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Quantum image segmentation algorithm can use its quantum mechanism to rapidly
segment the objects in a quantum image. However, the existing quantum image seg-

mentation algorithms can only segment static objects in the image and use more quan-

tum resource(qubit). In this paper, a novel quantum segmentation algorithm based on
background-difference method for NEQR image is proposed, which can segment dynamic

objects in a static scene image by using fewer qubits. In addition, an efficient and feasi-

ble quantum absolute value subtractor is designed, which is an exponential improvement
over the existing quantum absolute value subtractor. Then, a complete quantum circuit

is designed to segment the NEQR image. For a 2n×2n image with gray-scale range of

[0,2q-1], the complexity of our algorithm is O(q), which has an exponential improvement
over the classical segmentation algorithm, and the complexity will not increase as the

image’s size increases. The experiment is conducted on IBM Q to show the feasibility of
our algorithm in the noisy intermediate-scale quantum (NISQ) era.

Keywords: Quantum image processing, Quantum image segmentation, Background-
difference method, Quantum absolute value subtractor

1 Introduction

Currently, our requirements for the image quality are getting higher, which needs more com-

putation to process the images. However, the current development of classic computers is lim-

ited by technology, and the real-time problem has gradually emerged. Quantum computing

can greatly increase the computation speed due to its unique entanglement and superposi-

tion characteristics. Quantum image processing is an interdisciplinary subject that combines

classical image processing with quantum computing, which has received extensive attention

from researchers in recent years [1]. Quantum image processing utilizes the characteristics
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1292 A quantum segmentation algorithm based on background-difference method for NEQR image

of quantum computing by storing image information in quantum state, which can achieve

exponential speed-up than the classical image processing [2].

In quantum image processing, the first is to store classical images in qubits to turn them

into quantum images. So, a representation model of quantum images is required. At present,

there are two main methods to encode the quantum image. One is to encode the gray-scale

values of the quantum image into the probability amplitude of the qubits, which can encode

images using fewer qubits, such as qubit lattice representation (QLR) [3], real ket represen-

tation (RKR) [4], the flexible representation of quantum image (FRQI) [5], the multi-channel

RGB images representation of quantum images (MCQI) [6], a normal arbitrary superposition

state of quantum image (NASS) [7] and quantum probability image encoding representation

(QPIE) [8]. When an image is retrieved, a large number of measurements are required to get

an approximation of the probability magnitude, which makes it difficult to retrieve images.

The other method, such as the novel enhanced quantum image representation (NEQR) [9]

model, an improved NEQR (INEQR) [10], a generalized model of NEQR (GNEQR) [11], a

novel quantum representation of color digital images (NCQI ) [12], and quantum representa-

tion of multi wavelength images (QRMW) [13], solves this problem well and it is to encode

the gray-scale values by using a separate qubit sequence. Because the NEQR model stores the

image information in the basic state of the qubit sequence, it is very simple and convenient

to operate the pixel directly. In addition, when the quantum image is restored to a classical

image, the NEQR model only requires a few measurements. Therefore, the NEQR model

is widely used due to its simplicity of operation, and this model is also used in this paper.

Based on these representation models, various quantum image processing algorithms have

been proposed. The current quantum image processing algorithms mainly include geometri-

cal transformation of quantum image [14], quantum image encryption [15], feature extraction

of quantum image [16], quantum image scrambling [17], quantum image morphological oper-

ations [18], quantum image watermarking [19], quantum image filtering [20], quantum image

edge detection [21, 22, 23, 24], quantum image segmentation [25, 26, 27, 28], etc. Among

them, quantum image segmentation is the basis of image processing.

