
Quantum Information and Computation, Vol. 23, No. 15&16 (2023) 1275–1290
c© Rinton Press

EFFICIENT QUANTUM ALGORITHMS TO FIND

SUBSTRUCTURES ON FINITE ALGEBRAS

J.M. HERNÁNDEZ CÁCERES

Department of Mathematics, University of Oviedo, jmhernandez@uniovi.es
Oviedo 33007, Spain

I.F. RÚA

Department of Mathematics, University of Oviedo, rua@uniovi.es

Oviedo 33007, Spain

EĹıAS F. COMBARRO

Department of Computer Science, University of Oviedo, efernandezca@uniovi.es
Oviedo 33005, Spain

Received April 27, 2023
Revised November 23, 2023

When classifying a collection of finite algebras (for instance, in the computational classi-

fication of finite semifields), an important task is the determination of substructures such
as the right, middle, and left nuclei, the nucleus, and the center. Finding these structures

may become computationally expensive when there is no additional information about

the algebra properties. In this paper, we introduce quantum algorithms than solve this
task efficiently, by formulating it as an instance of the Hidden Subgroup Problem (HSP)

over Abelian groups. We give detailed constructions of the quantum circuits involved in

the process and prove that the overall (quantum) complexity of our algorithm is polyno-
mial in the dimension of the algebra, while a similar approach with classical computers

would require an exponential number of queries to the HSP function.

Keywords: Hidden Subgroup Problem, Finite Semifield, Nuclei, Center, Quantum Algo-

rithms.

1 Introduction

Quantum computing is a computational model based on exploiting quantum phenomena

such as superposition, interference and entanglement. It is well-known that some quantum

algorithms outperform their classical counterparts, at least with current knowledge or under

oracular assumptions. For instance, based on the quantum Fourier transform (perhaps one

of the most important unitary transformation in quantum computing), factoring integers can

be solved in polynomial time by Shor’s algorithm [1], while no classical algorithm solving the

same problem with such a complexity is known. This algorithm can be regarded under the

framework of the hidden subgroup problem, as the computation of the order of an element in

a cyclic group is equivalent to finding one of its subgroups.

Hidden Subgroup Problem: Let G be a finite group, and let H ⊆ G be one of its

subgroups. Let S be a set, and let g : G → S be a function that distinguishes cosets of H,

1275

1276 Efficient quantum algorithms to find substructures on finite algebras

i.e., for all g1, g2 ∈ G, f(g1) = f(g2) ⇔ g1H = g2H. The hidden subgroup problem (HSP) is

to determine a generating set for the subgroup H, given access to a black box that evaluates

f on arbitrary elements.

For specific groups, Abelian for instance, efficient quantum algorithms solving the HSP are

known. In this paper, we want to use this fact to efficiently compute substructures of finite

algebras, and in particular of finite semifields. So, let K be a finite field, and let A be a

non-associative and non-commutative finite-dimensional K-algebra with a fixed basis β =

{e1, . . . , en}. There exists a unique set of constants {Mijk}ni,j,k=1 ⊆ K such that ei · ej =∑n
k=1Mijkek, for all i, j ∈ {1, . . . , n}. That set is known as the multiplication table of the

algebra. Consider the additive group (A,+), i.e., the elements of the algebra with the addition

operation. Given two elements a, b ∈ A, we define the commutator [a, b] = ab − ba, which

measures the non-commutativity of A. For instance, A is a commutative algebra if and only if

[ei, ej] = 0 for all i, j = 1, . . . , n. (It is worth to mention that quantum procedures for testing

the commutativity of a finite dimensional algebra have been proposed [2]). We define the

associator as a multilinear map [·, ·, ·] : A × A × A → A given by [x, y, z] = (xy)z − x(yz).

It measures the non-associativity of A, so if A is associative then the associator is identically

zero. Consider the following sets, known as the right, middle, and left nuclei, the nucleus and

the center:

Nr(A) = {a ∈ A : [x, y, a] = 0 , for all x, y ∈ A},
Nm(A) = {a ∈ A : [x, a, y] = 0 , for all x, y ∈ A},
Nl(A) = {a ∈ A : [a, x, y] = 0 , for all x, y ∈ A},
N(A) = Nr(A) ∩Nm(A) ∩Nl(A),

Z(A) = N(A) ∩ {a ∈ A : [a, x] = 0 , for all x ∈ A}.

(1)

These sets which can be written in terms of the K-basis β and the multiplication table,

provide information about the algebra. For instance, when A is a finite semifield, i.e., a finite

division ring, these sets are related to properties of the corresponding coordinates projective

planes [3]. Finding those sets can be stated in terms of the HSP, and it is clearly important in

the context of the classification of finite semifields, see for instance [4], and [5]. Our problem

is, then, stated as follows:

Given: Multiplication table of a finite dimensional K-algebra A. (K finite field)

Problem: Find Nr(A), Nm(A), Nl(A), N(A) and Z(A).

In order to solve it with quantum techniques, we will transform each problem of finding

Nr(A), Nm(A), Nl(A), N(A) and Z(A) into a instance of the HSP, which in general can be

stated as follows:

Given: The ability to evaluate a hiding function f for a subgroup H of a group G (i.e., a

function f that is constant on a subgroup H of G = (A,+), and is distinct on different cosets

of H) on arbitrary elements of A.

