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It has been shown that, for even n, evolving n qubits according to a Hamiltonian that is

the sum of pairwise interactions between the particles, can be used to exactly implement

an (n + 1)-qubit fanout gate using a particular constant-depth circuit [arXiv:quant-
ph/0309163]. However, the coupling coefficients in the Hamiltonian considered in that

paper are assumed to be all equal. In this paper, we generalize these results and show
that for all n, including odd n, one can exactly implement an (n + 1)-qubit parity gate

and hence, equivalently in constant depth an (n + 1)-qubit fanout gate, using a similar

Hamiltonian but with unequal couplings, and we give an exact characterization of the
constraints that the couplings must satisfy in order for them to be adequate to implement

fanout via the same circuit.

In particular, we show the following: Letting Jij be the coupling strength between
the ith and jth qubits, the set of couplings {Jij} is adequate to implement fanout via

the circuit above if and only if there exists J > 0 such that

1. each Jij is an odd integer multiple of J , and

2. for each i, there are an even number of j 6= i such that Jij/J ≡ 3 (mod 4).

Keywords: constant-depth quantum circuit; quantum fanout gate; Hamiltonian; pairwise

interactions; spin-exchange interaction; Heisenberg interaction; modular arithmetic

1 Introduction

1.1 Previous work

In the study of classical Boolean circuit complexity, the fanout operation—where a Boolean

value on a single wire is copied into any number of wires—is taken for granted as cost-free.

The picture is very different, however, with quantum circuits with unitary gates, where the

number of wires is fixed throughout the circuit. There, fanout gates are known to be very

powerful primitives for making shallow quantum circuits [1–4]. It has been shown that in

the quantum realm, fanout, parity (see below), and Modq gates (for any q ≥ 2) are all

equivalent up to constant depth and polynomial size [1, 3]. That is, each gate above can

be simulated exactly by a constant-depth, polynomial-size quantum circuit using any of the

aThis is the journal version of arxiv:2203.01141 through Section 4.
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other gates above, together with standard one- and two-qubit gates (e.g., C-NOT, H, and

T ). This is not true in the classical case, where, for example, parity cannot be computed

by constant-depth, polynomial-size Boolean circuits with fanout and unbounded AND-, OR-,

and NOT-gates [5–7]. Furthermore, using fanout gates, in constant depth and polynomial

size one can approximate sorting, arithmetical operations, phase estimation, and the quantum

Fourier transform [2, 4]. Fanout gates can also exactly implement n-qubit threshold gates,

unbounded AND-gates (generalized Toffoli gates), and OR-gates in constant depth [8]. Since

long quantum computations may be difficult to maintain due to decoherence, shallow quan-

tum circuits may prove much more realistic, at least in the short term, and finding ways to

implement fanout would then lend enormous power to these circuits.

On the negative side, fanout gates so far appear hard to implement by traditional quantum

circuits. There is mounting theoretical evidence that fanout gates cannot be simulated in small

(sublogarithmicb) depth and small width, even if unbounded AND-gates are allowed [9, 10].

Therefore, rather than trying to implement fanout with a traditional small-depth quantum

circuit, an alternate approach would be to evolve an n-qubit system according to one or more

(hopefully implementable) Hamiltonians, along with a minimal number of traditional quantum

gates. It was shown in [11, 12] that simple Hamiltonians using spin-exchange (Heisenberg)

interactions do exactly this. Those papers presented a simple quantum circuit for computing

n-bit parity (equivalent to fanout) that included two invocations of the Hamiltonian along

with a constant number of one- and two-qubit Clifford gates.

More recently, Guo et al. [13] presented a method for implementing fanout on a mesh of

qubits. Their approach involves a series of modulated long-range Hamiltonians applied to the

qubits obeying inverse power laws.

1.2 The current work

This paper revisits the spin-exchange Hamiltonians considered in [11,12]. A major weakness

of that work is that it assumes all the pairwise couplings between the spins to be equal. This

is physically unrealistic since we expect couplings between spins that are spatially far apart

to be weaker than those between spins in close proximity.

In this paper, we show that n-qubit fanout can still be implemented by the exact same

circuit Cn given in [12], even with a wide variety of unequal pairwise couplings. We show

that the couplings must satisfy certain constraints in order for Cn to implement fanout.

