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In this manuscript, we show that it is possible to change the environment Markovian-

ity/memory into non-Markovianity/memoryless, and vice versa. This idea is clarified by

considering a system of a single two level quantum dot interacts locally with a magnetic
field. The Markovianity of the environment depends on whether the coupling between

the two systems is time dependent/independent and whether the systems suffering from
damping or not. The amount of the lost/gained information and its scrambling de-

pends on the energy gap spacing between the levels of the quantum dot, where the

Skew information and the out-of-time ordered are used as quantifiers for both phenom-
ena. Thermally, one can freeze the environment properties to be memory/ memoryless,

where our results show the amount of exchanging information and its scrambling are

constant as the temperature increases.

Keywords: Quantum dot, Scrambling, Markovianity, memoryless.

1 Introduction

Quantum dots systems (QDs) are one of the most important candidates that may be used to

build quantum computer [1, 2]. Moreover, the quantum dot systems are used as a solid state

approach to implement teleportation [3]. Also, it is shown that QDs are considered as respon-

sible qubit systems for encoding quantum information [4–9]. As multi-qubit systems, multi

entangled -quantum dot systems are more powerful than single systems. Therefore various

methodologies have been adopted to preserve the entanglement of the bipartite systems, such

as the quantum zeno effect, or the turing paradox [10,11], decoherence free subspace [12,13],

feed back control [14,15], and dynamical decoupling [16,17].

In reality, any quantum system interacts locally with its surrounding and consequently it

may gain or lose information from this environment. In this context, this interaction is called

Markovian if the information flows in one direction from the system to the environment. In

contrast, it is called non-Markovian, if the information flow back into the system [18]. One of
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the most simplest method for calculating the degree of the Markovianity, is the trace distance

between the initial state and the final state [19–22].

Due to the chaotic, the phenomenon of quantum information scrambling (Qs) may take

place in any physical system. The scrambling degree of the information may be quantified

by a function called, out-of-time ordered correlations (OTOCs) [23]. This function have been

used to quantify the “fast scrambling” governed by universal Lyapunov exponents in the

dynamics of black holes to describe the chaotic systems with holographic duals [24, 25]. In

the context of the Markovian /non-Markovian interactions, the information scrambles in one

or two directions, where information scrambles from the system into its environment, and vis

versa [26–29]. The OTOCs is used to quantify the degree of information scrambling.

Therefore we are motivated to discuss the possibility of changing the Markovianty of an

environment, and its memory/memorless efficiency. Moreover, the amount of scrambling in-

formation between the system and its environment is investigated. This idea is clarified by

assuming a two-level single quantum dot (QD) interacts locally with magnetic field, where

the interaction is considered as non-thermal and thermal. Moreover, the behavior of the-

ses phenomena is studied within/witout damping. The manuscript is designed as following:

in Sec.(2), we describe the system and its evolution for thermal/non-thermal QD system in

the presence/absance of the damping. A mathematical forms are reviewed as; the measure

of Markovianity, the skew information; which represent a quantifier of the gained/lost in-

formation, and the out time function (OTOCT) as measure of scrambling information, are

introduced in Sec.(3). The numerical calculations and description of the behavior of all the

quantifiers are introduced in Sec.(4). Finally, we summarize and conclude our results in

Sec.(5).

2 The system and its evaluation

One of the proposals concerning new solid-state quantum computers (QC) is the possibility

of using quantum dots (QDs). QDs is a semiconductor solid-state complex that behaves in

many ways like an atom, which can be modelled as effective two-level atoms (TLAs). A TLA

is able to describe some phenomena in quantum physics such as photon echoes, self-induced

transparency, mode locking, and optical nutation [30]. The Hamiltonian which describe a

single QD interacts with an electric field consists of two terms; the energy difference between

the excited the ground states, and the interaction between the QD and the electric field.

Mathematically, the total energy of the QD − F system is given by, [31,32]:

H =
h̄ω0

2
σz −

h̄λ(t)

2
(σ+ + σ−), (1)

where ω0 is the energy difference between the ground and excited states, and σz = |0〉 〈0| −
|1〉 〈1|, is the well known Pauli operator, and λ(t) describes the coupling between the field and

the quantum dot, while σ+ = |1〉 〈0| and σ− = |0〉 〈1| are the raising and lowering operators.