J.M. Hernández Cáceres, I.F. Rúa, and Eĺıas F. Combarro 1277

Problem: To find s1, s2, . . . , sl, a generating set for H.

In this work, we explicitly and efficiently construct quantum circuits that, from the multipli-

cation table of the n-dimensional algebra over a finite field Fp, implement functions hiding

function f that can be used to determine these sets using only a polynomial number of quan-

tum gates, in fact of order O(n5r3), with O(nr) queries to the oracle to find those sets, where

r = dlog2(p)e (i.e., with an asymptotically linear number of evaluations of the function f).

This is achieved by suitable choices of functions f in the previous problem and by then using

the quantum solution for the HSP over finite Abelian groups (see [6], for instance). Also,

we prove that this can not be achieved classically with a polynomial number of accesses to

the function f if given only access to a black box oracle to evaluate f , without additional

information on the algebra.

The structure of the paper is as follows. In Section 2, we collect the basic results needed

for our work, including a short background on Quantum Computing. In Section 3, we model

the problem of finding substructures in a finite-dimensional algebra as an instance of the

HSP, and we show that it, in some cases, it can not be classically solved with a polynomial

number of function accesses to the hiding function f . In Section 4, we construct an efficient

quantum oracle for the function f , and we build an efficient circuit for the solution of the

corresponding HSP. In Section 5, we illustrate the use of the algorithm by applying it to two

simple examples. Finally, in Section 6, we give some conclusions of our study and propose

some ideas for future work.

2 Quantum preliminaries

The quantum circuit model is one of the most popular models for quantum computing. In it,

qubits store data, operations are performed with quantum gates, and results are obtained via

measurements. All of these are ruled by the laws of quantum mechanics and explicitly use

quantum properties such as superposition, interference and entanglement, making this model

quite different from classical ones.

Let us collect some basic notions on qubits and quantum gates that would be useful for

the next section and the rest of our discussion. Details can be found for instance in [7, 8].

Let us begin with some notation related to the states of a quantum computation.

2.1 Quantum states.

As it is customary in quantum computing, we will use Dirac notation, where row and column

vectors are represented using bras and kets. A ket is a term of the form |v〉. Mathematically it

denotes a vector v ∈ Cn. The bra of a vector v ∈ Cn denoted by 〈v| , is defined as 〈v| = (|v〉)† ,
where † denotes the conjugate transpose.

Dirac notation is useful to represent the state of quantum systems. The simplest case is

that of a qubit, or a quantum state with two possible measurement results. In contrast to

normal bits, which can just be in state 0 or in state 1, a quantum-bit or qubit for short, can be

in state |0〉 =
[

1 0
]t

or |1〉 =
[

0 1
]t
, (where t denotes the transpose) or it could be in a

superposition α |0〉+β |1〉, where α, β ∈ C such that |α|2 + |β|2 = 1, are called the amplitudes

of the state. All of these possible values for the state of a single qubit are normalized states

of vectors in C2, for which B = {|0〉 , |1〉} is an orthonormal basis, known as computational.

1278 Efficient quantum algorithms to find substructures on finite algebras

The states of quantum systems composed of several qubits can be represented by vectors

in tensor products of C2. The computational basis for C2n ∼= (C2)⊗n is the tensor product

of the basis B, namely {|0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 , |0〉 ⊗ |0〉 ⊗ · · · ⊗ |1〉 , . . . , |1〉 ⊗ |1〉 · · · ⊗ |1〉} =

{|0〉 , |1〉 , . . . , |2n − 1〉}. So, a generic state of a multi-qubit system is |ψ〉 =
∑2n−1
i=0 αi |i〉 where∑2n−1

i=0 |αi|2 = 1 and αi ∈ C for 0 ≤ i ≤ 2n − 1.

2.2 Quantum gates.

In order to perform computations, we need to manipulate the state of qubits. In the quantum

circuit model, operations correspond to matrices U that are unitary (i.e., they satisfy U†U =

UU† = In, where In is the identity matrix of size 2n×2n), and they are called quantum gates.

Some important one-qubit quantum gates are

H =
1√
2

[
1 1
1 −1

]
, X =

[
0 1
1 0

]
, (2)

where H is the Hadamard gate (that can be use to put a basis state in superposition), and

the X gate (which is the quantum version of the classical NOT gate). An example of a

two-qubit gate (arguably the most important one is the CNOT, or controlled-NOT, given by

|0〉 〈0| ⊗ I2 + |1〉 〈1| ⊗ NOT, which flips the second qubit when the first one is equal to |1〉.
The CNOT gate in a quantum circuit is represented as:

•

X

(3)

In a quantum circuit, the horizontal lines are called wires and they represent the qubits that

we are working with, and the circuit is read from left to right. Two one-qubit gates U1, U2

acting on each qubit |ψ1〉 , |ψ2〉 independently yield a two-qubit gate whose action is given by

(U1 ⊗ U2)(|ψ1〉 ⊗ |ψ2〉) = U1 |ψ1〉 ⊗ U2 |ψ2〉 . In general, we can construct a n-qubit gate U as

U = U1 ⊗ U2 where U1 is a n1-qubit gate, U2 is a n2-qubit gate, and n = n1 + n2. Observe

that the n−tensor product of Hadamard gates acts as

H⊗n |x〉 =
1√
2n

n∑
j=0

(−1)
x·j |j〉 . (4)

where x ∈ {0, 1}n, and x · j = x1j1 ⊕ x2j2 ⊕ · · · ⊕ xnjn (i.e., addition mod 2), i.e., it provides

superposition of qubits and so it is convenient to use it at the beginnning of a quantum circuit

to achieve a state of uniform superposition of all the basis states.