Formally, the n-qubit fanout gate Fn and the n-qubit parity gate Pn are (n + 1)-qubit

unitary operators defined such that

Fn |x1, . . . , xn, c〉 = |x1 ⊕ c, . . . , xn ⊕ c, c〉 ,
Pn |x1, . . . , xn, t〉 = |x1, . . . , xn, t⊕ x1 ⊕ · · · ⊕ xn〉 ,

for all x1, . . . , xn, c, t ∈ {0, 1}. It was shown in [3] that Fn = H⊗(n+1)PnH
⊗(n+1), where H

is the 1-qubit Hadamard gate. Thus Fn and Pn are equivalent in constant depth, and any

circuit implementing Pn can be converted to one implementing Fn by conjugating with a bank

of Hadamard gates.

The circuit Cn given in [12] implements Pn and is shown in Figure 1. Here, the 1-qubit

Clifford gate Gn is either S, I, S†, or Z, depending on n mod 4, where I is the identity, S

bFanout on n qubits can be implemented by a O(logn)-depth circuit with O(n) many C-NOT gates.
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n−1 n−1
|x1 · · ·xn−1〉

Un U†n

|x1 · · ·xn−1〉

|xn〉 H Gn H H G†n H |xn〉

|t〉 |t⊕ x1 ⊕ · · · ⊕ xn〉
Fig. 1. The circuit Cn implements the parity gate Pn. It uses the unitary operator Un and its

adjoint once each. Here, Gn = S1−n is either S (the phase gate), I, S†, or Z (the Pauli z-gate)

if n is congruent to 0, 1, 2, or 3, respectively, mod 4. Since Un is swap-invariant, the single-qubit
gates can be moved to any of the first n qubits, together with the control of the C-NOT gate.

satisfies S |b〉 = ib |b〉 for b ∈ {0, 1}, and Z is the Pauli z-gate. The unitary operator Un is

defined as follows: for all x = x1 · · ·xn ∈ {0, 1}n, letting w = x1 + · · ·+ xn,

Un |x〉 = iw(n−w) |x〉 . (1)

It was shown in [12] that Un is the result of running a particular Hamiltonian Hn, defined

below, for a certain amount of time on the first n qubits. It also was shown that Cn = Pn for

even n, and a similar calculation shows the same is true for odd n. For the full result and its

proof, see Appendix A.

We consider Hamiltonians of the formHn =
∑

1≤i<j≤n Ji,jZiZj , where Zi and Zj are Pauli

Z-gates acting on the ith and jth qubits, respectively, and the Ji,j are real coupling constants

(in units of energy). Hn is a simplified version of the spin-exchange interaction, where only

the z-components of the spins are coupled. It bears some resemblance to a quantum version

of the Ising model, as described in [14], but with no transverse field and allowing long-range

as well as nearest-neighbor couplings. In [12] it was shown that Un = e−iHnt for a certain

time t, provided all the coupling constants Ji,j are equal.

In this paper, we characterize when Hn can be run to implement Un by proving the

following result in Section 3:

Theorem 1.1 Un ∝ e−iHnt for some t > 0 if and only if there exists a constant J > 0 such

that (1.) all Ji,j are odd integer multiples of J , and (2.) the graph G on vertices 1, . . . , n with

edge set {{i, j} : i < j and Ji,j/J ≡ 3 (mod 4)} is Eulerianc, that is, all its vertices have even

degree.

Furthermore, if t exists, we can set t := π~/4J .

Our result gives more flexibility in the coupling constants, allowing stronger and weaker

couplings for spins placed nearer and farther apart, respectively. For example, suppose we have

four identical spins arranged in the corners of a square. The spins diagonally opposite each

other may have coupling constant J whereas neighboring spins can have coupling constant

3J . The corresponding couplings are thus congruent to 3 (mod 4) for neighboring spins, but

this arrangement can be used to implement U4, because the edges connecting neighboring

spins form a square, which is Eulerian. For the spins arranged in the corners of a regular

cube, neighboring spins may have coupling constant 7J , spins on the diagonal ends of each

face may have coupling constant 3J , and the antipodal spins may have coupling constant J .