1. Non thermal interaction without damping

In this subsection we introduce the time evolution of the QD−F system when the QD

is in its ground state, namely |ψQD(0)〉 =

(
0
1

)
. At any t > 0, the time evolution of
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the quantum dot is given by,

|ψQD(t)〉 = U(t) |ψQD(0)〉 , U(t) = exp[−iHt]. (2)

The density operator of the quantum dot is written in the computational basis as,

ρQD(t) = %11 |0〉 〈0|+ %12 |0〉 〈1|+ %21 |1〉 〈0|+ %22 |1〉 〈1| , (3)

where,

%11 =
φ(t)2

µ(t)2
sin2(µ(t)),

%12 =
−φ(t) sin(µ(t))

2µ2
(tω0 sin(µ(t)) + 2iµ cos(µ(t))),

%21 = %∗12, %22 = cos2(µ(t)) +
t2ω2

0

4µ2
sin2(µ(t)),

(4)

with, µ(t) =
√

1
4ω

2
0t

2 + φ2(t), and, φ(t) =
∫ t
0
λ(t)
2 dt.

For the time independent coupling, namely λ 6= λ(t), the time evolution of the initial

state ψQD(0) is given by ρ̃QD(t), which is similar to that given by (3), but with different

coefficients, where

%̃11 =
λ2

η
sin2(

1

2
tη),

%̃12 =
λ

2η
(iη sin(tη) + ω0(− cos(tη)) + ω0),

%̃21 = %̃∗12, %̃22 =
1

2η
(λ2(1 + cos(tη)) + 2ω2

0), η =
√
λ2 + ω2

0 .

(5)

2. Non thermal interaction within damping

In this case, the master equation which describes the dynamics of the quantum dot state

interact locally with an intensity damping of an environment can be written as,

d<
dt

=
−i
h̄

[H(t),<]− γ

2
(<σ+σ− − 2σ−<σ+ + σ+σ−<). (6)

The dynamics of this system is described by the following four differential equations,

d<11(t)

dt
= −γ<11 −

iλ(t)

2
(<12 −<21),

d<12(t)

dt
= (−γ

2
− iω0)<12 −

iλ(t)

2
(<11 −<22),

d<21(t)

dt
= (−γ

2
+ iω0)<21 −

iλ(t)

2
(<22 −<11),

d<22(t)

dt
= γ<11 −

iλ(t)

2
(<21 −<12).

(7)
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The analytical solution of the system (7) is given by,

<11(t) =
1

2
e−γt(cos(φ) + 1), <12(t) = −1

2
i sin(φ)e−

1
2 t(γ+2iω0),

<22(t) = 1− 1

2
e−γt(cos(φ) + 1), <21(t) = <∗12(t), φ(t) =

∫ t

0

λ(t)dt.

(8)

The details of this solution are given in the appendix(A) [38, 39]. Now, the density

operator of the thermal state <QD can be written as,

<QD(t) = <11 |0〉 〈0|+ <12 |0〉 〈1|+ <21 |1〉 〈0|+ <22 |1〉 〈1| . (9)

For the time independent case, the density operator of the quantum dot system <̃(t) is

similar to (9), where the coefficients are given by,

<̃11(t) = e−γt cos2
(
λt

2

)
, <̃12(t) = −1

2
ie−

1
2 t(γ+2iω0) sin(λt),

<̃22(t) = 1− 1

2
e−γt(cos(λt) + 1), <̃21(t) = ρ∗12(t).

(10)

3. Thermal interaction:

Let us assume that quantum dot is initially prepared in its ground state. By using the

H (1), the final state of the thermal quantum dot is given by,

ρQD(T ) =
1

Z

∑
(exp(

−Ei
T

))|ψi〉〈ψi|, (11)

where, Z = Tr(ρQD(T )) is the partition function and Ei, |ψi〉 , i = 1, 2 are the eigenval-

ues and the eigenvectors of the Hamiltonian (1) which are given by,

E1 = −β
2
, E2 =

β

2
,

|ψ1〉 =
1√

(β − δ)2 + 1
((β − δ)|0〉+ |1〉),

|ψ2〉 =
1√

(−β − δ)2 + 1
((−β − δ)|0〉+ |1〉),

(12)

with β =
√
δ2 + 1, δ = ω0

λ . In the computational basis set, {|0〉 , |1〉}, the state ρT (QD)

may be written as,

ρQD(T ) = κ11 |0〉 〈0|+ κ12 |0〉 〈1|+ κ21 |1〉 〈0|+ κ22 |1〉 〈1| , (13)

where

κ11 =
e

−βη
2 ((β − δ)eβη + β + δ)

2β
, κ12 = ρ21 =

sinh(βη2 )

β
,

κ22 =
δ sinh(βη2 )

β
+ cosh(

βη

2
), Z = 2 cosh(

βη

2
), η =

λ

T
.