In recent years, quantum image segmentation algorithms have gradually developed from

theoretically feasible to practically feasible. In 2014, Caraiman et al. [25] used histograms

to segment quantum images. They segmented the image according to the distribution of

pixels’ gray-scale values in the histogram and obtained exponential acceleration, but there

was no specific oracle implementation circuit. One year later, they [26] proposed a quantum

image segmentation algorithm based on a single threshold and gave an oracle circuit, but they

could not be simulated in the noisy intermediate-scale quantum (NISQ) era due to the high

quantum cost. In 2019, Xia et al. [27] designed a quantum comparator and used a single

threshold to binarize the quantum image. They designed a detailed segmentation circuit

but the complexity is still too high. Although many researchers have conducted research on

quantum image segmentation algorithms, but none of the previous algorithms are simulated

on the quantum platform. In 2020, Yuan et al. [29] proposed a dual-threshold quantum image

segmentation algorithm based on a quantum comparator they designed and simulated it on

the IBM Q platform [30], but when the image is more complex, the effect of the segmentation

algorithm needs to be improved. The above algorithms can only segment the static objects in

the static scene image, and cannot perform effective segmentation when encountering dynamic
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objects. In real-world application scenarios, the segmentation of dynamic objects is very

extensive, with the most common example being a monitoring system. During a certain

period of time, the scene is relatively fixed, but the moving object is constantly changing.

So the real-time requirements during the segmentation process are very high. Therefore,

a dynamic object segmentation algorithm with high real-time performance is needed. The

classic background difference method can quickly and effectively segment dynamic objects

under the same background, but with the improvement of image quality, the real-time problem

of the algorithm gradually becomes apparent. Therefore, we conducted in-depth research on

this issue, and the main contributions are as follows.

• A novel quantum segmentation algorithm based on background-difference method for

NEQR image is proposed.

• An efficient quantum absolute value subtractor (QAVS) is designed, and its complexity is

exponentially improved compared to the existing absolute value subtractor. Then based

on this QAVS, a complete quantum circuit is designed to segment dynamic objects in

the static scene image by using few qubits.

• We verify the superiority and feasibility of our proposed algorithm by analyzing the

circuit complexity and performing the simulation experiment on IBM Q platform [30]

through Qiskit extension[31], respectively.

The rest of this paper is organized as follows: In Sec. 2, the basic quantum gates and

the NEQR model are introduced respectively. In Sec. 3, we first introduce the quantum

image segmentation algorithm based on background-difference method, and then, a quantum

subtractor, a quantum absolute value subtractor and a complete quantum segmentation circuit

are designd. In Sec. 4, the circuit complexity is analyzed, and the simulation experiment is

conducted on the IBM Q platform to show the feasibility of our algorithm in Sec. 5. Finally,

the conclusion is given in Sec. 6. Appendix A gives the complete quantum circuits for the

8-qubit comparator and subtractor.

2 Preliminaries

2.1 Quantum gates

With the gradual deepening of quantum computing research, there are more and more types

of quantum logic gates, and their performance is getting better and better. The optimized

quantum logic gate has very low theoretical complexity. However, when operating in an actual

quantum circuit, these quantum logic gates need to be combined with a lot of basic quantum

logic, which leads to the quantum cost of the actual circuit far exceeding the theoretical cost.

Therefore, in this paper, we use basic quantum logic gates to design quantum circuits (i.e.,

H gate, X gate, CNOT gate, Toffoli gate and Fredkin gate) [32]. The commonly used basic

quantum logic gates in quantum computing are shown in Tab. 1.

2.2 NEQR

The classical image contains position information and gray-scale value information, and the

NEQRmodel uses three entangled qubit sequences to represent these two kinds of information.

Assuming that an image’s size is 2n × 2n, and its gray-scale range is [0,2q-1]. Then, two n-

length qubit sequences are required to represent position information, and q-length qubit
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Table 1. The quantum gates and their unitary matrix.