Thus, the corresponding graph G has edges between the neighboring and diagonal spins, and

cWe use this term in the looser sense that the graph need not be connected.
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therefore this arrangement can be used to implement U8 because the edges connecting the

neighboring spins and the spins on the diagonal ends of each face of a regular cube form an

Eulerian graph (each vertex has degree 6). Similarly, for spins arranged on the corners of a

regular octahedron, the graph of neighboring spins is Eulerian, so neighboring spins can have

coupling 3J and antipodal spins J .

Our work differs from the recent work of Guo et al. [13] in a number of respects. They

adapt a state transfer protocol of Eldredge et al. [15] that, given an arbitrary 1-qubit state

α |0〉 + β |1〉, produces the GHZ-like state α |0 · · · 0〉 + β |1 · · · 1〉 on n qubits. Their protocol

uses long-range interactions on a mesh of qubits by sequentially turning on and off various

Hamiltonians to implement a cascade of C-NOT gates, where different Hamiltonians must

be applied at different times. Our scheme runs a simple, swap-invariant Hamiltonian twice,

together with a constant number of 1-qubit gates and a C-NOT gate connecting to the target.

Unlike in [13], our scheme needs no ancilla qubits.

2 Preliminaries

We use “:=” to mean “equals by definition.” We choose physical units so that ~ = 1. We let

Z denote the set of integers. For nonnegative n ∈ Z, we set [n] := {1, . . . , n}; for bit vector

x ∈ {0, 1}n, we let w(x) denote the Hamming weight of x, and we let xi denote the ith bit

of x, for 1 ≤ i ≤ n. For x, y, α ∈ R with α > 0, we write x ≡α y to mean that (x − y)/α

is an integer, and we let x mod α denote the unique y ∈ [0, α) such that x ≡α y. For bits

a, b ∈ {0, 1} we write a ⊕ b to mean (a + b) mod 2. For vectors or operators U and V of the

same type, we write U ∝ V to mean there exists θ ∈ R such that U = eiθV , i.e., U and V

differ by a global phase factor.

3 Main Results

We consider a particular type of Hamiltonian Hn, acting on a system of n ≥ 1 qubits, as

the weighted sum of pairwise Z-interactions among the qubits in analogy to spin-exchange

(Heisenberg) interactions:

Hn :=
∑

1≤i<j≤n

Ji,jZiZj , (2)

where Zk is the Pauli Z-gate acting on the kth qubit for k ∈ [n], and for 1 ≤ i < j ≤ n,

Ji,j ∈ R is the coupling coefficient between the ith and jth qubits. For convenience, we define

Jj,i := Ji,j for all 1 ≤ i < j ≤ n. Hn differs from the usual (isotropic) Heisenberg interactions

in that only the z-components of the spins are coupled.

Let x = x1 · · ·xn ∈ {0, 1}n be a vector of n bits. Notice that ZiZj |x〉 = (−1)xi+xj |x〉 for

1 ≤ i < j ≤ n, that is, ZiZj flips the sign of |x〉 iff xi 6= xj . Further, for t, θ ∈ R, let

Vn := Vn(t, θ) := e−iθe−iHnt (3)

be the unitary operator realized by evolving the Hamiltonian Hn of Eq. (2) for time period

t, where θ represents a global phase factor that may be introduced into the system. It has

been explicitly shown in [12] that for n ≡4 2, if Vn ∝ Un (see Eq. (1)), one can realize the

parity gate Pn (and thus the fanout gate Fn) in constant additional depth for n qubits via the

quantum circuit Cn shown in Figure 1. This fact indeed holds for all n via the same circuit,

and we give a unified proof of this in Appendix A. Further, it was shown in the same paper
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that Vn ∝ Un if all the Ji,j are equal, and we give an updated proof of this in Appendix B,

where we prove the following:

Lemma 3.1 For n ≥ 1, let Hn := J
∑

1≤i<j≤n ZiZj for some J > 0. Then Un = Vn(t, θ)

for some θ ∈ R, where t := π/(4J) and Vn(t, θ) is as in Eq. (3).d

Proof. See Appendix B. 2.

The main goal of this paper is to show that equality of the Ji,j is not necessary in order

to realize the unitary operator Un. In fact, we give an exact characterization of the values of

the couplings Ji,j that make this possible (Theorem 1.1). We will use Lemma 3.1 to establish

Theorem 1.1, whose proof is at the end of this section.