It is worth mentioning, that there are unitary matrices that cannot be written as the

tensor product of unitary matrices. This is the case, for example, of the CNOT gate and of

the three-qubit Toffoli gate, that acts on a basis state |x〉 |y〉 |z〉 taking it to |x〉 |y〉 |z ⊕ x ∧ y〉,
where ⊕ is addition modulo 2 and ∧ is the logical AND. Notice that we can see the Toffoli

gate as doubly controlled NOT gate.

2.3 Quantum Fourier Transform over Abelian Groups.

One of the most important unitary transformation in quantum computing is the Quantum

Fourier Transform (QFT). Here, we only consider in the special case of the Abelian group

J.M. Hernández Cáceres, I.F. Rúa, and Eĺıas F. Combarro 1279

A = (Z/pZ)n. Let r = dlog2(p)e, and consider that any element g ∈ A is associated to a

computational basis element |g〉 of (C2)⊗rn. Then, the QFT over G is the transformation

with the following action on the basis states,

FG |g〉 =
1√
pn

∑
h∈A

ωghp |h〉 (5)

where, ωp = exp
(

2π
p

)
is a primitive p−th root of unity, and gh denotes the inner product∑n

i=1 gihi mod p.

2.4 Oracles.

Many quantum algorithms are based around the analysis of some function f . An oracle (also

called black box) is a special kind of unitary transformation that is defined by its action on

the computational basis and that is given as a gate that can be used in a quantum circuit

but whose inner workings cannot be inspected. One of the main forms that oracles take

is that of Boolean oracles, for a Boolean function f : {0, 1}n → {0, 1}m. Such a unitary

operator, denoted Uf , is defined by Uf |a〉 |h〉 = |a〉 |h⊕ f(a)〉, and it acts on quantum states

in (C2)⊗(n+m) (⊕ denotes the bitwise exclusive OR, a ∈ {0, 1}n and h ∈ {0, 1}m). Observe

that, when the second m−qubit register is |0〉, application of Uf yields an evaluation of the

content of the first n−qubit register.

2.5 Measurements.

The measurement operator allows us to obtain classical values from quantum states. It is

denoted by the gauge symbol:

(6)

Measurement of a quantum state in superposition yields its collapse into one of the compu-

tational basis states, with a given probability. For example, if we measure α |0〉 + β |1〉 with

α, β ∈ C and |α|2 + |β|2 = 1, we obtain the quantum state |0〉 with probability |α|2, and the

quantum state |1〉 with probability |β|2. After such a measurement, the qubit collapses into

the measured state. In general, if we have a state∑
x∈{0,1}n,y∈{0,1}m

axy |x〉 |y〉 , (7)

and we measure the first n−qubit register, we will obtain |x0〉 with probability∑
y∈{0,1}m

|ax0y|2, (8)

and the quantum state then collapses to∑
y∈{0,1}m ax0y |x0〉 |y〉√∑

y∈{0,1}m |ax0y|2
. (9)

1280 Efficient quantum algorithms to find substructures on finite algebras

3 The classical approach

In this section, we model the problem of finding substructures in a finite-dimensional algebra

as an instance of the HSP, and we show that, in general, it can not be classically solved in a

number of function accesses to the hiding function f that is polynomial in the dimension of

the algebra. In particular, we explicitly give the functions that hide the right, middle, and left

nuclei, nucleus and center of a finite dimensional K-algebra A, in terms of its multiplication

table.

3.1 Hiding functions

Namely, for Nr consider the following function:

fNr : A → An
2

a 7→ fNr
(a) = ([e1, e1, a], [e1, e2, a], . . . , [en, en, a])

(10)

Note that fNr (a1) = fNr (a2) if and only if a1 − a2 ∈ Nr(A). Indeed,

fNr
(a1) = fNr

(a2)⇔([e1, e1, a], . . . , [en, en, a]) = ([e1, e1, a], . . . , [en, en, a])

⇔([e1, e1, a1]− [e1, e1, a2], . . . , [en, en, a1]− [en, en, a2]) = (0, . . . , 0)

⇔[ei, ej , a1]− [ei, ej , a2] = 0 for all i, j = 1, . . . , n.

⇔ (eiej) a1 − ei (eja1)− (eiej) a2 + ei (eja2) = 0 for all i, j = 1, . . . , n.

⇔ (eiej) (a1 − a2)− ei (ej (a1 − a2)) = 0 for all i, j = 1, . . . , n.

⇔ (a1 − a2) ∈ Nr(A).

