problem of approximating the ground state energy to that of approximating the ε(n)th quantile

of H’s spectrum up to constant relative error γ.

Problem 1 Given a k-local Hamiltonian H =
∑
η∈E Hη with ‖Hη‖ ≤ 1 and m = |E| encoded

as the list (Hη)η∈E , output λ̂ such that |λ̂− λi(H)| ≤ γm where i = bε(n)dnc.
We ask how the complexity of problem 1 depends on ε(n). By symmetry we may restrict

attention to ε(n) ≤ 1/2. For ε(n) = d−n problem 1 is conjectured to be QMA-hard according

to the quantum PCP-conjecture.

On the other hand (2) already implies the weak concentration inequality (Chebyshev’s

inequality) σ([µ−γm, µ+γm]{) ≤ γ−2k2/n where µ = t̄r(H) and { denotes the complement,

so for ε(n) ≥ γ−2k2/n we may simply output µ.

Question 1 Can this concentration bound be strengthened to be exponentially decreasing in

n, showing that problem 1 is easy for some exponentially decreasing ε(n)?

It turns out that the answer is yes. The technical contribution of this paper is a simple

proof of such a Chernoff-type bound with exponentially decreasing tails. Our proof is based

of Weyl’s eigenvalue inequalities. Note that a similar bound was previously known from

a careful analysis of cluster expansions by Kuwahara and Saito ([12] corollary 2). In fact

their result is for the more general energy distribution σρ of certain states ρ relative to H.
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Other previous works [13, 14] give bounds for σρ using a moment-based approach, but their

bounds are restricted to a short-range interacting setting and are therefore less similar to ours

(See section 2.1). A different spectral concentration inequality by [15] does not include the

dependence on system size which is of central interest here.

2 Statement of the Chernoff bound

We briefly recall our notation. G = (V, E) is a hypergraph with |V| = n vertices and |E| = m

hyperedges, each incident to k vertices. V indexes the set of qudits, each isomorphic to Cd. A

local Hamiltonian is the sum H =
∑
η∈E Hη where each local interaction Hη acts on the qudits

in η and ‖Hη‖ ≤ 1. Let λ1(H) ≤ λ2(H) ≤ . . . be the ordered eigenvalues of H. The empirical

spectral distribution (ESD) of Hamiltonian H is the probability measure σ = d−n
∑
i δλi(H)

which assigns mass d−n to each of its dn eigenvalues counted with multiplicity.

The vertex degree gv = |{η ∈ E|v ∈ η}| of qudit v ∈ V is the number of interactions

involving qudit v. Let
∞
g = maxv∈V gv be the maximum degree over all qudits and let ḡ =

1
n

∑
v∈V gv be the average degree. ḡ and

∞
g are allowed to grow with system size.

Proposition 1 Let H be a local Hamiltonian on a k-uniform hypergraph with maximum

degree
∞
g and average degree ḡ. Let σ be the ESD of H. Then,

σ
(
[−m,µ− γm]

)
≤ k∞

g exp
(
− γ2

2

⌊ n

k2(
∞
g/ḡ)

⌋)
, (4)

where µ = d−n trH. The same bound holds for σ
(
[µ+ γm,m]

)
.

We thus obtain an exponential concentration bound for arbitrarily large vertex degrees, as

long as the average and maximum degree are of the same order. The multiplicative prefactor
∞
g . ḡ = km/n ≤ k

n

(
n
k

)
= nO(1) can be absorbed.

We note that a concurrentcwork by De Palma et al. [16] shows a concentration bound sim-

ilar to proposition 1 using the quantum Wasserstein distance. This relation can be observed

by bounding the quantum Lipschitz constant of the Hamiltonian by its degree and applying

corollary 3 of [16].

Corollary 1 Let H be a local Hamiltonian on a k-uniform and g-regular hypergraph. Then,

σ
(
[−m,µ− γm]

)
≤ kg exp

(
− γ2

2
bn/k2c

)
,

where µ = d−n trH. The same bound holds for σ
(
[µ+ γm,m]

)
.