Let Hn be as in Eq. (2) for arbitrary Ji,j . For x ∈ {0, 1}n and t, θ1 ∈ R, setting ki,j := Ji,jt

for convenience, we have

Vn(t, θ1) |x〉 = exp

−iθ1 − i ∑
1≤i<j≤n

ki,j(−1)xi+xj

 |x〉 . (4)

Using the fact that Un |x〉 = exp (i(π/2)w(x)(n− w(x))) |x〉 and equating exponents, the

condition that Vn(t, θ1) = Un is seen to be equivalent to

θ1 +
∑

1≤i<j≤n

ki,j(−1)xi+xj ≡2π −
(π

2

)
w(x)(n− w(x)) (5)

holding for all x = x1 · · ·xn ∈ {0, 1}n. Lemma 3.1 yields a similar phase congruence in the

case where ki,j = Jt = π/4 for all i < j: there exists θ2 ∈ R such that for all x ∈ {0, 1}n,

θ2 +
π

4

∑
1≤i<j≤n

(−1)xi+xj ≡2π −
(π

2

)
w(x)(n− w(x)) . (6)

Subtracting Eq. (6) from Eq. (5) and rearranging, we get that Vn(t, θ) = Un is equivalent to∑
1≤i<j≤n

(
ki,j −

π

4

)
(−1)xi+xj ≡2π θ2 − θ1 ∀x ∈ {0, 1}n ,

or equivalently, setting fi,j := ki,j − π/4 for all 1 ≤ i < j ≤ n,∑
1≤i<j≤n

fi,j(−1)xi+xj ≡2π θ2 − θ1 ∀x ∈ {0, 1}n . (7)

Substituting the zero vector for x in Eq. (7) implies θ2 − θ1 ≡2π

∑
i<j fi,j , so Eq. (7) can be

rewritten as ∑
i<j

fi,j(−1)xi+xj ≡2π

∑
i<j

fi,j∑
i<j

fi,j
(
(−1)xi+xj − 1

)
≡2π 0

∑
i<j : xi 6=xj

fi,j ≡π 0 ∀x ∈ {0, 1}n . (8)

dJ is in units of energy and t is in units of time, but this fact is irrelevant to our results; one can assume that
J and t are unitless quantities. In any case, Jt is unitless, as we are taking ~ := 1.
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(The line above includes an implicit division by −2.) We have thus established the following

lemma:

Lemma 3.2 Let Hn be as in (2) and let t ∈ R be arbitrary. There exists θ ∈ R such that

Vn(t, θ) = Un, if and only if Eq. (8) holds, where fi,j := Ji,jt− π/4 for all 1 ≤ i < j ≤ n.

Lemma 3.3 Let {fi,j}1≤i<j≤n be real numbers such that Eq. (8) holds. Then fi,j ≡π/2 0 for

all 1 ≤ i < j ≤ n.

Proof. For convenience, define fj,i := fi,j for all i < j. For a ∈ [n], let x(a) ∈ {0, 1}n be

the n-bit vector whose ath bit is 1 and whose other bits are all 0. Consider two different bit

vectors x(a) and x(b) ∈ {0, 1}n for a < b. Also, consider a third bit vector y ∈ {0, 1}n with

w(y) = 2 such that its bits are set to 1 in exactly the a and b positions, i.e., y = x(a) ⊕ x(b).
Plugging in x(a), x(b), and y, respectively, into Eq. (8), we have∑

j∈[n] : j 6=a

fa,j ≡π 0 (9)

∑
i∈[n] : i 6=b

fi,b ≡π 0 (10)

∑
k∈[n] : k/∈{a,b}

(fa,k + fk,b) ≡π 0 (11)

Eq. (9)+(10)−(11) gives ∑
j∈[n] : j 6=a

fa,j −
∑

k∈[n] : k/∈{a,b}

fa,k

+

 ∑
i∈[n] : i 6=b

fi,b −
∑

k∈[n]:k/∈{a,b}

fk,b

 = 2fa,b ≡π 0 .

(12)

Therefore, fa,b ≡π/2 0. Since, a and b are chosen arbitrarily, the conclusion follows. 2.