(11)

Hence, we can say that f hides the subgroup Nr(A). For Nm(A), Nl(A) we consider the

functions
fNm : A → An

2

a 7→ fNm(a) = ([e1, a, e1], [e1, a, e2], . . . , [en, a, en])
(12)

and
fNl

: A → An
2

a 7→ fNl
(a) = ([a, e1, e1], [a, e1, e2], . . . , [a, en, en])

(13)

Analogously, as in the case of fNr
, it can be seen that fNm

(a1) = fNm
(a2) if and only if

a1 − a2 ∈ Nm(A), and that fNl
(a1) = fNl

(a2) if and only if a1 − a2 ∈ Nl(A). Hence, we can

say that fNm
and fNl

hide the subgroups Nm(A) and Nl(A), respectively. For N(A) consider

the function
fN : A → A3n2

a 7→ fN (a) = (fNr
(a), fNm

(a), fNl
(a))

(14)

So, fN (a1) = fN (a2) if and only if a1− a2 ∈ Nr(A)∩Nm(A)∩Nl(A) = N(A). And, for Z(A)

consider the following function

fZ : A → A3n2+n

a 7→ fZ(a) = (fN (a), [a, e1], . . . , [a, en])
(15)

Hence, fZ(a1) = fZ(a2) if and only if a1−a2 ∈ N(A)∩{a ∈ A : [a, ei] = 0 for i = 1, . . . , n} =

Z(A).

J.M. Hernández Cáceres, I.F. Rúa, and Eĺıas F. Combarro 1281

As we can see, all hiding functions are given in terms of commutators and associa-

tors of the basis elements of the algebra and the argument of the hiding function. So,

in order to show that the hiding functions can be written in terms of the multiplication

table of the algebra, we only need to observe that if a =
∑n
m=1 αmem, then we have

the conmutator [a, ei] =
n∑
k=1

(
d∑

m=1
αm (Mmik −Mimk)

)
ek and the associator [ei, ej , a] =

d∑
r=1

(
d∑

m=1
αm

(∑d
k=1 (MijkMkmr −MjmkMikr)

))
er Analogously, for the associator [ei, a, ej]

and [a, ei, ej].

3.2 Classical solution

Next, we consider the classical (i.e. non-quantum) solution to the HSP. The idea is to show

that as long as there exist different subgroups hidden by the same function, extra evaluations

of the hiding function are needed in order to distinguish them. The following is an auxiliary

technical result.

Lemma 1: Let G be a finite group having N subgroups with trivial pairwise intersection.

Let g1, . . . , gt ∈ G be such that m = N −
(
t
2

)
≥ 1. Then, there exist m subgroups H1, . . . ,Hm

out of the N , given with hiding functions f1, . . . , fm : G→ N, such that fi (gk) = fj (gk) for

all 1 ≤ i, j ≤ m, and 1 ≤ k ≤ t.

Proof: The proof follows by induction over t. For t = 1, define fi (g1) = 1 for every one of

the i = 1, . . . , N subgroups, and extend to G in the following way: fi(g) = j if gH = ejH,

where g1Hi, e2Hi, . . . , etiHi are the different classes of G mod Hi.

Assume for t > 1 that there exist m = N −
(
t−1
2

)
subgroups H1, . . . ,Hm with hiding

functions f1, . . . , fm such that fi(gk) = fi(gk) for all 1 ≤ i, j ≤ m 1 ≤ k ≤ t − 1. Take

gt ∈ G. If there exist a k < t such that gt = gk the result follows directly. Otherwise,

gt 6∈ {g1, . . . , gt−1}, and consider hk = g−1t gk 6= 1 for k = 1, . . . , t − 1. A fixed hk belongs,

at most, to 1 of the H1, . . . ,Hm subgroups (because hk 6= 1). Take those Hl out of the N

given such that hk 6∈ Hl for k = 1, . . . ,m. We can redefine fl(gthl) = max{fl(gk)}+ 1, for all

hl ∈ Hl. This still can be seen to hide Hl, because g−1t gk 6∈ Hl for all k = 1, . . . ,m. At most,

there are t− 1 subgroups that are not taken in this step, so we are left with

m− (t− 1) = N −
(
t− 1

2

)
− (t− 1) = N −

(
t

2

)
(16)

thus the result follows. .

Theorem 2: Under the conditions of the previous lemma, t evaluations of a hiding function

f are not enough to solve the corresponding instance of the HSP in a classical computer. This

holds, in particular, if t ≤ b
√
Nc and N ≥ 2.

Proof: (
t

2

)
<
t2

2
≤ N

2
(17)

1282 Efficient quantum algorithms to find substructures on finite algebras

Then

N −
(
t

2

)
=
N

2
+
N

2
−
(
t

2

)
≥ N

2
+ 1 ≥ 2 (18)

Assume the existence of a HSP solver using at most t evaluations of a hiding function. Eval-

uations in the t elements g1, . . . , gt of the previous theorem provide the same information

for the m subgroups H1, . . . ,Hm. Consequently, they can not be distinguished by the HSP

solver. .

Corollary 3: Computing the right, middle, and left nuclei, center and center of a finite

dimensional algebra A over a finite field K of q elements, with a HSP solver on a classical

computer requires at least Ω(
√
qn) evaluations of the corresponding hiding function.

Proof: In our case, if we consider the additive group of the algebra G = (A,+) ∼= Kn, the

number of 1−dimensional subspaces is 1 + q + · · · + qn−1, all of them with trivial pairwise

intersection. Following the corollary, it is necessary at least b
√

1 + q + · · ·+ qn−1c = Ω(
√
qn)

evaluations for a HSP solver to compute each of the mentioned substructures. .