Quantum gate Symbol Unitary matrix

Hadamard gate H
1√
2

[
1 1
1 −1

]

Pali-X gate X

[
0 1
1 0

]

CNOT gate •


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Toffoli gate •

•



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Fredkin gate •
×
×



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



sequences are required to represent the gray-scale value information. The NEQR model can

be written as Eq. (1) [9].

|I⟩ = 1

2n

2n−1∑
Y=0

2n−1∑
X=0

|CY X⟩ ⊗ |Y ⟩ |X⟩ = 1

2n

22n−1∑
Y X=0

q−1
⊗
k=0

∣∣CK
YX

〉
⊗ |Y X⟩ (1)

where |CY X⟩ =
∣∣∣Cq−1,

Y X Cq−2
Y X , · · ·, C1

Y X , C0
Y X

〉
represents the quantum image gray-scale values,

Ck
Y X ∈ {0, 1}, k = q−1, q−2, · · · , 0. |Y X⟩ = |Y ⟩ |X⟩ = |Yn−1, Yn−2, · · ·Y0⟩ |Xn−1, Xn−2, · · ·X0⟩

represents the position of the pixel in a quantum image, Yt, Xt ∈ {0, 1}.
Fig. 1 shows an example of a grayscale image of size 2×2, and the corresponding NEQR
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expression of which is given as follows

|I⟩ = 1
2 (|0⟩ |00⟩+ |100⟩ |01⟩+ |200⟩ |10⟩+ |255⟩ |11⟩)

= 1
2

(
|00000000⟩ |00⟩+ |01100100⟩ |01⟩
+ |11001000⟩ |10⟩+ |11111111⟩ |11⟩

)
. (2)

Fig. 1. An example of a 2×2 image.

3 The quantum image segmentation algorithm and its circuit design

In this section, a quantum image segmentation algorithm based on the background-difference

method is proposed. We first introduced the basic idea of the algorithm, and then a series of

quantum circuits in the algorithm are designed in detail.

3.1 The quantum image segmentation algorithm

The algorithm can segment the dynamic object in a static scene image, and it performs the

subtraction operation between the currently obtained image and the background image, which

can obtain the gray-scale image with the object area. In an ideal situation, except for the

object area, the gray-scale value of the image we get is 0, so that we can clearly see the object

in the image. However, in practical applications, due to the influence of factors such as light

changes, the gray-scale value of the obtained gray-scale image will not be 0 except for the

object area, which makes it difficult to distinguish the object. Therefore, in order to reduce

the influence of these factors as much as possible, we perform a threshold-based binarization

process on the gray-scale image after the subtraction processing. When the gray-scale values

of the image are greater than the threshold we set, we consider it as the object and set the

gray-scale value to 1. Otherwise we consider it to be the background area and set its gray-

scale value to 0. From this, we can distinguish the dynamic object in the static scene image

well. Fig. 2 represents the workflow of the quantum image segmentation algorithm based on

the background-difference method.

Suppose I(x, y) and B(x, y) are the currently obtained image and background image re-

spectively, T is the threshold we set, and f(x, y) is the result image, then the quantum image

segmentation algorithm can be described as:

f(x, y) =

{
1, |B(x, y)− I(x, y)| ≥ T
0, |B(x, y)− I(x, y)| < T

. (3)

From the formula, we can see that a quantum absolute value subtractor and a quantum

comparator are needed. The function of the quantum absolute value subtractor is to subtract
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Fig. 2. Workflow of our proposed algorithm.

the current image and the background image to obtain the object gray-scale image. The

function of the quantum comparator is to compare the obtained gray-scale image with the

threshold, and finally obtain a binary image. Therefore, we need an eight-qubit quantum

absolute subtractor and an eight-qubit quantum comparator. In this paper, a combination of

a quantum comparator, eight CSWAP gates and a quantum subtractor is used to implement

the absolute value subtractor. We first use the comparator to compare the two gray-scale

values that need to be subtracted, and then the CSWAP gates are used to perform the swap

operation, which can set the large gray-scale value as the subtracted number. In this way,

the subtractor can always subtract the small qubit sequence from the large qubit sequence,

so that the effect of the absolute value subtractor can be obtained. After performing the

absolute value subtraction operation, we will get a gray-scale image containing the object. In

order to prevent the influence of light and other factors, we set a threshold, and input the

obtained gray-scale image into the comparator to compare the image’s gray-scale value with

the threshold, and finally we will get a binary image. From this, we can use quantum circuits

to distinguish dynamic objects in stationary scenes.