Now, we have all the details to investigate the scrambling of information, the skew information,

and behavior of the non-Markovianity.
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3 Markovianity and non-Markovianity

It is well known that, the dynamics of open quantum systems is divided into two different

classes Markovian (memory) and non-Markovian (memoryless). If the properties of the for-

ward behavior of a quantum system are not linked to the past events, then this system is

called Markovian, otherwise it is called non-Markovian [33]. However, for the Markovian

dynamics, the transfers information from the system into its surrounding environment is ir-

reversible. For Markovianity and non-Markovianity behavior of a single QD, we quantify the

amount of information losses via some different measures. Breuer et.al [19] have introduced a

measure of Markovianity based on the assumption that, the trace distance between any two

states decreases monotonically during the evolution. However, non-Markovianity behavior

is displayed when any increasing of the trace distance during the evolution is predicted. In

this context, the Markovianity/non-Markovianity of a pure state is defined by the distance’s

behavior,

D =
√

1−F , F = |〈ψ(0)|ψ(t)〉|, (14)

where F , is the fidelity between the initial state of the quantum dot ψQD(0) and its state

ψQD(t), t > 0 [34].

3.1 Skew information

The skew information Sf is a measure of the local quantum uncertainty, this physical quantity

is invariant under the local unitary operator.

Sf (ρ,K) = −1

2
Tr[
√
ρ,K]2, (15)

where, K is a fixed conserved observable. From this definition,one can say that, the skew

information quantifies the degree of non-commutativity of a state ρ and an observable K.

In other words, it measures the information that contained in a state ρ with respect to a

conserved observable. In particular, if ρ = |ψ〉〈ψ| is a pure state, then the skew information

is the amount of information on the values of observable K [35]. Mathematically, it may be

written as:

Sf (|ψ〉,K) = 〈ψ|K2|ψ〉 − 〈ψ|K|ψ〉2. (16)

3.2 Out-of-Time-Ordered-Correlator function

It is well know that, for open system there is a possibility that quantum system interacts

locally with its surrounding, and consequently the initially localized quantum information

spreads from the system into its environment. The Out-of time-ordered correlators function

(OTOCs) is used to quantify the degree of information scrambling [36]. Consider that, W and

V denote Hermitian or unitary operators defined on the system’s Hilbert space. The OTOC

is defined as [35,37]:

Qs =
1

2
(1− F (t)), F (t) is a real, (17)

where,

F (t) = Tr[W (t)†.V †.W (t).V.ρ]. (18)
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Here W (t) = U(t)†WU(t) is evolved in the Heisenberg picture with the unitary evolution

operator U(t) = e−iĤt. In our numerical calculations, we assume that W = V = σy. The

function F (t) is used to diagnose the scrambling of quantum information and quantifies the

possibility of recovering the information via local operations. The quantum fidelity for a pure

state,

F = |〈ψ(0)|ψ(t)〉|. (19)

4 Numerical results

In this section, we shall investigate the Markovianity of a single quantum dot that is initially

prepared in a ground state. Moreover, scrambling of information from/to the quantum dot is

discussed by considering the behavior of two measures; the information scrambling measure

Qs and the skew information Sf .

1. Non thermal interaction

Fig.(1) displays the behavior of the three quantifiers for a quantum dot interacts non-
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Fig. 1. For the non-thermal interaction and time independent coupling with ω0 = 0.2.(a) The

Markovianity, D, (b) the skew information Sf , and (c) the quantum information scrambling Qs.