As an aside note, notice that this kind of situation can arise in practice, even when dealing

with semifields. For instance, observe that it is always possible to have a finite dimensional

algebra A for which Nl = Nm = Nr = N = Z is of dimension 1 over K (for instance, a

Generalized Twisted Field for particular choice of its defining parameters [9]).

4 The quantum approach

In this section, we solve the problem of finding substructures in a finite-dimensional algebra

by quantum procedures. In particular, we construct an efficient quantum oracle for the

hiding functions of the substructures, and we build an efficient circuit for the solution of the

corresponding HSP. Let us first give an overall picture of the whole procedure.

Algorithm 1: [Solution to the HSP for substructures of a finite algebra]

Input: Multiplication table of a finite dimensional K-algebra A with respect to a basis

{e1, . . . , em} (K finite field of p elements)

Construction of quantum oracle: From the multiplication table, construct a quantum

oracle for the hiding function f of a specific subgroup H.

Quantum procedure: Construct of a quantum circuit that, using the quantum oracle,

returns tuples (α1, . . . , αm) of elements in K, which provide cooordinates of elements in the

orthogonal complement of H, i.e., (α1, . . . , αm) · (β1, . . . , βm) = 0, for all
∑m
i=1 βiei ∈ H.

Classical post-processing: Compute generators of H from Gaussian elimination on the

tuples given by the quantum procedure.

4.1 Oracle of the hiding function

Our first task is to show that an efficient quantum oracle (in terms of number of quantum

gates) can be constructed from the multiplication table of the algebra, for each of the hiding

functions introduced in the previous section.

We consider the construction for Nr(A), as Nm(A), Nl(A), N(A), Z(A), follow the same

lines. From the previous section, fNr
(a) can be written in terms of the structure constants,

J.M. Hernández Cáceres, I.F. Rúa, and Eĺıas F. Combarro 1283

since if a =
∑n
m=1 αmem, then for all i, j = 1, . . . , n,

[ei, ej , a] =

n∑
s=1

(
n∑

m=1

(
n∑
k=1

(MijkMkms −MjmkMiks)αm

))
es

=

n∑
s=1

(
n∑

m=1

αmλijms

)
es

(19)

where λijms =
n∑
k=1

(MijkMkms −MjmkMiks) are n4 constants in K. If we consider the

coordinates of such an expression, we can go further and expand it to get a coordinate version

of fNr
namely (

n∑
m=1

αmλ11m1, . . . ,

n∑
m=1

αmλijms, . . . ,

n∑
m=1

αmλnnmn

)
(20)

all λijms, for i, j,m, s = 1, . . . , n, together with their binary representations {λtijms} for

t = 1, . . . , r = dlog2(p)e. Using the controlled-multiplier modulo p of [10], each λijmsαm can

be implemented by repeated modular additions (modulo p), requiring 3r+1 qubits, and O(r2)

gates (among NOT, CNOT and Toffoli gates). This gives an overall number of O(nr) qubits

and O(nr2) gates, for each of the products involved in the modular addition
∑n
m=1 λijmsαm.

Again by [10], such a modular addition can be carried out with O((n− 1)r) gates. Since the

final result would be storaged only on r qubits, the (n − 1)r remaining ones can be reused.

Therefore,
∑n
m=1 αmλijms requires O(nr2) gates and O(nr) qubits. Since there are n3 sums

of that form, the UNR
oracle can be efficiently constructed with n3r + nr qubits and 4r + 1

ancillary qubits. In short, the oracle acts as UNr
|a〉 |0〉 = |a〉 |fNr

(a)〉 for a ∈ A, h ∈ An2

.

In summary, in Table 1, we give the number of qubits corresponding to inputs, outputs, ancil-

lary, and the order of the number of gates required to build each oracle UNr
, UNm

, UNl
, UN , UZ .

Table 1. Cost in terms of number of qubits and gates of each oracle.

Oracle UNr , UNm , UNl
UN UZ

Number of qubits
Input nr

Output n3r 3n3r 3n3r + n2r
Ancillary 4r + 1

Number of gates O(n4r2)

4.2 Quantum Algorithm To Find Substructures

Next, we present a quantum efficient algortihm to find the substructures of a finite-dimensional

algebra over a finite field, based on the above constructed quantum oracle and the ideas

of [6, Section 3]. It uses an efficient computation of the quantum Fourier transform on

G = (A,+) ∼= (Z/pZ)
n
, and it outputs elements of the orthogonal subgroup H to be found:

H⊥ = {α ∈ G : α1β1 + · · ·+ αnβn0 ≡ mod p, for all β ∈ H} (21)

As before, we consider the construction for Nr(A), as that of Nm(A), Nl(A), N(A),

Z(A), follow the same lines.

Algorithm 2:[Quantum procedure for finding the orthogonal of the Right Nucleus.]

1284 Efficient quantum algorithms to find substructures on finite algebras

Input: A black box which performs the operation UNr
|a〉 |0〉 = |a〉 |fNr

(a)〉 for a ∈ A.

