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A potential advantage of quantum machine learning stems from the ability of encod-
ing classical data into high dimensional complex Hilbert space using quantum circuits.

Recent studies exhibit that not all encoding methods are the same when representing

classical data since certain parameterized circuit structures are more expressive than the
others. In this study, we show the difference in encoding techniques can be visualized

by investigating the topology of the data embedded in complex Hilbert space. The tech-

nique for visualization is a hybrid quantum based topological analysis which uses simple
diagonalization of the boundary operators to compute the persistent Betti numbers and

the persistent homology graph. To augment the computation of Betti numbers within

a NISQ framework, we suggest a simple hybrid algorithm. Through an illuminating ex-
ample of a synthetic data set and the methods of angle encoding, amplitude encoding,

and IQP encoding, we reveal topological differences between the encoding methods, as
well as differences with the original data. Consequently, our results suggest the encod-

ing method needs to be considered carefully within different quantum machine learning

models since it can strongly affect downstream analysis like clustering or classification.

Keywords: Quantum Machine Learning; Data Encoding; Quantum Topological Data

Analysis; Betti Numbers

1 Introduction

The power of quantum machine learning originates from the fact that classical data can be

embedded in high-dimensional complex Hilbert space through the use of quantum circuits.

Several strategies have been explored to encode classical data using different parameterized

quantum circuits with different level of expressitivity to approximate the function representing

classical data. For instance, Schuld et al. [1] has shown that using Fourier series analysis can

reveal if a variational quantum circuit is expressive enough to represent different classical data

structure. However, a question still remains if encoding classical data using quantum circuits

preserves the original structure of the data or it will change this structure after embedding

in complex Hilbert space.

As the applications of classical statistical modeling and machine learning modeling increase

in popularity there has been a growing need of advanced exploratory data analysis to give
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insight to the stability of the model through the various structures of the data. Topological

data analysis (TDA) has become a stable of general techniques to understand the geometric

structure of data and assist with these insights. One main technique in TDA is that of

Betti numbers, which give the number of “holes” in each dimension. Classically, TDA has

demonstrated to be a useful data analytic technique in revealing hidden geometrical structures

of complex datasets through the analysis of Betti numbers and persistent homology [2].

The mathematical structure of calculating Betti numbers makes this method a natural

candidate for a quantum analog [3], denoted as qTDA. While there have been many advance-

ments of the original quantum algorithm [4, 5, 6, 7, 4], the majority of these advancements

assumes a universal quantum processor or a hybrid method with creative circuits. Taking into

consideration the shortcomings of the NISQ era to handle intricate entanglement and circuits

with deep gates, this manuscript describes a hybrid qTDA method that is more scalable to

augment the classical algorithm used to calculate Betti number. For instance, we suggested

a hybrid algorithm known as variational quantum deflation method to calculate the eigen-

spectrum of the boundary operators rather than the tradition quantum phase estimation as

mentioned by Lloyld at el. [3]

Motivated by the power of using topology to analyze the hidden geometrical structure in

real world data, we addressed the question of how different quantum encoding techniques can

affect the topology of embedded data structure within complex Hilbert space. Specifically, we

explored the variation of persistent homology to understand the topological changes within

different encoding techniques and with the original data. The empirical analysis displays

that there are subtleties for each of the encoding techniques. In fact, our results reveal

significant geometric differences between the original data and the encoding techniques, as well

as geometric differences between each of the encoding techniques. Subsequently, this study

implies further theoretical understanding is needed to derive the correct unitary operator

to encode classical data beyond heuristic when designing a quantum variational circuit for

machine learning application.

2 Applications of Quantum to Real-World Data

As quantum computing has become increasingly relevant as an advantage over classical com-

puting there has been an increase in quantum analogs of machine learning algorithms. A few

examples include linear regression [8], clustering [9, 10], utilizing kernels for support vector

machines [11] with intuitive extensions to neural networks [12, 13], and generative modeling

[14]. As one may imagine there are situations were quantum is no better than classical meth-

ods [15]. To understand how this may hold true consider modeling binary classification with

a large feature space. If there is a clear delineation of the two classes within enough features

a simple linear regression algorithm will model the data quite well.

