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Entanglement and quantum teleportation are two inter-related subjects and can be ex-

plained through four fundamental non-local quantum computing diagonal operator-state
relations, which model the conservative phase-interaction between two adjacent atoms

of an entangled atomic chain. Each model atom possesses four eigen-states. There exists
a minimum focus distance between the two atoms for the entanglement to exist. Con-

sequently, there exist perpetual elastic phase-changing events on the entire entangled

chain at every discrete time interval that is evaluated and shown here. It is analogous
to Newtons first law of motion in discrete time. Quantum teleportation means every

extra 2π phase between the atoms can be translated in Fourier space into an additional

separation distance, a quantized value.
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1. Introduction

Quantum computing from an entangled atomic chain require the superposition of the electron

states within each atom and the entanglement between any two adjacent atoms of an atomic

chain [1-3]. In a model atom with four free-electron eigen-states, the superposition means the

discrete Fourier transform to further vectorize and transform the four eigen-states into four

computation states (or four corresponding states in the momentum space). Entanglement

between two atoms is needed to further settle the relative phase relations of all the eight

electron states between the two atoms. That is to say: there is a need to further making

a Fourier transform between any pair of atoms, the entanglement procedure. Once those

two procedures are prepared and a desired initial computing configuration is provided, all

the phase relations of the electron eigen states in the entire atomic chain are accounted for

at that given moment. But those phase relations will then undergo perpetual elastic phase

changes at every time interval, τ , that is the center discussion of this work. First, we will

show there exists a minimum entanglement distance between the two atoms, the focus length

to execute the Fourier transform between two atoms. Once that minimum distance, a, is

established, any addition of four times of that distance is equally valid. This is to argue that

any added integer of 2π phase associated with the eigen-function can be translated in Fourier

space into a further separation distance between the two atoms. This provides the foundation
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of quantum teleportation and for the transmission of quantum information to a long distance

away without requiring the deletion of the original copy. Secondly, the existence of this

minimum distance of entanglement implies there also exists a time, τ , where all the electron

eigen-states will undergo the rule-based phase changes simultaneously, because all the electron

states are elastically coupled with proper relative phase relations and are activated by the

non-local operator-state transition mechanism we described earlier [4, 5] and is restated and

revised in the section here. Thus, quantum computing from an entangled atomic chain, which

is simply a fully Fourier-transformed chain, is to perform the phase computing perpetually.

Those phase changes are periodic with a Poincare cycle and hence generate a time crystal

[6, 7, 8, 9], through the discrete-time phase-changing mechanism. In addition, there are

birth-and -death features, the foundation for a true artificial intelligence. These perpetual

phase-changes in an entangled atomic chain are like Newtons first law of motion, except it

is not in a continuous time frame. The fact that discrete-time conservative phase changes

can exist permanently shows we have an entangled atomic chain as a one-dimensional cellular

automaton without the need from any further external inputs, if the above two Fourier-

transform procedures are executed and maintained. The foundation of the above arguments

come from the earlier establishment of four non-local operator-state relations [4, 5].

1.1. Four non-local operator-state relations between two entangled atoms

First, the proper number of states used for computing needs to be settled. The amount of

superposition of states to be used for computing can be easily overlooked from the start. It

becomes the center concept for the quantum parallel computing. The choice of this number

alone reveals the computing scheme that can be possibly employed later. The model used

here is from a chain of atoms having a set of four free-electron eigen-states associated with

each atom. The standard qubit approach uses only two superposition states and the Fourier

transform of two states, the Hadamard transform, will lose the clockwise and counterclockwise

rotation distinction. As we have shown earlier [4, 5, 10, 11, 12, 13], a four-state approach

provides an upper nutrition layer for quantum computing that is suitable for the general-

purpose type (that is the addition-rule based computing) to the biological type and to the

quantum phase-computing type from a chain of entangled atoms. That is to say that, in

general-purpose computing, for an addition operation of two numbers, say 5 + 3 = 8, one

layer theory requires two separated Euclidean lengths of 5 and 3 units to be joined together

along the same line to produce the length of 8 units. In the Turing machine, this scheme

requires moving the length of 5 towards that of 3 and thus both front and back ends of length

5 are to be operated on successively and it requires 8 instructions [12, 15]. Such a processor

for this scheme has never been constructed by Turing or others. In the two-layer theory, the

number, 5, is the nutrition existed at the top layer, to be poured into the lower layer of length