Quantum Procedure:

1. Initial state: |0〉⊗r1 |0〉⊗r2 |0〉⊗r3 , with r1 = nr input qubits, r2 = n3r output qubits

plus r3 = 4r + 1 ancillary qubits (r = dlog2(p)e).

2. Create superposition and remove elements which are ≥ p

3. Apply the black box UNr

4. Apply the Quantum Fourier Transform on the first register.

5. Measure the first register.

Output: The binary expansion of the coordinates of an element in Nr(A)⊥.

As in many quantum algorithms, superposition is achieved by applying the Hadamard trans-

formation. However, we must notice that removal of elements greater or equal than p is

needed, as we are only interested in values mod p. After that, as it is standard in quantum

solutions to the HSP, an application of the quantum oracle UNr
is followed by a QFT and a

measurement.

4.2.1 Superposition and removal of elements greater or equal than p.

Let us explain with a litte more detail the second step of the quantum procedure. Each

element in the algebra is represented by the binary expansion of its coordinates. So, we need

nr qubits to deal with all elements in the algebra in superposition. Let us divide then in n

registers of r qubits. Each of then encoding a single coordinate, which is an integer mod p.

Therefore, since we are only interested in a superposition of p constants (1√
p

∑p−1
x=0 |x〉), after

a standard superposition of the r qubits with Hadamard gates (1√
2r

∑2r−1
x=0 |x〉), we need to

remove those sumands which are greater or equal than p.

This is accomplished by the use of an extra r qubit register, storing the binary represen-

tation of the integer p (by an application of at most r X gates). We represented it on the

circuit of Figure 1 as
p (22)

Now, for each of the n pairs of 2r qubit registers, we use the quantum bit string comparator

(QBSC) from [11] to remove the undesirable summands (see Figure 1). It has a total cost of

O(r) CNOT and single qubit gates, and 3r−1 ancillary qubits. The last two of them, Q1, Q2,

provide after measurement a comparison with p. Namely, the integer is smaller than p if and

only if Q1 = 1 and Q2 = 0. So, such a measurement yields the collapse of the first register to

the desired superposition. An undesired measurement forces a repetition of the process.

The probability of failure of one single comparison is 2r−p
2r < 1

2 . Therefore, if the process is

repeated t times, the probability of failure is at most 1
2t . Since this technique is to be applied

in parallel to each of the n different r−qubit registers, the overall probability of failure is at

most n
2t . Choosing t = log2

(
n
ε

)
+ 1 = O(log(n)), yields a bounded probability error of the

whole comparison procedure 0 < ε < 1, that can be made arbitrarily small.

J.M. Hernández Cáceres, I.F. Rúa, and Eĺıas F. Combarro 1285

|0〉 H

QBSC

...
...

|0〉 H

|0〉
p...

|0〉

|0〉
...

...

|0〉
|0〉

|0〉
|0〉

r
r


3(r − 1) + 2

(23)

Fig. 1. Quantum circuit of the step 2 of the quantum procedure.

Fix an ε with 0 < ε < 1. Let t1 = blog2

(
n
ε

)
c+ 1. The number of ancillary qubits required

in a single use of a QBSC is 3(r−1)+2 and the number of qubits measured are two. However,

we can uncompute the 3(r − 1) qubits that were not measured and reset the measured ones.

We apply this process t1 times sequentially for each r qubits from the nr qubits of the first

register, giving an overall of 3(r− 1) + 2 ancillary qubits. Now, adding the r qubits from the

state of p to the ancillary we have 3(r − 1) + 2 + r = 4r − 1.

4.2.2 Steps 3 to 5 in the algorithm.

Assuming the previous step is successful, we achieve the quantum state

1√
pn

∑
a∈A
|a〉 |0〉⊗r2 (24)

(ancillary qubits are omited) and application of the oracle UNr
yields

1√
pn

∑
a∈A
|a〉 |fNr

(a)〉 (25)

Application of the QFT on the first register gives

∑
b∈A

|b〉

(
1

pn

∑
a∈A

ωabp |fNr (a)〉

)
(26)

1286 Efficient quantum algorithms to find substructures on finite algebras

where ωp = exp
(

2πi
p

)
. A measurement |b〉 on the first register occurs with probability∣∣∣∣∣

∣∣∣∣∣ 1

pn

∑
a∈A

ωabp |fNr
(a)〉

∣∣∣∣∣
∣∣∣∣∣
2

(27)

If {s1, s2, . . . , sl} is a Z/pZ−basis of H, then for all z ∈ Range(fNr
), there exists az ∈ A

such that z = fNr
(az +

∑l
i=1 λisi), for all 0 ≤ λ1, . . . , λl ≤ p−1. So, the probability becomes∣∣∣∣∣∣

∣∣∣∣∣∣ 1

pn

∑
z∈Range(fNr)

 p−1∑
λ1,...,λl=0

ω
b(az+

∑l
i=1 λisi)

p

 |z〉
∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

pn

∑
z∈Range(fNr)

wbazp

l∏
i=1

(
p−1∑
λ=0

ωbλsip

)
|z〉

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(28)

Now, when bsi 6= 0 mod p for some i = 1, . . . , l, then
∑p−1
λ=0 ω

λbsi
p = 0 (because wbsip is a

p−th primitive root of unity, and so it is a root of the p−th cyclotomic polynomial
∑p−1
λ=0 x

λ),

and so the corresponding summand vanishes. Otherwise, b ∈ H⊥, and the corresponding

probability is

1

p2n

∑
z∈Range(fNr)

∣∣∣∣∣wbazp

l∏
i=1

(
p−1∑
λ=0

ω0
p

)∣∣∣∣∣
2

=
1

p2n
pn−l(1 · pl)2 = pl−n (29)

Thus, we obtain an element uniformly distributed of Nr(A)⊥.