The solid, dot and dash-dot curves represent the behavior of the three quantifiers at λ = 0.2, 0.5
and 1, respectively.

thermally with a local magnetic field at different values of the interaction coupling

constant. In this investigation, it is assumed that the energy gap between the excited

and the ground state of the quantum dot, ω0 = 0.2, and several values of the coupling

constant are considered. From Fig.(1a), it is clear that, as soon as the interaction is

switched on, the Markovian behavior is depicted, where it decreases gradually at small

values of the coupling constant. The periodic behavior of Markovianity is displayed

as one increases the coupling constant. The QD losses its Markovianity fast at large

values of the coupling constant. The behavior of the skew information Sf is displayed

in Fig.(1b), where it increases as the interaction time increases. However, the increasing

rate depends on the coupling constant between the QD and the magnetic field. As soon

as the skew information reaches its maximum bound, the QD turns into a completely

mixed state and the Markovianity is maximum, namely, the QD loses a large amount

of its local coded information. The behavior of quantum scrambling of information
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from/into the quantum dot is exhibited in Fig.(1c), where it decreases as the time

increases. This behavior shows that, F (t) increases and consequently the possibility of

Markovianity increases. However, at small values of the coupling, the behavior of Qs
predicates the non-Markovianity.
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Fig. 2. The same as Fig.(1), but λ(t) = t.

The effect of time dependent coupling on the three quantifiers is discussed in Fig.(2),

where we set λ(t) = t and different values of the energy gap parameter ω0. It is clear that,

the oscillatory behavior of Markovianity, skew information are displayed clearly, where

their amplitudes increase as the interaction time increases. However, as it is shown

from Fig.(2a), at large values of ω0, the displayed degree of Markovianity, is smaller

than that shown at large values of ω0. Fig.(2b) shows that, the skew information, Sf
increases gradually as t increases, where the upper bounds are depicted at large values

of ω0. This means that, the a mount of the lost information increases when the gap

between the excited and ground states is small. The degree of scrambling is displayed

in Fig.(2c), where the constant behavior is predicted as the interaction time increases.

However, the oscillation behavior is displaced at a small values of the interaction time,

only at large values of ω0.

From Figs.(1) and (2), it us clear that the three quantifiers depend on the interac-

tion’s strength, whether it is time dependent/independent. The unstable behavior of

the Markovianity is displayed in the presences of time dependent coupling, where the

predicted number of the oscillations are larger than those displayed in the presences of

time independent coupling.

2. Non-thermal interaction with damping

In Fig.(3), we investigate the behavior the Markovianity of the quantum dot system

in the presence of damping. The predicted behavior shows a different features, where

the non-Markovianity increases gradually as the time increases. As it is displayed from

Fig.(3a), the increasing rate depends on the energy gap between the ground and the ex-

ited state of the quantum dot. The oscillation behavior of the Markovianity is displayed

at small values of ω0. However, as the interaction time increases, these oscillations are

frozen and the non-Markovian behavior of the quantum dot is displayed, namely the
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Fig. 3. The same as Fig.(2), but in the presence of damping where we set γ = 0.2 .

forward state of the quantum dot doesn’t depend on its back state. Fig.(3b), shows

that the skew information decreases suddenly as soon as the interaction is switched

on. However, the freezing behavior is predicted as one increases the interaction time or

increasing the gap energy ω0. The degree of scrambling is shown in Fig.(3c), where the

amount of scrambling is very small due to the large difference between the temporary

state of the QD and its initial state. Moreover, the stable behavior is depicted clearly

at large values of the interaction time.

From Figs.(2) and (3), one may conclude that the damping has the ability to change

the Markovian dynamics into non- Markovian ones. Accordingly, the memory and

memoryless properties of the environment may be exchanged.

In Fig.(4), it is assumed that the coupling between the QD system and the magnetic

field is give by λ(t) = et, and different values of the energy gap spacing ω0 are consid-

ered. The general behaviors of the three quantifiers are similar to those are shown in

Fig.(3). From Fig.(4), it is clear that the non-Markovianity increases gradually as the

interaction time increases. The oscillatory behavior with a large amplitude is displayed

at small values of the energy spacing. However, the amplitudes of these oscillations

decrease as the interaction time increases. The quantum dot system reaches its non-

Markovianity at large values of the energy gap spacing between its ground and excited

states. These results are confirmed from the behavior of the skew information that

displayed in Fig.(4b), where Sf decreases as t increases, and the oscillatory behavior is

displayed only at small values of ω0. This means that, the memory environment turns

into memoryless one, where the possibility of exchanging the information is very small.