Given the nature of quantum algorithms many questions arise about how to incorporate

classical data into a quantum circuit. A natural method to transfer continuous valued entries

in a data record is to capture each value in the array as a rotation and capture each data

point as an angle [13, 12]. Encoding the values of the data record to a quantum state through

amplitude is also quite natural. The authors in [16] display a divide and conquer method,

similar to that of the method in the seminal Grover-Rudolph paper [17], which trades the

number of qubits for the time to encode. This complexity is opposite of the more qubit less
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gate intensive method of angle encoding, or that of quantum Fourier transform (QFT). The

last method mentioned is IQP [18] which is noted by the authors to leverage a quantum

advantage, but the series of gates yields more of a neural network mapping than a true

representation of the original data. There are other encoding techniques [19, 20, 21], for

simplicity, these techniques are not considered.

Mapping data to a quantum circuit has shown to be quite difficult and non-trivial [13].

Moreover, while these methods treat the data as a map to another Hilbert space the data

is quite frankly mapped to a series of operators in the space of special unitary operators in

dimension 2n, denoted as SU(2n). However, there are explorations that are fairly in-depth

in the analysis, which include authors in [22] that give criteria to when there is a quantum

advantage in statistical modeling tasks, and the authors in [1] explore a partial Fourier series

of the operator encoded with a data point. To the authors’ knowledge, the paper “Effect of

data encoding on the expressive power of variational quantum-machine-learning models” [1]

is the first effort to consider data from this perspective. This observation about data mapped

to parameters of operators points to the question about what information, if any, is lost when

data is encoded into a circuit.

3 Encoding Approaches

The encoding methods noted in Section 2 will be discussed in detail to sample current

methods and establish a deeper understanding. In a closed system there is a periodic

nature of quantum mechanics. From the periodic characteristics, it may be necessary to

map the data point Di to a normalized form. There are many methods, such as dividing

this vector by its magnitude, a significant amount relying on local information. Defining

Sn =

{
x ∈ Rn : xi > 0 ∀ i and

n−1∑
i=1

xi = 1

}
, another simplex, there exists a homeomorphic

mapping of the form

f : Rn−1 → Sn,

f(x) =
(ex1 , ex2 , . . . , exn−1 , 1)

1 +
∑n−1

i=1 e
xi

,

f−1(s) =
(
log(s1/sn), log(s2/sn), . . . , log(sn−1/sn)

)
.

(1)

One may verify f is a homeomorphism, and therefore, ensures no loss of information.

Angle encoding is the first technique explored [13, 12]. While this approach is intuitive

has been noted to not fully leverage quantum, and in particular, each entry in the data point

vector Di is mapped to a qubit, increasing the size of a typical register. The encoded operator

has the mapped form

Di →
⊗

l=1,2,...,|Di|

exp(−iXlD
l
i) |0 . . . 0⟩ , (2)

where Xl is the Pauli X gate acting on the lth qubit and Dl
i is the l

th entry.

The amplitude approach assumes all the data points D̃i ∈ Sn. As noted above, one may

map any data point into this form without any loss of information. The authors in [16] display

an efficient method to encode the amplitudes of the data, utilizing the method in the Grover-

Rudolph [17] approach to load probability distributions. Given the intricate procedure of
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the technique it will not be discussed in full detail. Moreover, the authors give a detailed

description of their algorithm, enabling one to implement this approach. For completeness,

an example of how to implement this particular amplitude encoding is given. Take the simple

example of encoding the conveniently prepared data point (
√
.2,
√
.35,
√
.15,
√
.3) which is

decomposed into a binary tree by recursively splitting each piece of the data point in half

with the goal of creating the state
√
.2 |00⟩ +

√
.35 |10⟩ +

√
.15 |01⟩ +

√
.3 |11⟩. Each split is

then normalized and the left node is taken as the parameter of the Ry gate. This binary tree

and subsequent circuit is shown in Figure 1.

1

√
.55

√
.2

√
.35

√
.45

√
.15

√
.3

(a) Binary Tree Decomposition

|0⟩ Ry

(√
.45

)

|0⟩ Ry

(√
.3/.55

)
Ry

(√
.15/.45

)
(b) Encoding of the Binary Tree

Fig. 1. This is an example on how to amplitude encode data: (a) displays the binary tree decom-

position of (
√
.2,

√
.35,

√
.15,

√
.3), and (b) is the respective circuit to encode the binary tree.