4.3 Classical post processing

In order to determine the number of times that the quantum procedure should be run in order

to find a generator set of the subgroup Nr(A)⊥, we shall use

Theorem 4:[6, Theorem D.1] Let G be a finite group. For an integer t ≥ 0, the probability

that k = t+ log2 |G| elements chosen uniformly at random from G will generate G is at least

1− 1
2t .

So, running the quantum procedure s+ nr times with s ≥ 0 gives a generator set {g1, . . . ,
gs+nr} of Nr(A)⊥ with probability at least 1 − 1

2s (because Nr(A)⊥ is subgroup of (A,+),

which has order pn). Once that we have such a generating set, Gaussian elimination on the

following system of s+ nr linear equations

g11x1 + g12x2 + · · · + g1nxn ≡ 0 mod p
...

...
...

...
...

gs+nr1 x1 + gs+nr2 x2 + · · · + gs+nrn xn ≡ 0 mod p

(30)

gives a generator set of Nr(A). We have the following main result:

Theorem 5: Given the multiplication table of a n-dimensional nonassociative noncommuta-

tive Fp-algebra A, with p a prime number. For each substructure

H = Nr(A), Nm(A), Nl(A), N(A), Z(A) (31)

J.M. Hernández Cáceres, I.F. Rúa, and Eĺıas F. Combarro 1287

of A, there exists a quantum algorithm that using the number of qubits and quantum gates

of Table 2, together with a classical post-processing algorithm of complexity O(n3), finds H

with a bounded probability error.

Table 2. Cost in terms of number of qubits and gates of each substructure.

Substructure Nr, Nm, Nl N Z
Number of qubits n3r + nr 3n3r + nr 3n3r + n2r + nr

Number of ancillary qubits 4r + 1
Number of gates O(n5r3)

Remark 1: Observe that the number of ancillary qubits is upper-bound by the number of

such qubits involved in the quantum oracle. In other steps of the algorithm, ancillary qubits

can be reused, either by uncomputation or by measuring and resetting to zero.

5 Examples

We will illustrate the behaviour of algorithm 4.2 with two simple examples. In the first one,

we compute the center of an associative 3-dimensional F2-algebra which is not commutative.

In the second one, we obtain the right nucleus of a non associative and non commutative

4-dimensional F2-algebra. Recall that in our notation n is the dimension of the F2-algebra,

and r = dlog2(p)e which in this case p = 2, so r = 1.

Example 1: Consider the following set

A =

{(
a b
0 c

)
: a, b, c ∈ F2

}
(32)

with ordinary matrix addition and multiplication. It is a 3-dimensional F2-algebra associative

but not commutative. Let us find Z(A) with our algorithm with respect to the F2-basis

β =

{
e1 =

(
1 0
0 0

)
, e2 =

(
0 1
0 0

)
, e3 =

(
0 0
0 1

)}
. (33)

The multiplication table of A is

M =

A1 =

1 0 0
0 1 0
0 0 0

 , A2 =

0 0 0
0 0 1
0 0 0

 , A3 =

0 0 0
0 0 0
0 0 1

 . (34)

Because A is associative, fN is identically zero and we only need to consider the last 3

components of the fZ function. Each of the commutators in fZ has 3 coordinates in the β

basis, so its expression is

(0, x2, 0, 0, x1 + x3, 0, 0, x2, 0) ,

which can be simplified to (x2, x1 + x3) where x1, x2, x3 ∈ F2 by eliminating the coordinates

that are always 0. The quantum oracle that performs the unitary operation UZ |a〉 |0〉 =

|a〉 |fZ(a)〉 with a = x1e1 + x2e2 + x3e3 can be seen in Figure 2. Repeatedly using Algo-

rithm 4.2, we determine that the orthogonal of Z(A) is {010, 000, 101} with high probability

(in this case, n = 3 because the algebra is 3-dimensional and r = 1 because we are working

1288 Efficient quantum algorithms to find substructures on finite algebras

|x1〉 •
|x2〉 •
|x3〉 •

|0〉 X

|0〉 X X

Fig. 2. Oracle for UZ in Example 1.

over F2; thus, following the argument after Theorem 4.3, if the number of repetitions is 10,

the probability of not obtaining a complete set of generators for Z(A)⊥ is below 1%). This

leads to the following system of equations

0x1 + 0x2 + 0x3 ≡ 0 mod 2
0x1 + 1x2 + 0x3 ≡ 0 mod 2
x1 + 0x2 + x3 ≡ 0 mod 2.

(35)

This system has two solutions: x1 = 1, x2 = 0, x3 = 1 and x1 = 0, x2 = 0, x3 = 0. Therefore,

we deduce that (1, 0, 1) generates Z(A). This is, indeed, the correct solution, since the only

non-zero element that is mapped to (0, 0) by the hiding function (x2, x1 + x3) is exactly

(1, 0, 1).