The behavior of scrambling information that is displayed in Fig.(4c) is similar to that

displayed in Fig.(3c). However, the information scrambling function oscillates faster.

From Figs.(3) and (4), it is clear that the time dependent coupling between the quantum

dot system and its environment may be used to change memory environment into mem-

oryless one. In this case, one can decreases the possibility of exchange the information

between the QD system and its environment. Moreover, as one increases the interaction

the possibility of protecting the local information is improved.
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Fig. 4. The same as Fig.(3), but λ(t) = et.

3. Thermal interaction

Now, it is important to shed the light on the behavior of the three quantifiers on the

thermal interaction. The effect of the coupling constant and the energy spacing ω0

on the Markovianity, skew information, and the quantum scrambling of information

as function on the temperature is displayed in Fig.(5). From Fig.(5a), the distance D
decreases as soon as the interaction is switched on, namely the Markovianity increases.

It is clear that, as one increases the temperature, the degree of Markovianity is frozen.

As it is shown from Fig.(5b), the Skew information exhibits a different behavior, where

it decreases in a small interval of temperature T ∈ [0, 2], namely the amount of the

lost information is small, and depends on the initial coupling constant. However, as the

temperature increases, the exchange rate of information between the QD system and its

environment is stable, and consequently, one can say that the environment is partially

non-Markovian.
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Fig. 5. For the thermal interaction with ω0 = 0.4 and λ = 0.2, 1, 2(a) The Markovianity, D, (b)
the skew information Sf , and (c) the quantum information scrambling Qs. The solid, dot and

dash-dot curves represent the behavior of the three quantifiers at λ = 0.2, 1 and 2, respectively.
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5 conclusion

In this manuscript, we consider a system consists of two level single quantum dot interacts

locally with a magnetic field. It is assumed that, the coupling strength may be time dependent

or independent. Different types of interactions are considered; non-thermal/theramal inter-

action, within and without damping. We discussed three different phenomenon; the Marko-

vianity of the QD system, the skew information, and the information scrambling from/into

the quantum dot.

The effect of coupling constant on the three phenomena is investigated, where the degree

of the Markovianity increases as the coupling constant increases. The oscillatory behavior and

the number of oscillations of the Markovianity of the QD system are displaced at large values

of the coupling constant. The sudden changes between Markovianity and non Markovianity

are depicted periodically, where the large periodic time is shown at small values of the coupling

constant. This means that, the physical property of the environment can be changed suddenly

from memory into memoryless and vis versa. However, this property is discussed when we

consider that the coupling between the two systems is linearly time dependent. Our results

show that, the changing speed from Markovianity into non Markovianity increases, where the

number of oscillations increases. However, the amplitudes of these oscillations depend on the

energy spacing gap between the ground and excited state of the QD system.

The memory and memoryless phenomena of the environment are discussed in the presences

of damping interaction, where we consider either the coupling between the two systems time

dependent or independent. It is shown that, the Markovianity increases as the interaction

time increase, where the increasing rate depends on the value of the coupling constant. The

results reveals a different behavior of the QD Markovianity, when the coupling is time depen-

dent, where the non-Markovianity increases as the interaction time increases. However, the

oscillatory behavior depends on the energy spacing gap between the ground and excited states

of the QD system, as well as the type of the coupling function, where the faster oscillation is

displayed if the coupling constant is given as an exponential function.

The Markovianity of the QD system is discussed when we treat the problem thermally. It

is shown that, in a small range of temperature the Markovianity increases and reaches into

saturating position, where the environment reduces to be partially non-Markovianity as one

increases the temperature.

The rate of exchanging information between the QD system and its environment is quan-

tified by means of the skew information. Our results show that, as the Markovianity increases

the amount of the skew information increases, namely, environment is of a memory type.

The predicted behavior indicates that, the environment turns from memory into memoryless

and vis versa periodically. The coupling between the QD system and its environment plays a

similar role to that shown for Markovianity, where the exchanging information rate decreases

if we consider the coupling is a time dependent.

Similarly, the phenomena of the information scrambling is investigated for different cases.

It is shown that, the energy spacing gap between the ground and excited states and the type

of coupling between the quantum dot and its environment may be used as control parameters

of increasing/ decreasing the coded information from/into the QD system. It is clear that, the

scrambling degree depends on whether the environment is memory or memoryless. However,

one can observe that, there is a possibility of freezing/fix the scrambling process. Moreover, in
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the thermal case, the amount of scrambling information are smaller than those predicted for

the non-thermal case. The stability of scrambling is depicted as one increases the interaction

temperature.