Lastly, the IQP encoding approach [18] is discussed. The authors assume x ∈ (0, 2π]n and

note the approach suggests a quantum advantage. Taking the function f in Equation 1 and

defining the function f̃ = 2π ·f that maps f̃ : Rn−1 → (0, 2π]n does not lose information since

f is a homeomorphism. Denoting Zi as the Pauli Z gate acting on the ith qubit the authors

define the specific unitary operator

UZ(x) = exp

 n∑
i=1

xiZi +

n∑
i=1

n∑
j=1

(π − xi)(π − xj)ZiZj

 (3)

for application, while giving the general operator as UΦ(x) = exp

 ∑
S⊂{1,2,...,n}

ΦS(x)
∏
i∈S

Zi

.

One may note the coefficients in the quadratic terms are centered around 0 with standard de-

viation of 1, and the original data may be mapped accordingly into a different form. Denoting

H as the Hadamard gate, the IQP encoding is defined as

Di → UZ(Di)H
⊗nUZ(Di)H

⊗n |0 . . . 0⟩ . (4)

The authors in [19] derived this encoding by considering Ising interactions of the unitary

operators in UZ and the Hadamard gates adding uniform superpositions.

4 Topological Data Analysis and Quantum Computation

With the explosion of statistical modeling it has become more prevalent to understand the

geometric structure for further insight into how to model the data, identify weak structures

of underrepresented data to anticipate failure, and compare training data and data observed

after training. Topological data analysis (TDA) has been exhibited to be a powerful tool to
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obtain this goal [23, 24] but is quite computationally intensive. One particular method that is

quite useful in classifying the geometric structure of the data is calculating the Betti number

for various topological features.

To understand what a Betti number represents more intuitively, consider a record of data

points. First it is necessary to construct a simplicial complex, which is a collection of the data

points with an ϵ-sized ball around each point that creates individual points, lines, triangles,

tetrahedron, and corresponding iterative higher-level simplicial objects; ϵ is a hyperparameter

and is intuitively called the grouping scale. The collection of simplices created from parameter

ϵ, denoted as Sϵ, is known as a Vietoris-Rips simplicial complex. After the construction of

these objects the number of connected data points, one-dimensional “circular holes”, two-

dimensional areas void of data points, and corresponding higher-dimensional voids. For k ∈
{0, 1, 2, . . .} the Betti number bk corresponds to the respective topological descriptions above.

Betti numbers have a deeper mathematical description with homology, which is essential to

describe and incorporate in a circuit. Given a data setDs, denoteH
ϵ
k(Ds) as the k

th homology

group of Ds generated from the parameter ϵ. The complete simplicial complex created from

ϵ is defined Hϵ =
⊕

kH
ϵ
k(Ds). To connect individual simplices, define the boundary map

as δk : Hϵ
k(Ds) → Hϵ

k−1(Ds), and given the derivation of the simplicial complex, one may

see the natural mapping of δk. Denoting the kernel of a function as ker and the image of

a function as Im, with this structure we may define the kth homology as the quotient space

Hϵ
k(Ds) = ker δk/Im δk+1 and bk = dim

(
Hϵ

k(Ds)
)
.

This structure enables a derivation towards an generator of connectivity. Combinatorial

Laplacians [25] give the exact generator and has the form ∆k = (δk)
†δk + δk+1(δk+1)

†, and

one may see that ∆k is a Hermitian matrix. The combinatorial Laplacian may calculate the

kth Betti number, βk, by deriving

βk = dim ker ∆k. (5)

See [26] for further more in-depth information about Betti numbers.

Since the boundary maps are linear this gives makes this algorithm a candidate for a

quantum analog [3], denoted as qTDA. In the quantum setting for the space Hϵ
k is spanned

by |sk⟩ where sk ∈ Sϵ
k, where S

ϵ
k is the set of k-simplices. The boundary map applied to |sk⟩

has the form

δk |sk⟩ =
∑
j

(−1)j |sk−1(j)⟩ (6)

where sk−1(j) is the k − 1 simplex on the boundary of sk with the jth vertex removed from

sk.

Since the derivation of qTDA there have been many extensions [4, 5, 6]. However, the

general flow of the algorithm has been consistent; please see [27] for a brief overview. The

outline of the algorithm is displayed in Algorithm 2.

The general flow of the circuit side-steps how to incorporate real-world data into the circuit.