3.2 Circuit design of the quantum segmentation algorithm

3.2.1 Quantum comparator

The quantum comparator (QC) is used to compare the magnitude relationship of two quantum

sequence values, and it takes two binary number sequences |a⟩ = |an−1an−2 · · · a0⟩ and |b⟩ =
|bn−1bn−2 · · · b0⟩ as input and the comparison result y = 0 or y = 1 as output. In the quantum

bit string comparator (QBSC) [33], after inputting two quantum bit strings, three relations

can be obtained. If a > b, then x = 1, y = 0, if a < b, then x = 0, y = 1, if a = b,

then x = y = 0. In this paper, an eight-qubit quantum comparator is used to compare the

gray-scale value of the image, and we only need to know the two relationships a ≥ b and
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a < b, as shown in Fig. 3. a7 · · · a1a0 and b7 · · · b1b0 represent two numbers that need to be

compared, and h2h1h0 represents auxiliary qubits. We compare them one by one from the

lowest bit to the highest bit. If a0 = 0, b0 = 1, then y = 1 and the auxiliary qubit h2 is set

to 1. otherwise y = 0 and h2 remains unchanged. At this point, the comparison of a0 and b0
is over. The next qubits is compared according to the same comparison method as before. If

the next comparison result of a1 and b1 is 1, then b > a, and y = 1 is output directly and h1

is set to 1, otherwise the comparison result of the previous qubit a0 and b0 is output and h1

remains unchanged. When the two comparison results are synthesized, a1b1a0b0 = 1001 needs

to be considered separately, so we use 2 Toffoli gates and one CNOT gate to process the two

comparison results, which also requires an auxiliary qubit h0 to store the second comparison

result. After the two qubits comparisons, we use two reset operations [34] to set the auxiliary

qubits h2h0 to 0, so that we can reuse the two auxiliary qubits. According to this comparison

method, we can compare the sequence of n qubits. Compared with the existing quantum

comparators, and from Tab. 2, it can be seen that our comparator can operate with the fewer

auxiliary qubits and the lower quantum cost, which is very meaningful in this NISQ era. The

complete 8-qubit quantum subtractor circuit is shown in Fig. A.1.

Table 2. Comparison of different quantum comparators..

Quantum comparator Auxiliary qubits Quantum cost
QBSC[33] 3n− 1 30n− 15
QC[29] 5 28n− 15

our comparator 3 18n− 13

|a1> 

|a0> 

|b1> 

|b0> 

X X

X X

|h2> 

|h1> 

|h0> 

|y> 

|a7> 

|b7> 

|0> 

|0> 

X X

|0> 

|0> X X

X X

X X

X X

|a1> 

|a0> 

|b1> 

|b0> 

|a7> 

|b7> 

Fig. 3. 8-qubit quantum comparator implementation circuit.

3.2.2 Design of quantum subtractor

In the algorithm, we need to subtract one image from another, so a quantum subtractor (QS)

is required. The subtractor takes two binary number sequences |a⟩ = |an−1an−2 · · · a0⟩ and

|b⟩ = |bn−1bn−2 · · · b0⟩ as input, and outputs the result of a− b. According to the idea of the
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ripple carry adder [35], our subtractor is also designed bit by bit from the lowest bit (a0) to

the highest bit (an−1). The subtraction of a0 − b0 only needs to consider the four cases of

0−0, 0−1, 1−0, and 1−1. From these four cases, we can see that there is no need to perform

any operation in the cases of 0 − 0 and 1 − 0, and we directly output a0 as the subtraction

result. If a0 − b0 is 1 − 1, then, the output result is 0. If a0 − b0 is 0-1, then, a borrow is

needed from a1. At this time, we use the Toffoli gate to mark the borrow information. From

this we can see that when b0 is 1, the output result of a0 is 0. Therefore, we only need a

CNOT gate operation to get the result of a0 − b0.