In conclusion, if one consider that the coupling between the QD system and its environ-

ment as time dependent function, one can change the Markovianity property of the environ-

ment. This means that, the environment can be switched between memory and memoryless

types. The used coupling and the energy spacing gap between the levels of the QD system

may be considered as a control parameter to increase/decreases or freezing(fixing) the loses

of the amount of information.
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Appendix A: Solving the system of Eqs.(8)

In this appendix we review the details of solving the system of Eqs.7. In this context, one
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can write the system in a matrix form as [38,39],
Ṙ11

Ṙ12

Ṙ21

Ṙ22

 =


−γ − iλ(t)2

iλ(t)
2 0

− iλ(t)2 −γ2 − iω0 0 iλ(t)
2

iλ(t)
2 0 −γ2 + iω0 − iλ(t)2

γ iλ(t)
2 − iλ(t)2 0



R11

R12

R21

R22

 . (A.1)

The solution of this system takes the form,

R(t) = e
∫
A(t)dtR(0), (A.2)

where,

A(t) =


−γ − iλ(t)2

iλ(t)
2 0

− iλ(t)2 −γ2 − iω0 0 iλ(t)
2

iλ(t)
2 0 −γ2 + iω0 − iλ(t)2

γ iλ(t)
2 − iλ(t)2 0

 , and <(0) =


1
0
0
0

 . (A.3)

∫
A(t)dt =


−γt 0 0 0

0 −γt2 − itω0 0 0
0 0 −γt2 + itω0 0
γt 0 0 0

+


0 − iφ2

iφ
2 0

− iφ2 0 0 iφ
2

iφ
2 0 0 − iφ2
0 iφ

2 − iφ2 0


= A1 +A2, (A.4)

where φ =
∫
λ(t)dt. Now, we can write the solution explicitly as,

R(t) = B1B2R(0), B1 = eA1 = V1J1V
−1
1 ,B2 = eA2 = V2J2V

−1
2 (A.5)

where V1 are the eigenvectors of A1 , and the eigenvalues of the matrix A1 are given by the

set {0,−γt, 12 t(−γ − 4iω0),− 1
2 t(γ − 4iω0)}. Similarly the eigenvectors of the matrix A2 are

described by the matrix V2, while the set of its eigenvalues is {−iφ, iφ, 0, 0}. By using these

the eigenvalues of the matrices A1 and A2, one can evaluate the matrices J1 and J2, where

J1 = eE1I, J2 = eE2I.

V1 =


0 −1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 , J1 =


1 0 0 0
0 e−γt 0 0

0 0 e
1
2 t(−γ−2iω0) 0

0 0 0 e
1
2 t(−γ+2iω0)

 ,

V2 =


−1 −1 1 0
−1 1 0 1
1 −1 0 1
1 1 1 0

 , J2 =


e−iφ 0 0 0

0 eiφ 0 0
0 0 1 0
0 0 0 1

 . (A.6)

After some straightforward calculations, the explicit forms of B1 and B2, are given by,

B1 =


e−γt 0 0 0

0 e
−t
2 (γ+2iω0) 0 0

0 0 e
−t
2 (γ−2iω0) 0

1− e−γt 0 0 1

 , B2 =


cos2

(
φ
2

)
− i

2 sin(φ) i
2 sin(φ) sin2

(
φ
2

)
−i
2 sin(φ) cos2

(
φ
2

)
sin2

(
φ
2

)
i
2 sin(φ)

i
2 sin(φ) sin2

(
φ
2

)
cos2

(
φ
2

)
−i
2 sin(φ)

sin2
(
φ
2

)
i
2 sin(φ) −i

2 sin(φ) cos2
(
φ
2

)

 ,

(A.7)
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where V −11 and V −12 , are the inverse matrices of V1 and V2, respectively. Now, by equations

A.5-A.7, the final solution of the system 7 is given by,

R(t) =


1
2e
−γt(cos(φ) + 1)

− 1
2 i sin(φ)e−

1
2 t(γ+2iω0)

1
2 i sin(φ)e−

1
2 t(γ−2iω0)

1− 1
2e
−γt(cos(φ) + 1)

 . (A.8)