Definition 3.4 For n ≥ 2, let Mn be the 2n×
(
n
2

)
matrix over the 2-element field F2 with rows

mx indexed by bit vectors x of length n and columns indexed by pairs {i, j} for 1 ≤ i < j ≤ n,

whose (x, {i, j})th entry is mx,{i,j} = xi ⊕ xj.
Lemma 3.5 Every matrix Mn defined by Definition 3.4 has rank n − 1, and its rows are

spanned by any set of n− 1 rows mx for x with Hamming weight 1.

Proof. All scalar and vector addition below is over F2. Let S := {x ∈ {0, 1}n : w(x) = 1}
be the set of n-bit vectors of Hamming weight 1, and let mS be the set of rows of Mn indexed

by elements of S. For n-bit vectors r and s, we can write the {i, j}th component of the sum

mr +ms as

(mr +ms){i,j} = mr,{i,j}+ms,{i,j} = (ri + rj) + (si + sj) = (ri + si) + (rj + sj) = mr+s,{i,j} ,

and thus mr +ms = mr+s. With this observation, we can infer that every row in the matrix

Mn can be expressed as the sum of the rows in mS . In particular, we have∑
x∈S

mx = m11···1 = ~0 .

This causes a linear dependence among the rows of mS . The sum of any nonempty proper

subset of mS , however, results in a row indexed by an n-bit vector z containing at least
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one 0 and one 1, and thus mz cannot be all zeros, which means there is no linear dependence

corresponding to any proper subset of S. It follows that every matrix Mn of the above form

has rank n− 1, and any set of n− 1 rows with indices in S spans all the rows of Mn. 2.

Notice that Lemma 3.3 results in the following corollary as an immediate consequence.

Corollary 3.6 Let {fi,j}1≤i<j≤n be as in Lemma 3.3, and define gi,j := 2fi,j/π for all

1 ≤ i < j ≤ n. Then gi,j ∈ Z for all i < j, and Eq. (8) is equivalent to Mng ≡2
~0, where g is

the column vector with entries gi,j.

Proof of Theorem 1.1: Let Hn be as in Eq. (2). For t > 0, the statement that

Un ∝ e−iHnt is equivalent to the existence of some θ ∈ R such that Vn(t, θ) = Un, where

Vn(t, θ) is defined by Eq. (3). By Lemma 3.2, this in turn is equivalent to Eq. (8), i.e.,∑
i<j : xi 6=xj

fi,j ≡π 0 for all n-bit vectors x, where fi,j := Ji,jt − π/4 for all 1 ≤ i < j ≤ n.

From Lemma 3.3 and Corollary 3.6, Eq. (8) holds if and only if

(i) fi,j ≡π/2 0 (and therefore, letting gi,j := 2fi,j/π, we have gi,j ∈ Z) for all 1 ≤ i < j ≤ n,

and

(ii) Mng ≡2
~0, where g is the

(
n
2

)
-dimensional column vector of gi,j ’s and Mn is as in

Definition 3.4.

Solving for Ji,j in terms of fi,j gives

Ji,j =
fi,j + π/4

t
= (2gi,j + 1)

( π
4t

)
= (2gi,j + 1)J

for all 1 ≤ i < j ≤ n, where we set J := π/(4t) > 0, whence t = π/(4J). Notice that

Ji,j/J = 2gi,j + 1 is an odd integer and

Ji,j
J
≡4

{
1 if gi,j ≡2 0,

3 if gi,j ≡2 1.
(13)

Recall (Lemma 3.5) that the rows of the matrix Mn are spanned by the set S of n-bit

vectors with Hamming weight 1. It follows that the condition Mng ≡2 0 is equivalent to

mxg ≡2 0 holding for all x ∈ S. Fix any r ∈ [n] and let x := x(r) ∈ S be such that xr = 1

and xs = 0 for all s 6= r. Then

mxg ≡2

∑
1≤i<j≤n

(xi + xj)gi,j ≡2

∑
i<r

gi,r +
∑
r<j

gr,j ≡2

∑
i<r : gi,r≡21

gi,r +
∑

r<j : gr,j≡21

gr,j . (14)

Let G be the graph with vertex set [n] where an edge connects vertices i < j iff gi,j is

odd. Then the right-hand side of Eq. (14) is the degree of the vertex r in G. The condition

mxg ≡2 0 is then equivalent to the degree of r being even. Since, r ∈ [n] (and hence x ∈ S)

was chosen arbitrarily, this applies to all the vertices of G. Finally, from Eq. (13) we have for

all i < j that Ji,j/J ≡4 3 if and only if gi,j is odd, and so the theorem follows. 2.