After the a0− b0 is completed, we use the reset operation [34] on b0, which can reduce the

consumption of qubits. The subtraction of the second bit(a1 − b1) also considers whether a0
has a borrow on the basis of the subtraction of the first bit. If a0 does not borrow from a1,

then, we just follow the previous operation. If a0 has a borrow from a1, the output result of

1 − 0 is 0 in the four cases of 0 − 0, 0 − 1, 1 − 0, and 1 − 1. If a1 − b1 is 0 − 0 and 0 − 1,

then, a1 needs to borrow from a2, and it also needs to lend a bit to a0, so the output results

are 1 and 0 respectively. If a1 − b1 is 1-1, then a1 lends a bit to a0 and then becomes 0, so

it needs to borrow a bit from a2, and the output result is 0. Therefore, we need to perform

CNOT operation on the results of a1− b1, and the Toffoli gates are used to record the borrow

information. If a1 − b1 is 0 − 0 or 0 − 1, then, we write down the borrow information. If

b1 = 1 and a0 needs to borrow a bit from a1, then, we write down the borrow information. If

both of these conditions exist, we also write down the borrow information. In this way, the

subtraction operation of a1− b1 is completed, and at this time we can know whether a1 needs

borrow. The subtraction operation of an−1 − bn−1 is the same as a1 − b1, so, we only need to

repeat the above operation to get the result of a1 − b1 . . . an−2 − bn−2. When an−1 − bn−1,

an−1 does not need to borrow from previous bit, so we only need to consider whether an−1

has a borrow.

In this paper, we presents a 8-qubit subtractor, as shown in Fig. 4. a7 . . . a1a0 represent

the minuend, and b7 . . . b1b0 represent the subtrahend. h1h0 represent the auxiliary qubits,

which are initialized to 0. The result of the subtraction is stored in the first 8 qubits. The

subtractor designed in this paper only needs to repeat the operation of the a1 − b1 and keep

a0 − b0 and an−1 − bn−1 unchanged, and it can be extended to two n-qubit subtractor. The

complete 8-qubit quantum subtractor circuit is shown in Fig. A.2.

3.2.3 Design of quantum absolute value subtractor

A quantum full subtractor (QFS) is designed by Cheng et al. [36] according to the classical

truth tables, but it requires a large number of auxiliary qubits, which is inappropriate in

this NISQ era. Thapliyal et al. [37] designed a reversible binary subtractor(RBS) based

on the TR gate they proposed, but the quantum implementation of the TR gate was not

known. Then, they [38] present a new design of the reversible full subtractor (RFS) based on

the implementable TR gate, and the RFS is optimized in terms of quantum cost, delay and

garbage outputs. But, the subtraction of two images will appear that a small gray-scale value

subtracts a large value. At this time, it will generate negative numbers. But the subtractor

above can only subtract small numbers from large numbers, and cannot represent negative

numbers, which will cause overflow of the result. In order to prevent this case, Fan et al.[39]

combines a reversible parallel subtractor (RPS) and a complement operation (CO) to form
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|a1> 

|a0> 
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|b0> 

X X
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|b7> 

|0> 

|0> 

|h0> 
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|r7> 

|0> 

|0> 

X

Fig. 4. 8-qubit quantum subtractor implementation circuit.

a quantum absolute value subtractor (QAVS), and its complexity is O(q2). This is also the

most commonly used absolute value subtractor in quantum image processing [24, 39]. In this

paper, we use a new method to design the absolute value subtractor to reduce the complexity

of the QAVS.

