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Quantum image filtering is an extension of classical image filtering algorithms, which

mainly studies image filtering models based on quantum characteristics. The existing

quantum image filtering focuses on noise detection and noise suppression, ignoring the

effect of filtering on image boundaries. In this paper, a new quantum image filtering

algorithm is proposed to realize the K-nearest neighbor mean filtering task, which can

achieve the purpose of boundary preservation while suppressing noise. The main work

includes: a new quantum compute module for calculating the absolute value of the

difference between two non-negative integers is proposed, thus constructing the quan-

tum circuit of the distance calculation module for calculating the grayscale distance

between the neighborhood pixels and the center pixel; the existing quantum sorting

module is improved to sort the neighborhood pixels with the distance as the sorting

condition, and thus the quantum circuit of the K-nearest neighbor extraction module is

constructed; the quantum circuit of the K-nearest neighbor mean calculation module is

designed to calculate the gray mean of the selected neighbor pixels; finally, a complete

quantum circuit of the proposed quantum image filtering algorithm is constructed, and

carried out the image de-noising simulation experiment. The relevant experimental in-

dicators show that the quantum image K-nearest neighbor mean filtering algorithm has

the same effect on image noise suppression as the classical K-nearest neighbor mean

filtering algorithm, but the time complexity of this method is reduced from O
(
22n

)
of

the classical algorithm to O
(
n2 + q2

)
.

Keywords: Quantum image filtering, Noise suppression, Boundary preservation, Quan-

tum circuit design

1 Introduction

Quantum image processing(QIP) is an emerging interdisciplinary subject that integrates
quantum computing and image processing. The main research contents include quan-
tum image representation and quantum image processing algorithms. Quantum image
representation focuses on the quantum encoding of classical images using quantum prop-
erties, which are mainly divided into the following two categories: (1)Encoding images
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46 Quantum Image K-Nearest neighbor mean filtering

using the angle parameters of quantum bits, including Qubit Lattice [1], FRQI [2], or
QSMC&QSNC [3], etc. This kind of method is a probability model and has certain de-
fects, so these methods cannot retrieve quantum images accurately. (2) Encoding images
using the basis state sequence of qubits, including CQIR [4], NEQR [5], NCQI [6], etc.
These models are widely used because they can make quantum image retrieval more
accurate and they can perform more complex operations on images. Quantum image
processing algorithms mainly study the processing of quantum images based on different
quantum image representation models, such as quantum image geometric transformation
[7], quantum image segmentation [8], quantum image watermarking [9], quantum image
feature extraction [10], quantum image scaling [11], quantum image encryption [12] and
quantum image filtering [13], etc.

As an effective method to suppress image noise, image filtering is a significant pre-
processing step in image processing algorithms such as feature extraction, image seg-
mentation, and edge detection. Quantum image filtering is an extension of the classical
image filtering algorithm. It mainly studies the filtering algorithm based on quantum
images and realizes the acceleration of the classical image filtering algorithm.

Existing quantum image filtering, such as quantum mean filtering, quantum weighted
mean filtering, and quantum median filtering, mainly studies the quantum realization of
classical linear filtering and nonlinear filtering algorithms. It focuses on noise detection
and noise suppression, ignoring the effect of filtering on image boundaries. Boundary-
preserving filters can consider noise suppression and boundary preservation simultane-
ously, such as K-nearest neighbor mean filtering. But no corresponding quantum filtering
has been proposed. In this paper, a quantum image K-nearest neighbor mean filtering
algorithm is proposed, which aims to use quantum computing characteristics to process
the image K-nearest neighbor mean filtering task in parallel and reduce the time com-
plexity. We focused on the detailed quantum circuit design of the four functional modules
of the quantum image K-nearest neighbor mean filtering algorithm (Neighborhood Pixel
Preparation, Distance Calculation, K-nearest Neighbor Extraction and K-nearest Neigh-
bor Mean Calculation). In addition, a quantum implementation method for calculating
the difference between grayscale values is proposed and applied to the construction of the
Distance Calculation module. Furthermore, an improved Sort module is also proposed
and applied to the construction of the K-nearest Neighbor Extraction module.