3. When the nutrition layer is totally disappeared from the top, the lower layer of 3 is then

grown into 8 units, using the correct 16-rule of parallel addition [4, 5, 12, 13]. It requires

only four instruction capability from the processor and such a quantum parallel processor

has been constructed (US Patent # 8,525,544), using Aharonov-Bohm effect on a proper

quantum network [14]. Biological and quantum computing also require a nutrition layer to

preserve the 16 equal probability transition rules. Note that the 16 addition-operation rules

are not of equal probability of survival [4, 5, 11, 12]. Therefore, the four computation states,
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labeled in two layers as , , , and , are super-

positions (discrete Fourier transform) of the four energy eigen-vectors of the free electron in an

isolated atom and are labelled as S̄1, S̄2, S̄3, and S̄4 corresponding to the four eigen-energies

of E1, E2, E3, and E4 respectively [Fig. 1(e), also Fig. 4 example]. Then, a minimum focus

distance between the two neighboring electrons is set when k1a = π/2, the Fourier transform

condition. Here, a, is the smallest entanglement distance derived through the lowest electron

energy E1 and momentum value k1. At this condition, k2a = π, k3a = 3π/2 , and k4a = 2π

are also properly Fourier transformed as a set [ Fig. 1(c)]. The free electron energy is related

the wave vector by Em = (h̄km)2/(2me), m = 1, 2, 3, 4. A chain of N entangled atoms is

shown in Fig. 1(a) and labelled with positions as 1, 2, l − 1, l, l + 1, N − 1, N . Thus, a non-

local operator-state relation can be established, if an operator S̄i(l − 1), located at position

l−1, is brought to operate on the state S̄j(l) at position l. The orthogonality condition means

i = j only [Fig. 1(c)].

When the lowest-energy eigen-vector, S̄1(l − 1), is brought to the location at l, it will

acquire an additional phase of π/2 before it operates on the state S̄1(l) when the distance,

a, is traveled. Thus, the Fourier transform requires the establishment of a focus length, a,

like a beam of photons through a pinhole and a proper distance behind the hole is where

the Fourier pattern is established. Associated with that minimum distance, a, there is a

corresponding time, τ , for this non-local operator-state phase interaction to be accomplished

and τ = (ame)/(h̄k1), where me is the electron mass. For an electron energy E1 ≈ 0.1ev, we

have a ≈ 10Å and τ ≈ 5·10−15s. This is compared to our earlier estimate from the uncertainly

principle, ∆t = h̄/(∆E1) ≈ 6.6 · 10−15s [4].

Once τ exists, the elastic phase changes can occur at every such discrete time interval

perpetually as an equivalent of Newtons first law in discrete time frame. Hence the one-

dimensional cellular automaton for piece-wise Euclidean geometry exists perpetually and a

new type of non-local mathematics emerges at the fundamental level.

Furthermore, in this non-local operator-state transition, a quantum teleportation is also

established because e(ik1a) = e(iπ/2) = e[i(π/2+2Mπ)] = e[ik1(a+4Ma)].

That means every extra 2π in the exponential phase factor will be translated into the

4Ma distance, where M is any integer. Note the distance of a possible entangled distance

between two neighboring electrons must be satisfied by the commensuration of the phase

relations between all the eigen states. When the phase of the lowest energy is extended with

2π, the phase of the second (third, fourth) lowest energy is extended with 4π(6π, 8π). Thus,

the commensuration condition of the phases is translated to a set of quantized distances,

4Ma. There exist four complete diagonal non-local operator-state rules, labelled as Rules I,

II, II and IV from left-right and time reversal symmetry considerations (Fig. 2). The two

mix-conjugates of the operator-state relations of Rule II and Rule III can only exist when

four computation states are used and thus cannot exist in the Qubit approach or from a local

theory. The four corresponding computation rules are the four possible cyclic rules shown in

Fig. 3.

2. Conclusions

Quantum computing derived from an entangled atomic chain requires two prepared processes.
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When the discrete Fourier transform (the eigen-state superposition process) within each atom

is performed through the proper optical transition procedures and executed on the atom, it

still requires a minimum separate distance, a, between any two neighboring atoms to further

execute the discrete Fourier transform (the entanglement process) between any two adjacent

atoms. This minimum focus distance is to settle all the phase relations of all eigen-vectors

from one end of the atomic chain to the other end in order to perform the parallel quantum

computing, the phase computing, since all eigenvectors in the entire chain are accountable

with their relative phase relations, the superconducting condition.

In the model, each atom possesses four free electron eigen-vectors. At this minimum

focus distance, the lowest state eigen-vector of an atom can be brought over to interact with

the adjacent atom at every interval time, τ , the electron phase-interaction or traveling time

required over the distance, a. We show that the time, τ , is the order of uncertainty time.