First, we use the previously designed comparator to compare the two numbers that need

to be subtracted. If the minuend is greater than the subtrahend, then directly input the two

numbers to the subtractor, otherwise, we use the CSWAP gate to swap the position of the

minuend and subtrahend. So that the minuend can be kept greater than the subtrahend, and

the function of the absolute value subtractor is also achieved. Because the comparator and

subtractor we designed are optimized. Therefore, the complexity of our absolute value sub-

tractor is O(q). Compared with the previous absolute value subtractor, the performance has

been greatly improved. In this paper, we have designed a 8-qubit absolute value subtractor,

as shown in Fig. 5. a7 . . . a1a0 and b7 . . . b1b0 represent the sequence of the minuend and the

subtrahend, respectively. h2h1h0 represents the auxiliary qubits, which are initialized to 0.

|r1> 

|r0> 

|r2> 

|a1> 

|a0> 

|b1> 

|b0> 

|h2> 

|a7> 

|b7> 

|h1> 

|0> 

|h0> 

QC
QS

Fig. 5. 8-qubit quantum absolute value subtractor implementation circuit.
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3.2.4 Design of quantum segmentation circuits

After the subtraction of the two images, we need to binarize the image after subtraction. We

artificially set a threshold T , and use a quantum comparator to compare the threshold with

the gray-scale value of the image. According to the comparison result, the image is converted

into a binary image. When the comparison result is y = 0, it means that the gray-scale values

are greater than or equal to the threshold, then we use the segmentation circuit to segment

these pixels into 1. Otherwise the pixels are segmented into 0. As shown in Fig. 6, a7 . . . a1a0
represent the gray-scale value, b7 . . . b1b0 represent the threshold we set, and y represents the

comparison result. When performing segmentation, we use a combination of CNOT gate and

Toffoli gate. If an = 0, then we use Toffoli gate to turn it into 1, otherwise, we do not perform

any operation. Through this operation, pixels greater than or equal to the threshold can be

set to 1. For pixels smaller than the threshold, if an = 1, we use Toffoli gate to turn it into

0. The complete segmentation circuit is shown in Fig. 7.

|a1> 

|a0> 

|y> 

|a7> 

|b1> 

|b0> 

|c1> 

|c0> 

|c7> 

X X

X X

|0> 

|0> 

|0> 

|0> 

Fig. 6. 8-qubit quantum image segmentation implementation circuit S.
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QAVS QC
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2n
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p
2n

|0> 

|0> 

|0> 

|0> 

|0> 

Fig. 7. The complete circuit of quantum image segmentation.
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4 Circuit complexity analysis

Single-qubit and double-qubit gates are the basic quantum logic gates of quantum computing

and can operate on any qubit. Therefore, in this paper, we use the number of single-qubit

gates and double-qubit gates to evaluate the complexity of the algorithm, which is also known

as quantum cost. The quantum cost of the NOT gate and the CNOT gate is 1, and the Toffoli

gate can be split into 5 double-qubit gates [40, 41, 42]. Therefore, its quantum cost is 5. In

this paper, we analyze the complexity of the algorithm based on Fig. 7. Suppose the size of

the image is 2n × 2n, and the gray-scale level is [0,2q − 1]. The quantum cost analysis is as

follows.

As shown in Fig. 3, the design of a q-qubit quantum comparator is divided into two parts.

The first part of the design requires a Toffoli gate, and the quantum cost is 5. The second part

requires 3(q − 1) Toffoli gates, (q − 1) CNOT gate, and 2(q − 1) reset gate, so the quantum

cost of the second part is 18(q − 1). Therefore, the quantum cost of a quantum comparator

is 18q − 13.

The design of a q-qubit quantum subtractor can be divided into three parts. The first

part is the design of a0− b0 and we need a Toffoli gate, two CNOT gates and two reset gates.

Therefore, the quantum cost of this part is 9. The second part is the design from a1 − b1
to aq−2 − bq−2 and we need 4(q − 2) Toffoli gates, 4(q − 2) CNOT gates, and 3(q − 2) reset

gates. Therefore, the quantum cost of this part is 27(q − 2). The third part is the design of

aq−1−bq−1 and it requires 2 CNOT gates. So, the quantum cost is 2. Therefore, the quantum

cost of a quantum subtractor is 27q − 43.