Currently, there are two main methods: (1) calculate the distances (or pseudo-distances),

apply the ϵ hyperparameter filter, make respective connections in classical computation then

incorporate this final matrix into the circuit; or (2) encode the data into the circuit and do

all calculations within the circuit. The first method is oriented for the NISQ-era, and in

fact, may be faster given a small enough data with the available gates. Furthermore, the
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Fig. 2. General qTDA

1: i← 1
2: while i ≤ L do

3:
1√
|Sϵ

k|

∑
sk∈Sϵ

k

|sk⟩ ← Grover’s algorithm

4:
1√
|Sϵ

k|

∑
sk∈Sϵ

k

|sk⟩ ⊗ |sk⟩ ← copy states to eigenvalue registry with CNOT operations

5:
1√
|Sϵ

k|

∑
sk∈Sϵ

k

|sk⟩ ⟨sk| ← trace out the ancillary register

6: ei∆
Ds
k ← apply unitary to eigenvalue registry

7: Apply phase estimation to eigenvalue registry
8: Measure the eigenvalue register to readout the approximated eigenvalue λ̃
9: i← i+ 1

10: end while
11: return |{λ̃ : λ̃ = 0}|/L

first method is difficult to incorporate if one would like to calculate the Betti number of the

encoded data. The second method is designed for a universal QPU as the number of gates

needed and sensitivity to the noise of qubits plays a huge factor in exact calculations.

While there are hardware shortcomings of the second method it is quite interesting to

explore creating such a non-hybrid circuit. The rest of this section explores how one may

implement comparing two randomly selected data points from a record. The method in [28]

displays how to get the encoded inner product of two data records. Since ⟨ψ|ψ⟩ = 1 for all

non-zero vectors in a circuit one may see that√√√√ n∑
k=1

|ψi
k − ψ

j
k|2 =

√
2 · (1− | ⟨ψi|ψj⟩ |). (7)

The authors in [16] give a viable technique to implement a qRAM for the entire record of

data. Coupling the qRAM and inner product with the technique in [9], which utilizes the

Hadamard test yields, a sub-process to compare randomly drawn data points with a quantum

advantage. See Figure 3 for an overview of such a circuit.

5 Hybrid Quantum Topological Data Analysis

While the NISQ-era inhibits a purely quantum solution to calculate Betti numbers, there

have been efforts to create a hybrid solution [7]. In particular, the Huang et al. display a

hybrid method, though the circuit given is a toy example, that calculates Betti number b1
with five data points with the L2-distance between each point. The authors then derive a

creative circuit to calculate the b1 score of the network of the boundaries. Such a circuit with

pre-calculated boundaries has been previously noted [3, 5]. However, the authors go a step

further and derive a matrix of the Equation 6. One may observe that with this matrix all is

necessary to finish the Betti number calculation is to derive the eigenvectors and determine

|{λ̃ : λ̃ = 0}|.
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n

m

n

m

|0⟩ H H

|0⟩⊗n Encode(Di)

qRAM

Load(Di)|0⟩⊗m
H

|0⟩⊗n Encode(Di)

qRAM

Load(Di)|0⟩⊗m
H

Fig. 3. This circuit displays a sub-process to calculate the inner product of two randomly chosen

data points from the same uniformly distributed data points encoded into a quantum circuit and
apply the SWAP test.

The method in [7] can be expanded by including data encoded into a circuit. However,

one must be able to calculate the distance between each point in the record. A technique one

may utilize is displayed in the circuit in Figure 3, which is known as the SWAP test. This

circuit yields the calculation | ⟨E(Dj)|E(Di)⟩ |2, where E denotes the encoding method and is

shortened notation for simplicity. One may derive this kernel method explicitly by simplifying

the measurement of the circuit on the initial state |0 . . . 0⟩ ⟨0 . . . 0| ,

⟨0 . . . 0|E(Dj)E(Di)
†ME(Dj)

†E(Di) |0 . . . 0⟩ =
⟨0 . . . 0|E(Dj)E(Di)

† |0 . . . 0⟩ × ⟨0 . . . 0|E(Dj)
†E(Di) |0 . . . 0⟩

= | ⟨0 . . . 0|E(Dj)
†E(Di) |0 . . . 0⟩ |2 = | ⟨E(Dj)|E(Di)⟩ |2.