Proposition 1 answers question 1 of the previous section about the complexity of problem 1,

assuming that the maximum degree and average degree are of the same order. It implies that

for any γ = Ω(1) there exists a constant a > 1 such that problem 1 is trivial for ε(n) ≥ a−n.

The approximation is simply λ̂ :=
∑
η∈E t̄r(Hη).

2.0.1 The importance of unbounded degree

For the case k = 2, [5] show that approximating the energy of g-regular graphs of high

degree g is in NP. Moreover, [17] constructed gadgets to reduce k-local interactions to 2-local

interactions. These two facts may at first appear to imply that high-degree hypergraphs do

cBoth papers appeared on ArXiv on Sep 11 ’20.



1314 Simple and deterministic spectral concentration bound for local Hamiltonians

not make for hard instances for the approximate ground state problem. It turns out ([18]) that

this argument is not valid. Consider for example an input with n qubits and m interactions,

each 3-local. The gadgets of [17] produce a 2-local Hamiltonian on a graph G̃ with ñ = n+m

vertices and m̃ ≤ 6m edges, with m mediator qubits added. Now the numbers of vertices and

edges are of the same order ñ = Ω(m̃), hence the averaging argument of [5] does not imply

a bound o(1). Indeed, the newly constructed graph cannot be regular with increasing degree

when m̃ = O(ñ).

As an illustration ([18]), applying [5] theorem 9 (the non-regular case) yields a relative

error of order (‖A‖2F ‖π‖22)1/8 where π is a probability distribution on the enlarged vertex set

and ‖A‖2F is the harmonic meandof the degrees in G̃, so the contribution from the degree-3

mediator qubits yields ‖A‖F ≥ 1
3m. Since ‖π‖22 ≥ 1/ñ = Θ(1/m), the relative error bound

(‖A‖2F ‖π‖22)1/8 does not converge to 0.

In conclusion it is not known that approximating eigenvalues for high-degree k-local Hamil-

tonians is in NP, so hypergraphs with high vertex degree g � 1 are an important setting to

study for approximation theory and the quantum PCP conjecture.

2.1 Comparison with bounds in the literature

The analysis of the spectrum of H is a special case of a problem studied in the literature

seeking the distribution of an observable H in a state ρ [13, 14, 12]. The state ρ is subject to

certain assumptions (say, product structure [13] or being a Gibbs state for a local Hamiltonian

[12]), and the distribution in question is σρ =
∑
λ∈specH tr(ρΠλ)δλ, where Πλ are the spectral

projections of the Hamiltonian H and δλ the point probability measure at λ.eWe call σρ the

directional energy distribution in direction ρ. This specializes to the spectral distribution of

H when ρ is maximally mixed.

Consider a k-uniform, g-regular interaction hypergraph but let us allow unbounded degree

g → ∞. [14], corollary 8 bounds σρ
(
[−m,µ − x]

)
≤ e−Ω̃(x2/n) where the implicit constant

depends on k and, notably, on g. Thus we must take g = O(1) which imposes that m = Θ(n).

Substituting x = γm yields σρ
(
[−m,µ− γm]

)
≤ e−Ω̃(nγ2) as in proposition 1 for k, g = Θ(1),

but one does not get a bound when g →∞. [13] theorem 1.2 gives a bound with an explicit

dependence on g,

σρ
(
[−m,µ− γm]

)
= e
−Ω( mγ

2

k2g2
)

= exp
(
−Ω
(nγ2

k3g

))
. (5)

(5) does not obtain the exponential decay in n as in proposition 1 unless g = O(1). For

example, for the case of the complete graph the bounds of [14] and [13] do not show any con-

centration, whereas proposition 1 decreases exponentially with n. Physically, these limitations

correspond to saying that the results of [13, 14] are for short-range interacting systems.