During this time interval of τ , the three other higher-order eigen-states are also completed

for the similar phase-interactions with two, three and four times of the interaction rate. Once

those two sets of Fourier transform are maintained on the chain, there now exists a discrete-

time perpetual elastic phase alterations on all the eigen-vectors in the chain. Thus, for a given

initial computation state on the chain, represented by a sequence of one of the four possible

superposition state on each atom, the computation result is a perpetual time crystal growth

through this elastic phase-bonding mechanism in time and it exhibits a well-defined Poincare

cycle, the period of the time crystal. This mimics Newtons first law of motion, but from a

conservative phase-coupled atomic chain in a discrete-time performance. This establishes a

new physics-based cellular automaton chain that can exist through its internal elastic iteration

mechanism permanently if the two sets of Fourier transform are maintained.

All the results here are directly originated from the four sets of four non-local operator-

state tensor relations of the eigen-states between two adjacent atoms [4, 5]. They are fun-

damental in nature and lead to the four complete cyclic sequences of the computation state

transition rules (Rule I, II, III and IV) and the physical foundation of the time crystal gen-

erations in quasi-planar as well as in spherical time crystals for the quantum computing and

the memory storage [4].

Furthermore, the minimum entanglement distance, a, is shown to be extendable to a set of

quantized larger distances to explain the quantum teleportation. This is because the disposal

mathematical exponential 2π factor is translated into the larger separating distance between

the two atoms with the same entanglement condition in the Fourier space without extra phase-

interaction time added as if the 2π phase is an actual direct interconnection. In other words,

the 2π phase factor in an exponent attached to an eigen-vector may not be disposable for a

mathematical convenience in momentum space. When the multiple 2π phasor factors from

all four eigen-vectors are commensurate, it establishes the identical phase-relations at that

location as compared to the relations established at the minimum distance, a. That means

a proper large distance will maintain the same Fourier transform relations, the entanglement

condition. Thus, quantum information existed in one end of the chain, represented by a string

of initial states, will then be duplicated over a long distance to the other end of the chain

without deleting the original copy. This is due to the birth-and-death capability of a longer

entangled chain.

Here a new mathematical foundation is shown through this example of non-local non-
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Euclidean (or piece-wise Euclidean) operator-state relations, which can also be viewed more

generally as a pattern- transformation process. The consequence of those four sets of com-

putation rules (Rule I, II, III, and IV) is that they are not addition-rule compatible. For

example, 5 + 3 = 8 can not be satisfied here on those non-local computation states. The

cellular automaton example shown here represents part of our new understanding into a new

kind of science which is not Euclidean. This example here is provided with a physical foun-

dation by showing that the conservative phase-changing relations that can exist in an atomic

chain through the internal Fourier transform on the atoms and the external Fourier transform

between two atoms.

Finally, a remark for the standard Qubit approach is addressed here [1, 2, 3]. Qubit method

employs Fourier transform on a chain of atoms with two eigen-states only, through Hadamard

gate, for example. Then the two Fourier transformed states on each atom are used as the

computation states. It is a one-layer theory without the nutrition layer on the top to form

a 4-state theory that is shown here. Biological and quantum phenomena require a nutrition

layer for birth-and-death phenomena in order to reduce the instruction capabilities required

on the quantum processor needed for the quantum computing. If the non-local theory here

is reduced to one layer theory, then the four non-local operator-state relations are reduced to

only two relations. That means there are no two mix-conjugate relations shown here and there

is no distinction between clockwise and counterclockwise rotations for the cyclic computation

states [Fig. 4(a)]. The two-layer (four-states) approach presented here establishes a concrete

cellular automaton computing architecture which is rule-based (Rules I, II, II and IV) for

quantum parallel computing, in sharp contrast with the qubit approach which is described

through truth-table-based (logic gate-based) by others [1, 2, 3]. Pattern transformation (or

non-local operator-state relations) is the general scheme to classify various groups of parallel

computing from Euclidean-based general-purpose computing to helical-based biological and

to piece-wise-Euclidean based quantum phase computing.
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Appendix A

Fig. A.1. (a) Quasi-linear one-dimensional entangled atomic chain of size N , each atom is separated

by a minimum focus distance of a; (b) one of the many possible equivalent geometries of (a), where
atoms #6 and #7 are separated by 5a; (c) Four pairs of eigen-energies and eigen-vectors of the

two atoms between location l − 1 and l, when a minimum focus distance is established for the

fundamental diagonal non-local operator-state relations to exist. That is: for an operator S̄j(l−1)
at location, l − 1, to operate on the state S̄i(l) at location, l, on the chain. Those non-local

diagonal results are shown in (d) for Rule I only; (e) The discrete Fourier transform between the

four computation states and the four eigenvectors on each atom. In quantum parallel computing,
the eigen-state at l for the operator at l − 1 is also simultaneously served as an operator for the