(8)

A few kernel methods with calculation are described in the Pennylane [29] documentation.

m
|0⟩⊗m Encode(Di) Encode†(Dj)

Fig. 4. A kernel method to calculate the absolute value squared of the inner product of two encoded

data points, Di and Dj , where the data point Dj is encoded with the inverse of the technique.
Finally, measured in the computational basis. This is known as the fidelity test.

The proposed hybrid algorithm is given in Algorithm 5. While many of the steps are

classical, Step 1 requires a quantum circuit for encoded data points, and the last step is to

calculate the eigenvalues, recalling from Equation 5 that ∆k is Hermitian. Higgott, Wang, and

Brierley in [30] derive a circuit, noted as the Variational Quantum Deflation (VQD), which is

a NISQ-era friendly implementation to calculate the spectrum of a Hamiltonian. While there

are other circuits that may be utilized the calculate the entire set of eigenvalues, given the

proliferation of the algorithm, VQD will be noted as the preferred algorithm. However, VQD

will also be used as a place holder for similar quantum algorithms. Instances when there isn’t

a quantum advantage, for example when the circuit is too long or the matrix is small enough,

one may then apply a classical eigensolver.

For completeness, the VQD algorithm is explained. VQD was derived as an extension of

the variational quantum eigensolver (VQE), see [31] for an overview. Given a Hamiltonian
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Fig. 5. Hybrid qTDA

Input: Betti number k

1: B ← calculate inner products matrix
2: Bϵ ← B apply ϵ filter
3: {∂k, ∂k+1} ← Bϵ calculate the boundary operators

4: ∆k ← ∂†k∂k + ∂k+1∂
†
k+1 calculate combinatorial Laplacian

5: Either Decompose ∆k as hamiltonian composed of Pauli matrices using Pauli
decomposition, and feed that into the VQD sub-circuit and measure L times to readout
the approximated eigenvalues λ̃ then

6: return |{λ̃ : λ̃ = 0}|/L
7: Or feed ∆k into classical eigensolver then
8: return |{λ̃ : λ̃ = 0}|

H =
∑
cjPj , VQE starts with a real λ the ansatz state |ψ(λ)⟩ and seeks to minimize the

expectation E(λ) :=
∑

cj ⟨ψ(λ)|Pj |ψ(λ)⟩, denoted as λ0, approximating the ground state.

To calculate the kth state Higgott, Wang, and Brierley in [30] created the cost function

V (λk) := ⟨ψ(λk)|H |ψ(λk)⟩+
k−1∑
i=0

βi| ⟨ψ(λk)|ψ(λi)⟩ |2

:= E(λk) + B(k, λk)

where the βi values are chosen sufficiently large to ensure orthogonality, | ⟨ψ(λi)|ψ(λj)⟩ |2 = 0

for i ̸= j. Denote R(λk) as the procedure to prepare the circuit. The algorithm starts with

an initial guess then iterates until a designated decision to stop. The schematic is given in

Figure 6 and is given in generality to adjust for evolving techniques. For instance, there are

a number of ways in which to calculate the expectation including the fidelity test described

in Equation 8 or the “destructive SWAP test” [32].

Prepare the state |ψ(λk)⟩
with R(λk) from starting |0⟩

Approximate ex-
pectation of E(λk)

Approximate expectation of B(k, λk)

Combine results to calculate
V (λk) and apply classical

optimizer to object function

Fig. 6. Variational algorithm schematic of the VQD process.
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Fig. 7. VQD for Spectrum Approximation

Input: Calculate the first K + 1 eigenvalues.

1: Apply VQE to approximate λ0
2: i← 1
3: while i ≤ K do
4: λi ← apply procedure in Figure 6
5: i← i+ 1
6: end while
7: {λ̃} ← approximate eigenvalue spectrum using λ0, . . . , λk from L measurements.
8: return {λ̃}

Fig. 8. Scatter plot of the randomly generated two dimensional data analyzed.

6 Empirical Analysis

To display the potential differences in the different encoding methods, one hundred randomly

generated data points were generated and encoded with the angle method, amplitude method,

and the IQP method. The Euclidean distance is applied to the original data and the data

encode with each of the three approaches. After the distances are calculated the Betti number

for b1 is derived at different threshold levels. While there are other methods, for simplicity

these three methods are considered. Given the stark contrast shown in Figure 10 between all

of the data sources, it is believed other encoding methods will have a significant difference

between the original data and other respective encoding techniques.