The quantum absolute value subtractor is constructed by q CSWAP gates, a reset gate, a

quantum comparator and a quantum subtractor. The quantum cost of a CSWAP gate is 3.

Therefore, the quantum cost of quantum absolute value subtractor is 48q − 55.

The quantum segmentation circuit is divided into two parts, and each part of the circuit

is composed of a control operation and segmentation operations. The control operations are

2 CNOT gates, and the segmentation operations are composed of 2 CNOT gates, 2 Toffoli

gates and q reset gates. Therefore, the quantum cost of the quantum segmentation circuit is

q + 15.

The quantum circuit of our algorithm is composed of a quantum absolute value subtractor,

a quantum comparator, a quantum segmentation circuit and q+2 reset gates, and typically, the

quantum image preparation and measurement processes are not considered part of quantum

image processing [39, 24]. Therefore, the quantum cost of the algorithm is 68q − 52, and the

circuit complexity is O(q). The detailed quantum cost of each quantum circuit unit is shown

in Tab. 3. This shows that the complexity of our algorithm is only related to the gray-scale

level of the image, and has nothing to do with the size of the image. Since the classic image

segmentation algorithm needs to process each pixel in turn, the algorithm complexity is not

lower than O(22n) [43, 44]. Therefore, our algorithm can achieve exponential acceleration

compared to classic algorithms. The algorithm our proposed is compared with some other

classical and quantum image segmentation algorithms in references [44, 26, 27, 29]. For

convenience, the segmentation algorithms in [44, 26, 27, 29] are abbreviated as BSMOG, IS,

NMQCIS, DQIS, respectively. The detailed information is shown in Tab. 4.

It can be seen from Tab. 4 that 3q-1 auxiliary qubits are used to segment the quantum
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Table 3. The quantum cost and complexity of different quantum circuit unit.

Unit Quantum cost Complexity
Quantum comparator 18q − 13 O(q)
Quantum subtractor 27q − 43 O(q)

Absolute value subtractor 48q − 55 O(q)
Binaryzation q + 15 O(q)

Table 4. Comparison of the different segmentation algorithms.

Algorithms Object state Auxiliary qubits quantum cost Complexity
BSMOG[44] dynamic - - O(22n)
IS [26] static 3q-1 127q-91 O(q)
NMQCIS [27] static 18 48q-6 O(q)
DQIS [29] static 5 70q-14 O(q)
Our algorithm dynamic 3 68q-52 O(q)

image into a binary image in IS algorithm. It uses two q-qubit QBSCs to distinguish the

relationships between the gray-scale values and the threshold, and the quantum cost of 1-qubit

QBSC is 14. So, the quantum cost of IS algorithm is 127q−91. In the NMQCIS algorithm, 18

auxiliary qubits and one half-comparator are used to segment the quantum image into a binary

image. In addition, 2q swap gates with 3 control qubits are used for image segmentation.

The quantum cost of the algorithm is 48q-6 In the DQIS algorithm, two thresholds and

two comparators are used to segment the quantum image, which require 5 auxiliary qubits.

Moreover, the quantum cost of one quantum comparator is 28q-15. Additional 2q+2 Toffoli

gates, 2q CNOT gates, 4 NOT gates and 2q+2 reset gates are used to compose the complete

circuit. When evaluating the quantum cost, only one quantum comparator’s quantum cost is

considered, and the quantum cost is 42q+1. However, under normal circumstances, we should

calculate each operation that is used. So, the quantum cost of DQIS algorithm is 70q-14. In

addition, the pixels greater than the high threshold and smaller than the low threshold are

segmented into 0, and the other pixels remain unchanged, which is inappropriate for complex

images. The above quantum segmentation algorithms can only segment static objects in static

scene images, and their complexity is O(q).