Here is an easy restatement of Theorem 1.1 that avoids graph concepts. (Recall that we

set Jj,i := Ji,j for all i < j.)

Corollary 3.7 Un ∝ e−iHnt for some t > 0 if and only if there exists a constant J > 0 such

that (1.) all Ji,j are odd integer multiples of J , and (2.) for every i ∈ [n],∏
j : j 6=i

Ji,j
J
≡4 1 .
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Furthermore, if t exists, we can set t := π~/4J .

Proof. Fix i ∈ [n]. Given that for all j 6= i, either Ji,j/J ≡4 1 or Ji,j/J ≡4 3, the

product over all such j is congruent to 1 (mod 4) if and only if the latter congruence holds

for an even number of such j. This is the stated condition on the graph in Theorem 1.1. 2.

4 Parity Versus Un

Fix n ≥ 2. Figure 1 gives a quantum circuit Cn implementing the parity gate Pn using a

single Un gate and its inverse U†n, together with H-gates, S-gates, and a single C-NOT-gate.

In this section we briefly describe some related implementations that tighten this result.

First, we observe that U4
n = I for all n, and U2

n = I if n is odd. Thus U†n can be replaced

with U3
n or Un in the circuit Cn, depending on the parity of n. We may also replace the

C-NOT gate in Cn with a U2 gate and some 1-qubit gates: Letting C-Z be the controlled

Pauli z-gate, we have

C-Z = (S† ⊗ S†)U2 = U2(S† ⊗ S†) ,

which allows us to implement Pn by the following circuit, which is a modification of Cn:
n−1 n−1

Un U†n

H Gn H S†

U2

H G†n H

H S† H

Thus Pn can be implemented with at most four Un gates, a single U2 gate, and constantly

many H and S gates.

Conversely, Un can be implemented with two Pn-gates, a few S-gates, and an ancilla qubit.

Let G := S2−n, which is Z, S, I, or S†, as n is congruent to 0, 1, 2, or 3 (mod 4), respectively.

For any x ∈ {0, 1}n, one readily checks that

Un |x〉 ⊗ |0〉 = (Un ⊗ I)(|x〉 ⊗ |0〉) = Pn(G⊗n ⊗ S)Pn(|x〉 ⊗ |0〉) ,

where I is the 1-qubit identity operator.

5 Conclusions and Further Work

We have concentrated on implementing the operator Un, which is constant-depth equivalent

to fanout. Studying Un instead of Fn has two theoretical advantages over Fn: (1) Un is rep-

resented in the computational basis by a diagonal matrix; (2) unlike Fn, which has a definite

control and targets, Un is invariant under any permutation of its qubits, or equivalently, it

commutes with the SWAP operator applied to any pair of its qubits. Are there other such

operators that are both constant-depth equivalent to fanout and implementable by a simple

Hamiltonian?

The Hamiltonian Hn only includes the z-components of the spins. In Heisenberg interac-

tions, the x- and y-components should also be included in the Hamiltonian, so that a pairwise

coupling between spins i and j would be Ji,j(XiXj + YiYj +ZiZj). In [11] it was shown that

these Hamiltonians can also simulate fanout provided all the pairwise couplings are equal.

We believe we can relax the equal coupling restriction for these Hamiltonians as well. One
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could also ask whether the realization of fanout is possible if one requires that the couplings

obey an inverse power law. We will investigate this in a sequel of this paper. (For a preprint,

see [16].)