state located at l + 1. The 16-non-local computation-state rules are in four complete cyclic form

as shown in the four sequences in the circles and arrows in Fig. 3. The inner arrows come first,
then the outer arrows. The four 16-rule sets are shown in Fig. 3 as Rule I, II, III and IV.
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Fig. A.2. Complete 4 sets of non-local operator-state relations for the four pairs of electron

eigenvectors between two adjacent atoms at a minimum focus distance, a. They exist concurrently.
Rule II and Rule III are for the mix-conjugate pairs that do not exist in qubit theory. The

equivalent configurations for an entangled atomic chain are shown in two examples in Fig. 1(a)

and 1(b). Therefore, in quantum mechanics, the exponential phase factor of an integer of 2π,
associated with the eigen-vectors, is not a disposal factor, but it is translated further into the

separation distance in Fourier domain and that forms the foundation of entanglement at a large

distance away to establish the quantum teleportation capability. The quantum phase- computing
from an entangled atomic chain is thus illustrated in Fig. 4 between a pair of atoms having a

computation state S3(l − 1) at the right side and S2(l) state at the left. The superposition of

states in each atom is shown by the four vectors with their associated phase values. The transition
of S2(l) computation state, due to the presence of S3(l−1) computation state at location l−1, into
S4(l), after an interval of time, τ , is explained in Fig. 4. This illustrates one of 16 rules, rule #7 in
Rule I in Fig. 3. There are four such rule sets (Rule I, II, II and IV) and they exist simultaneously.
Thus, the quantum parallel computing described here is rule-based and not logic-gate-based.
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Fig. A.3. Four complete computation-state transition rule sets: Rule I, II, III, and IV of the
16 computation-state transitions rules with four separate cyclic sequences. Those are obtained
through discrete Fourier transform relations between the computation states and the eigen vectors

from Fig. 2. For example, in Rule I set, the resultant sequence for the new states is in the order
of 1234, 2341, 3412 and 4123 as indicated by the left circle.
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Fig. A.4. Example of quantum phase computing from an entangled atomic chain with the illus-

tration of S2(l)S3(l − 1) → S4(l) as shown by Fig. 3, Rule I, #7 rule. For the Rule I set, the

superpositions of four computation states, S1,S2,S3 and S4 in terms of the four eigen-vectors of
the atom (the circle) are represented by the four-arrows to indicate the four phase relations, in 4

possible, (i,−1,−i, 1), directions. For example, S1 = −iS̄1 − S̄2 + iS̄3 + S̄4, is shown in the phase

diagram on the upper left corner and similarly for S2,S3, and S4. That means S1 computation
state is constructed from the four eigen-vectors, spaced clockwise equally with 90-degree phase

difference apart. Similarly, S2(S3, S4) are constructed with eigen-vectors spaced 180(270, 360)

-degrees apart. The quantum phase computing is illustrated with the evolution of computation
state S2(l) at l, due to the presence of a computation state S3(l−1) at l−1, into a new state of S4

at l. Here S3(l− 1) = iS̄1− S̄2− iS̄3 + S̄4 and S2(l) = −S̄1 + S̄2− S̄3 + S̄4 are shown in the phase
diagrams from part (a). For the first term operator-state computation, the 90-degree phase S̄1 at
l−1 is to interact with 180-degree phase of S̄1 at l, it will acquire additional 90-degree phase in the

process due to the traveling of distance a. Hence the total phase factor is added up to 360-degree

for the new orientation of S̄1 vector after time, τ . Similarly, for the 180-degree phase S̄2 at l−1 is
brought to interact with zero degree S̄2 vector at l, it will acquire additional 180-degree phase and

hence the result is 360-degree phase factor for the new vector S̄2 and that process has occurred
two times already during the time interval τ . Similarly, for S̄3 and S̄4 vectors with three times and
four times occurrences during the same interval. The net result is that the four new eigen-vectors

all orientated in the zero-degree direction to arrive at the new S4 computation state automatically
in the time interval, τ . This picture explains one of the 16 rules, rule #7 in the Rule I set shown

in Fig. 3 and is represented by the pattern transformation notation in part (c). There are four

complete rule sets (Rule I, II, III and IV) listed in Fig. 3, including the mix conjugation relations.
The phase-computing here are conservative and a new set of phase relations on the entire chain

emerges at every time interval, τ . Hence it is a mimic of Newtons first law in discrete time. The

evolution results in a periodic occurrence of any initial configuration (the information content)
with a Poincare cycle, the period of the time crystal that lies between the value of 2Nτ and 4Nτ .

We also note that the existence of phase-relations implies that an entangled atomic chain is also

a four-channel distributed superconductor between two ends.