The bound which is most similar to ours is found in [12] and uses a delicate analysis of

the cluster expansions to obtain a bound on the energy distribution in long-range interacting

systems. [12] corollary 2 states the bound for the spectral distribution (the same setting as

dThe notation is interpreted as follows: ‖A‖2F is the squared Frobenius/Hilbert-Schmidt norm of A, the

adjacency matrix of G̃ rescaled to have column sums equal to 1.
eHere, the sum is over the spectrum of H as a set. Multiplicity of eigenvalues is included through the rank of
Πλ.
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ours):

σ
(
[−m,µ− γm︸︷︷︸

x

]
)
≤ exp

(
− x2

(16e3gk)gn

)
= exp

(
− 1

16e3

γ2n

k3

)
, (6)

where we have substituted x = γm = γ · gn/k. In corollary 1 we obtain an exponent of order
1
2 (γ/k)2n, improving over (6) by a factor 160k = Θ(k) in the exponent for our problem setting

(since 160 = b8e3c). For local Hamiltonians one has k = O(1) so our result shrinks the base of

the exponential decay by a factor e160k ≥ e320. We stress that [12] is able to analyze the more

general directional energy distribution σρ. Furthermore the “degree” of a vertex v is defined

in a more flexible way in [12] as a bound on
∑
η:v∈η ‖Hη‖, and fewer-particle interactions

|η| < k are allowed.

2.1.1 Interpretation as typical directional energy distribution

Estimating the directional energy distribution σρ is a more general problem than estimating

the spectral distribution σ of H. On the other hand, propositon 1 implies a partial converse

(a similar connection was observed in [15]): Given any orthonormal basis {|ψi〉} we have that

the energy distribution in direction |ψi〉 satisfies an exponential concentration bound in all

but an exponentially small proportion of the directions |ψi〉. Indeed, the spectral density

bounded in proposition 1 can be written as σ = Eσ|ψi〉 where the expectation is over a

uniformly chosen member of the basis. Letting ε be twice the RHS of proposition 4 and

writing { = {x : |x− µ| ≥ γm} we get by Markov’s inequality:

√
ε · P(σ|ψi〉({) >

√
ε) ≤ Eσ|ψi〉({) = σ({) ≤ ε ⇒ P(σ|ψi〉({) > δ) ≤

√
ε,

where
√
ε = Ce−Ω(nt2/k2). So for any 0 < γ < 1 there exists a large set S ⊂ {1, . . . ,dimH}

indexing basis vectors such that |S|/dimH ≥ 1 − Ce−Ω(nγ2/k2), and such that the energy

distribution concentrates,

σ|ψi〉([µ− γm, µ+ γm]) ≥ 1− Ce−Ω(nγ2/k2),

in all directions |ψi〉, i ∈ S.

3 Simple proof of spectral concentration

We now turn to the proof of proposition 1. The idea of our proof is to use Weyl’s eigenvalue

inequalities [19] to combine multiple independent sets of interactions. A similar partitioning

of interactions into independent sets has been done previously [14, 13] (see [14] lemma 2), but

in these cases the sets were combined in a more elaborate way by analyzing the moments,

and the results do not yield our desired bounds in the long-range interacting case.

Definition 1 Given a Hermitian operator H and t ∈ R, let F (t) be the proportion of H’s

eigenvalues in (∞, t]. We call F the ESD-CDF (cumulative distribution function for the ESD)

of H.

Lemma 1 (Weyl’s inequalities) Let H =
∑r
c=1Hc. For each c let Fc be the ESD-CDF of

Hc, and let F (t) be the ESD-CDF of H =
∑
cHc. Then for any t1, . . . , tr ∈ R

F (t1 + . . .+ tr) ≤ F1(t1) + · · ·+ Fr(tr).
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Proof: Let Ec be the projection-valued spectral measure for Hc and consider the projection-

valued CDF Fc(t) = E((−∞, t]). Then Fc(t) = 1
dimH rankFc(t). Consider any subspace W

of dimension D+ 1 where D =
∑
c rankFc(tc). W contains a unit vector |ψ〉 in

⋂
c kerFc(tc).