To calculate the Betti number for b1 the algorithm described in Algorithm 5 is utilized,

however, given the size of the Hamiltonian matrices, the eigenvalues are calculated classically

and the number of eigenvalues equal to 0 are given. The Gudhi package [33] was utilized to

calculate the simplices and the respective faces.

The data was generated with NumPy [34]. One thousand two dimensional from a uniform

distribution in the interval [−1, 1] was sampled with where each data point is normalized, one

thousand two dimensional data points were then generated with a Pareto distribution with

α = 10, and finally these two sets are added together; see Figure 8 for a scatter plot of the

data.

The circuits for each of the encoding methods were implemented with Qiskit [35] utilizing

a simulator backend. For each pair of data points fed into the circuit in shown in Figure
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9. The persistence barcode and respective diagram for each encoding method and original
data. Each row gives insight into each respective geometry, demonstrating difference between all

of the methods, as well as differences between each encoding method and the original data.
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(a) (b)

Fig. 10. The Betti number for b0 and b1 are computed for the original data, angle encoded data,

amplitude encoded data, and the IQP encoded data. Figure (a) displays Betti numbers for b0
with the interval of [.05, .55] with increments of .05, Figure (b) is the Betti numbers for b1 with
the interval of [0.0, 1.0] with increments of .05.

4 and ran one thousand twenty four times. This calculation only yields the square of the

inner product. Since | ⟨E(Di)|E(Di)⟩ | = 1 for all data records Di, to calculate the Euclidean

distance Equation 7 is applied.

To examine how the geometry of the original data is altered with each encoding method,

as well the difference of the geometry between each encoding methods, the Betti number of

b0 and b1 are computed with increments of .05. Figure 10 (a) displays the evolution of b0,

the number of connected components. Interestingly, there is a consistent difference in each

Betti number, where around when ϵ = .5 there is stability between the original data and

the encoding methods. This consistency shows the encoding methods map the original data

rigidly into the respective geometry, however, the information is fairly limited.

Figure 10 (b) shows the Betti number density for the original data and the three encoding

approaches. The ϵ-thresholds start at 0.0 and go to 1.0. Unlike the Betti number for b0, there

are prominent differences between the original data and all of the encoding approaches. In

particular, as the Betti number for the original data stabilize there is both an increase and

decrease of the Betti number for the encoding methods, all of which eventually stabilize. This

inconsistency displays how each technique effects the noise in the data in different ways.

The difference in the Betti numbers between the three techniques and original data are a

bit surprising as one would expect the structure of the data to be intact since the each data

point is mapped to a unitary operator, which keeps the underlying structure. However, since

each data point is encoded into a unitary operator, it would be more applicable to compare

each of these encoded data points as operators within this Lie group than to consider the

output of each operator as a point in a Hilbert space.

While the Betti numbers show glaring discrepancies, it does not give insight into the

respective geometries. Figure 9 gives the barcode and diagrams for each encoding method

and the original data. The barcodes display both subtle and stark contrasts of the geometries,

putting more context to the counter-intuitive results of Betti numbers. The diagrams exhibit

the ’expressibility’ mentioned in Schuld et al. [1], as the IQP method yields an intricate
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(Dim 0, Dim 1) Original Data Angle Encoding Amplitude Encoding IQP Encoding
Original Data Encoding (0, 0) (1.1222, inf) (4.5792, inf) (2.4161, inf)

Angle Encoding (1.1222, inf) (0, 0) (4.1322, 0.7617) (1.6849, 0.9655)
Amplitude Encoding (4.5792, inf) (4.1322, 0.7617) (0, 0) (2.9366, 0.443)

IQP Encoding (2.4161, inf) (1.6849, 0.9655) (2.9366, 0.443) (0, 0)
Fig. 11. Further displaying the discrepancy between the encoding methods and the original data.

The Wasserstein distance (WD) is applied to the persistence of the zeroth dimension and the
first dimension of each method and original data, and the pair in each entry is of the form

(WD dimension 0,WD dimension 1).

geometry. Interestingly, the amplitude method, while expressive given the intricacy of the

control gates, yielded a simplistic geometry. The barcodes and diagrams were calculated

using the Gudhi package [33].