Example 2: Consider the following multiplication table for a 4-dimensional F2-algebra:

A1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 A2 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

A3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

A4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

This algebra is neither associative nor commutative. Let us use our algorithm to find its right

nucleus. After eliminating zeroes and repeated coordinates, we arrive at a hiding function

fNr(A) whose coordinate expansion is given by (x1 + x2, x3 + x4), where x1, x2, x3, x4 ∈ F2.

The quantum oracle that performs the unitary operation UNr
|a〉 |0〉 = |a〉 |fNr

(a)〉 with a =

x1e1+x2e2+x3e3+x4e4 can be seen in Figure 3. As in Example 1, repeatedly using Algorithm

|x1〉 •
|x2〉 •
|x3〉 •
|x4〉 •

|0〉 X X

|0〉 X X

Fig. 3. Oracle for UNr in Example 2.

4.2, we can obtain (with high probability) that Nr(A)⊥ is generated by {(1, 1, 0, 0), (0, 0, 1, 1)}.

J.M. Hernández Cáceres, I.F. Rúa, and Eĺıas F. Combarro 1289

As a consequence, we can deduce that {(1, 1, 0, 0), (0, 0, 1, 1)} generates Nr(A). This is a

correct solution, as it is easy to check that these two elements are mapped to (0, 0) by

the hiding function and that any other element with property can be expressed as a linear

combination of them.

6 Conclusions and future work

In this work, we have shown that for a given multiplication table of a n-dimensional nonasso-

ciative noncommutative Fp-algebra A, with p a prime number and for each substructure the

right, middle, and left nuclei, nucleus and center of A, we can construct an efficient quantum

algorithm that computes such a substructure. Our approach is based on the existence of

a function that hides the substructure, for which a quantum oracle can be efficiently con-

structed, both in terms of number of qubits and quantum gates. Such a black box is used

by our quantum algorithm, and the concrete number of required qubits and quantum gates

can be found in Theorem 4.3. Moreover, we have also proven that solving the corresponding

instance of the HSP with just classical means can be very inefficient in some cases. In those

situations, we have showed an exponential speed-up with our quantum algorithm.

Our results are based on the existence of efficient quantum solutions to the HSP in the

finite Abelian case. However, finding an efficient quantum algorithm (or proving that it is not

possible) for the general HSP is still an open problem. In future works, we would like to study

the possibility of applying quantum algorithms (as those proposed in [12]) for instances of

the HSP that extend the finite Abelian case in order to determine substructures in algebraic

structures more general than those considered in this paper.

Acknowledgements

This work has been partially supported by PAPI-21-PF-10, by the Spanish Government, under

Project PID2021-123461NB-C22, also in part under grant PID2020-119082RB-C22 funded by

MCIN/AEI/ 10.13039/501100011033 and grant AYUD/2021/50994 funded by Gobierno del

Principado de Asturias, and by the QUANTUM SPAIN project funded by the Ministry of

Economic Affairs and Digital Transformation of the Spanish Government and the European

Union through the Recovery, Transformation and Resilience Plan - NextGenerationEU.

References

1. P. W. Shor (1997), Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer, SIAM J. Comput. 26, 5, pp. 14841509.

2. E. F. Combarro, J. Ranilla and I. F. Ra (2019), A Quantum Algorithm for the Commutativity of
Finite Dimensional Algebras, IEEE Access vol. 7, pp. 45554-45562.

3. A. A. Albert (1960), Finite division algebras and finite planes, Proc. Symp. Appl. Math 10 pp.
5370.

4. I.F. Ra, Elas F. Combarro, J. Ranilla (2009), Classification of semifields of order 64, Journal of
Algebra, Volume 322, Issue 11, pp. 4011-4029.

5. J.M. Hernndez Cceres, I.F.Ra, An approach to the Classification of Finite Semifields by Quantum
Computing, Springer Proceedings in Mathematics & Statistics (PROMS, volume 427), pp. 245-260.

6. Lomont, Chris. (2004). The Hidden Subgroup Problem - Review and Open Problems. arXiv:quant-
ph/0411037

1290 Efficient quantum algorithms to find substructures on finite algebras

7. Nielsen, M., Chuang, I. (2000) Quantum Computation and Quantum Information,10th Anniversary
Edition. Cambridge: Cambridge University Press.

8. E. F. Combarro, S. Gonzlez-Castillo (2023), A Practical Guide to Quantum Machine Learning and
Quantum Optimization. Packt.

9. A. A. Albert (1961), Generalized twisted fields, Pac. J. of Math, 11, pp. 1-8.
10. Vlatko Vedral, Adriano Barenco, and Artur Ekert, (1996) Quantum networks for elementary arith-

metic operations. Phys. Rev. A, 54, pp. 147153
11. Oliveira, David., and Ramos, Rubens. (2007). Quantum bit string comparator: Circuits and appli-

cations. Quantum Computers and Computing, volume 7
12. Hallgren, Sean., Russell, Alexander., Ta-shma, Amnon. (2002). The Hidden Subgroup Problem and

Quantum Computation Using Group Representations. SIAM Journal on Computing. 32.