Our algorithm needs 3 auxiliary qubits, one quantum absolute value subtractor, one quan-

tum comparator and one quantum segmentation circuit to segment dynamic objects in static

scene images. Since the quantum cost of our algorithm is 68q-52, the complexity is O(q),

which is the same as other quantum segmentation algorithms.

5 Experiment

5.1 Experiment preparation

At present, the IBM Q cloud platform provides some quantum computers and quantum

computer simulators, but due to some factors, the number of qubits in the real quantum

computer for our use is only 5 qubits, which is far from enough. Therefore, we choose a

quantum computer simulator called ’ibmq qasm simulator’ to perform simulation experiments

through Qiskit extension [31]. This simulator has 32 qubits and can run all the basic logic
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gates included in our circuit. So in this paper, all quantum circuits have been simulated and

verified on this simulator. On the premise of not affecting the experimental results, for the

convenience of the experiment, we select two images with a size of 4×4 and a gray-scale range

of [0, 255] for experimentation, as shown in Fig. 8. The X-axis and Y-axis indicate the position

information of the pixels, and the decimal numbers indicate the gray-scale value information of

each pixel. Since the NEQR model uses quantum entanglement characteristics to entangle the

position information and gray-scale value information of the image to represent the quantum

image, we need 10 qubits to store the gray-scale values of two images and 4 qubits to store

the position information. Since the IBM Q platform initializes all qubits to |0⟩, we use the H

gate to turn |0⟩ into a superposition state of |0⟩ and |1⟩, so that four qubits can be used to

represent all the position information of the 4× 4 image. In addition, we use basic quantum

logic gate operations to entangle position information and gray-scale value information. In

this way, we can prepare the NEQR images. Since the threshold is a definite value, we only

need to set it using the NOT gate, and in this experiment, the threshold was set to 104.
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Fig. 8. Schematic diagram of the original quantum image. ( Suppose a and b are images of the

same scene at different moments.)

5.2 Result analysis

Fig. 9 is the probability histogram of the result image, and the number of measurement

is 1024. From the probability histogram, it can be seen that the probability amplitudes of

the measured quantum sequences are different, which further validates the randomness and

uncertainty principles of the quantum system. The binary sequences below the probability

histogram is the measured qubits sequences, which are arranged in order from top to bottom.

The gray-scale values and the position information of the result image are marked in Fig. 9,

where C represents the gray-scale value and P represents the position. Other qubits form

a complete circuit, and we don’t pay attention to their output results. The experimental

result shows the feasibility of our algorithm. Fig. 10 is the result image, and the position
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C

P

Fig. 9. Probability histogram of the resulting quantum image.

information and the gray-scale value information have been marked in it. As can be seen from

the result image, our algorithm can effectively segment gray-scale images.

6 Conclusion

The existing quantum image segmentation algorithms can only segment static objects, and

since they use too many quantum cost and qubits, they are not applicable in this NISQ

era. In this paper, a novel quantum image segmentation algorithm based on the background-

difference method for NEQR image is proposed, which can segment dynamic objects from

static scene images by using less quantum cost and qubits. In addition, a feasible quantum

absolute value subtractor is designed, which has an exponential performance improvement

compared with the existing quantum absolute value subtractor. Then, we design a complete

quantum image segmentation circuit that can segment quantum images by using fewer qubits.

The circuit complexity analysis and experiment on IBM Q platform show the superiority and

feasibility of our proposed algorithm.

However, our algorithm is only suitable for image segmentation with a constant back-

ground, which is less effective for image segmentation with changing backgrounds. Therefore,

our future work is to further optimize the algorithm and apply it to image segmentation with

changing backgrounds.
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Appendix A

Fig.A.1 and Fig.A.2 are the complete 8-qubit quantum circuit of the comparator and the

subtractor.
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Fig. A.1.

The complete 8-qubit quantum comparator.
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Fig. A.2.

The complete 8-qubit quantum subtractor.