Since TDA is stable against noise [36], we investigated if the difference in topology is not

just statistical noise, and it is due to the different data encoding technique. Specifically, we

calculated the Wasserstein distance [37] for the persistence of dimensions 0 and 1 for different

encodings, we further display the discrepancies of the encoding methods shown in Figure

9 by yielding a quantitative difference in Table 11. As shown in Table 11, the encoding

contains entanglement like IQP and amplitude methods show significant deviation from the

angle encoding which only contains single qubit operation to encode the data. As a result,

this further suggests entanglement can play an important role in encoding the classical data.

Furthermore, entanglement also relates to the expressive power of the parameterized quantum

circuits used to encode classical data [13].

7 Discussion

The technique in this manuscripts displays how to apply qTDA in a hybrid manner, with the

quantum advantage in comparing the encoded data points and calculating the eigenvalues of

the corresponding Hamiltonian. The results of comparing the three encoding techniques and

the data in calculating the Betti number for b0 and b1 showed discrepancies in information

retention. Since more intricate geometric structures will contain ’holes’, the result holds for

other examples.

It is posited that the encoded data must be considered as unitary operators in the Lie

group SU(2n) and compared within the respective noncommutative geometry. The code used

in Section 6 is available on request.

References

1. Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer (2021), Effect of data encoding on the
expressive power of variational quantum-machine-learning models, Physical Review A, 103(3),
pp. 032430.

2. Larry Wasserman (2018), Topological data analysis, Annual Review of Statistics and Its Appli-
cation, 5, pp. 501–532.

3. M.A. Nielsen and J. Kempe (2001), Quantum algorithms for topological and geometric analysis
of data, Nature communications, 7(1), pp. 1-7.

4. Casper Gyurik, Chris Cade, and Vedran Dunjko (2022), Towards quantum advantage via topo-
logical data analysis, Quantum, 6:855.

5. George Siopsis (2018), Quantum topological data analysis with continuous variables,
arXiv:1804.01558.



Andrew Vlasic and Anh Pham 1103

6. Ryu Hayakawa (2022), Quantum algorithm for persistent Betti numbers and topological data
analysis, Quantum, 6:873.

7. He-Liang Huang, Xi-Lin Wang, Peter P Rohde, Yi-Han Luo, You-Wei Zhao, Chang Liu, Li Li,
Nai-Le Liu, Chao- Yang Lu, and Jian-Wei Pan (2018), Demonstration of topological data analysis
on a quantum processor, Optica, 5(2), pp. 193–198.

8. Seth Lloyd (2010), Quantum algorithm for solving linear systems of equations, In APS March
Meeting Abstracts, 2010, pp. D4–002.

9. Afrad Basheer, A. Afham, and Sandeep K Goyal (2020), Quantum k-nearest neighbors algorithm,
arXiv:2003.09187.

10. Yijie Dang, Nan Jiang, Hao Hu, Zhuoxiao Ji, andWenyin Zhang (2018), Image classification based
on quantum K-Nearest-Neighbor algorithm, Quantum Information Processing, 17(9), pp. 1–18.

11. Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd (2014), Quantum support vector machine
for big data classification, Physical Review Letters, 113(13), pp. 130503.

12. Andrea Skolik, Jarrod R McClean, Masoud Mohseni, Patrick van der Smagt, and Martin Leib
(2021), Layerwise learning for quantum neural networks, Quantum Machine Intelligence, 3(1),
pp. 1–11.

13. Maria Schuld and Nathan Killoran (2019), Quantum machine learning in feature Hilbert spaces,
Physical Review Letters, 122(4), pp. 040504.

14. Pierre-Luc Dallaire-Demers and Nathan Killoran (2018), Quantum generative adversarial net-
works, Physical Review A, 98(1), pp. 012324.

15. Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Killoran (2020), Quantum em-
beddings for machine learning, arXiv:2001.03622.

16. Israel F. Araujo, Daniel K. Park, Francesco Petruccione, and Adenilton J. da Silva (2021), A
divide-and-conquer algorithm for quantum state preparation, Scientific reports, 11(1), pp. 1–12.

17. Lov Grover and Terry Rudolph (2002), Creating superpositions that correspond to efficiently
integrable probability distributions, quant-ph/0208112.
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