Then 〈ψ|Hc|ψ〉 > tc for each c, so 〈ψ|H|ψ〉 >
∑
c tc. So by the Courant-Fischer min-max

theorem, λD+1(H) >
∑
c tc. That is, at most D = (dimH)

∑
c Fc(t) eigenvalues are in

(−∞,
∑
c tc].

A (hyper)edge coloring of G = (V, E) is a partition E = E1 t . . . t Er such that for any

color c it holds that any two distinct η1, η2 ∈ Ec are disjoint as subsets of V.

Lemma 2 Let E = E1 t . . . t Er be a hyperedge coloring and let mc = |Ec| be the number of

hyperedges with the color c. Let µ = t̄r(H). Then the ESD-CDF F of H satisfies

F (µ− γm) ≤
r∑
c=1

exp(−mcγ
2/2). (7)

Proof: Write H(c) =
∑
η∈Ec Hη and µc = t̄r(H(c)). By lemma 1 we have,

F (µ− γm) = F
(∑r

c=1(µc − γmc)
)
≤
∑r
c=1 Fc(µc − γmc). (8)

We fix c and bound Fc(µc− γmc): For each η ∈ Ec choose independently a uniformly random

|ψη〉 from an eigenbasis for Hη, so that |ψ〉 =
⊗

η∈Ec |ψη〉 is uniform from an eigenbasis for

H(c). The corresponding random eigenvalue λ is distributed according to the ESD of H(c). λ

is a sum of mc independent random variables in the interval [−1, 1], so by Hoeffding’s bound

([?] inequality (2.3)),

Fc(µc − γmc) = P
(
λ ≤ Eλ−mcγ

)
= exp(−mcγ

2/2).

To finish our proof of proposition 1 it remains to determine the number of colors r and the

sizes mc of the independent sets in (7). The proof uses the following classical theorem:

Theorem 1 (Hajnal-Szemeredi [20]) Every graph with n vertices and maximum ver-

tex degree ∆(G) ≤ k is (k+1)-colorable with all color classes of size bn/(k+1)c or dn/(k+1)e.
Lemma 3 There exists an equitable coloring E = E1 t · · · t Er with r = k

∞
g − k + 1 colors.

Here equitable means that |Ec| ≥ bm/rc for each c = 1, . . . , r.

Proof: Construct the graph G∗ on vertex set E where two interactions η ∼ η′ are connected

iff some qudit is acted on by both η and η′. G∗ has degree at most k(
∞
g − 1). By the Hajnal-

Szemeredi theorem [21] there exists an equitable vertex coloring of G∗ with r = k(
∞
g − 1) + 1

colors.

Proof of proposition 1: We use lemma 3 to pick an equitable coloring with r ≤ k
∞
g

colors. Since the coloring is equitable we have mc ≥ bm/rc. Apply lemma 2 and note that

each term in (7) is bounded by exp(−bm/rcγ2/2). Thus,

F (µ− γm) ≤ r exp(−bm/rcγ2/2) ≤ k∞
g exp

(
− γ2

2

⌊m
k
∞
g

⌋)
,
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where we have used that the middle expression is increasing in r. The result follows by noting

that nḡ =
∑
v gv = mk and substituting m = (ḡ/k)n

4 Open problems

We conclude with a few questions raised by this paper.

Can the bound of proposition 1 be matched for the directional energy distribution σρ consid-

ered in [12]?

In the introduction we sketched a näıve moment-based algorithm for approximating the spec-

trum of a local Hamiltonian and noted that because of spectral concentration its output

would be trivial when using low-degree moments. Could this algorithm be improved using

combinatorial insights, say, by using the cluster expansions? Alternatively, running the näıve

algorithm up to
√
n�M � n moments estimates the spectrum to greater precision than the

trivial point estimate in sub-exponential time; would this give non-trivial information about

the spectrum? Or does one intead find that the spectral distribution is always close to a

Gaussian, as in the case of spin chains [22]?
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