Finally, the time needed to run our Hamiltonian is inversely proportional to the funda-

mental coupling constant J . If J is small relative to the actual couplings in the system, then

this gives a poor time-energy trade-off and will likely be more difficult to implement quickly

with precision.
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Appendix A The Quantum Circuit for Parity

In this section, we show by direct calculation that the circuit Cn shown in Figure 1

implements the parity gate Pn, for all n ≥ 1. The special case for n ≡ 2 (mod 4) was shown

in [12]. Here, Un is defined by Eq. (1), and

Gn := S1−n =


S if n ≡ 0 (mod 4),

I if n ≡ 1 (mod 4),

S† if n ≡ 2 (mod 4),

Z if n ≡ 3 (mod 4),
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where S is the gate satisfying S |b〉 = ib |b〉 for b ∈ {0, 1}, I is the identity, and Z is the Pauli

z-gate. Note that Gn is chosen so that Gn |b〉 = ib(1−n) |b〉.
Fix any x1, . . . , xn, t ∈ {0, 1}. For convenience, we separate the first n − 1 qubits, which

only participate in Un and U†n, letting ~x := x1 . . . xn−1. We set w := w(~x) = x1 + · · ·+ xn−1
and W := w + xn, the Hamming weight of x1 · · ·xn. We set p := W mod 2, the parity of

x1 · · ·xn, which will be XORed with t in the target qubit. Running the first half of the circuit

starting with initial state |~x〉 |xn〉 |t〉, we have

|~x〉 |xn〉 |t〉
H7−→ 2−1/2 |~x〉 (|0〉+ (−1)xn |1〉) |t〉 = 2−1/2 (|~x, 0〉+ (−1)xn |~x, 1〉) |t〉
Un7−→ 2−1/2

(
iw(n−w) |~x, 0〉+ (−1)xn i(w+1)(n−w−1) |~x, 1〉

)
|t〉

= 2−1/2 iw(n−w) |~x〉
(
|0〉+ in−1−2(w+xn) |1〉

)
|t〉

= 2−1/2 iw(n−w) |~x〉
(
|0〉+ (−1)W in−1 |1〉

)
|t〉

Gn7−→ 2−1/2 iw(n−w) |~x〉
(
|0〉+ (−1)W |1〉

)
|t〉

= 2−1/2 iw(n−w) |~x〉 (|0〉+ (−1)p |1〉) |t〉
H7−→ iw(n−w) |~x〉 |p〉 |t〉 .

At this point, the C-NOT gate is applied, resulting in the state iw(n−w) |~x〉 |p〉 |t⊕ p〉. The re-

maining gates undo the above action on the first n qubits, resulting in the state |~x〉 |xn〉 |t⊕ p〉,
which is the same as Pn applied to the initial state.

Finally, we note that Cn only depends on Un up to an overall phase factor: any gate

Vn ∝ Un can be substituted for Un in the circuit, because any phase factor introduced by

applying Vn on the left will be cancelled when V †n is applied on the right. This fact is, of

course, unnecessary for physical implementation.

Appendix B Implementing Un with Equal Couplings: Proof of Lemma 3.1

In this section, we give an updated proof of Lemma 3.1, which we restate here:

Lemma 5.1 For n ≥ 1, let Hn := J
∑

1≤i<j≤n ZiZj for some J > 0. Then Un = Vn(t, θ)

for some θ ∈ R, where t := π/(4J) and Vn(t, θ) is as in Eq. (3).

Proof. Looking at Eqs. (1) and (3), we see that for t, θ ∈ R, the condition V (t, θ) = Un
is equivalent to

exp

−iθ − i ∑
1≤i<j≤n

Jt(−1)x1+xj

 = iw(x)(n−w(x))

holding for all x ∈ {0, 1}n. Noting that i = eiπ/2 and Jt = π/4 and equating exponents, this

condition becomes

θ +
π

4

∑
1≤i<j≤n

(−1)xi+xj ≡2π −
(π

2

)
w(x)(n− w(x)) (B.1)
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for all x ∈ {0, 1}n (cf. Eqs. (4) and (6)). The sum on the left-hand side becomes

∑
i<j

(−1)xi+xj =
1

2

∑
i 6=j

(−1)xi+xj = −n
2

+
1

2

∑
i

∑
j

(−1)xi+xj = −n
2

+
1

2

(
n∑
i=1

(−1)xi

)2

= −n
2

+
1

2

(∑
i

(1− 2xi)

)2

= −n
2

+
1

2
(n− 2w(x))

2

=
n2 − n

2
− 2w(x)(n− w(x)) .

Substituting this back into Eq. (B.1) satisfies it, provided we set θ := −π(n2 − n)/8. 2.
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