The organization structure of this paper is as follows: Section 2 introduced the
quantum image representation model NEQR, K-nearest neighbor mean filtering, and
five basic quantum computing modules; In Section 3, the quantum circuits of Distance
Calculation, K-nearest Neighbor Extraction and K-nearest Neighbor Mean Calculation
is designed, and the complete quantum circuit of the proposed algorithm is constructed
in detail; Section 4 analyzed the time complexity of quantum image K-nearest neighbor
mean filtering which reflects the acceleration performance of quantum image filtering; In
Section 5, the effectiveness of K-nearest neighbor mean filtering of the quantum image
is verified by simulation experiments; Section 6 summarized the work of this paper.
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2 Related works

2.1 Quantum filter in QIP

These quantum filters work mainly on various quantum images stored on a quantum com-
puter. In the frequency domain, [13] and [14] proposed two filtering algorithms based
on quantum Fourier transform, respectively; the former works on quantum grayscale im-
ages, and the latter works on quantum color images. In the spatial domain, [15] and [16]
proposed a general quantum image linear filtering model, which can realize the linear
filtering of different masks. [17] carried out a quantum implementation of a Gaussian
filtering process in weighted mean filtering but did not use quantum superposition states
to process the filtering task in parallel. [18], [19] and [20] mainly designed quantum
circuits around nonlinear median filtering. The former mainly focused on realizing me-
dian filtering, while the latter two improved it to enhance the filtering effect by adding
different noise detection modules. Moreover, [21] proposed a quantum image midpoint
filter that integrates nonlinear and linear filtering, which has a good suppression effect
on Gaussian noise.

2.2 Quantum filter in QNN

The quantum filter in the field of quantum machine learning is mainly used to replace
the convolution layer in the classical neural network. This quantum-classical hybrid
computing method is used to accelerate the classical machine learning algorithm. In
[22], A new type of quantum convolution conversion layer is proposed, which uses a fixed
quantum filter to replace the classical filter, and has higher test accuracy. In addition,
[23] proposed a new type of quantum variational filter. The filter only needs to replace
the scalar product with the quantum product, which can be combined with the classical
neural network to achieve the purpose of training the neural network on the quantum
computer. Compared with the fixed filter of the former, the variational filter can perform
training similar to the classical neural network in the hybrid quantum neural network,
expanding the trainability of quantum machine learning.

2.3 The NEQR image representation model

Zhang proposed a NEQR image representation model in [5]. The NEQR model uses the
qubit basis sequence to store the grayscale value and position information. Compared
to the use of amplitude angle storage grayscale information, the NEQR model can easily
make more quantum image processing algorithms and can be accurately retrieved. The
NEQR model can be represented by Eq. (1) for an image having a size of 2n × 2n and
the grayscale range [0, 2q−1].

|I〉 =
1

2n

2n−1∑
Y =0

2n−1∑
X=0

|CY X〉 |Y 〉|X〉 =
1

2n

2n−1∑
Y =0

2n−1∑
X=0

⊗q−1
i=0

∣∣Ci
(Y,X)

〉
|Y 〉|X〉 (1)

In Eq. (1),
∣∣C(Y,X)

〉
represent the grayscale value of images, and |Y 〉|X〉 represent the

pixel position information in vertical and horizontal directions, respectively. Fig. 1 gives
an example of the NEQR representation of a 2× 2 grayscale image.
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Fig. 1. A 2脳2 grayscale image and its NEQR representation

2.4 K-nearest neighbor mean filtering

K-nearest neighbor mean filtering is a representative boundary preserving filtering. For
each filter window, it identifies the K pixels closest to the grayscale value of the processing
pixel and replaces the original pixel with the average of K pixels. If the processing pixel is
a non-noise point, the grayscale value of the same region can be obtained by calculating
the grayscale value mean of the K-nearest pixels, which maintains the pixel definition. If
the processing pixel is a noise point, the smoothing process can suppress noise because
of its relatively isolated state from the surrounding pixels. In addition, the K-nearest
neighbor mean filtering has the advantage of statistical sorting filters and linear filters,
which has a good suppression effect on multiple noises, suitable for image denoising in
the case of mixing noise.

The key to the boundary preserving filtering is to determine the boundary point
and the non-boundary point. As shown in Fig. 2, pixel 1 was the boundary point of the
dark area, while pixels in the filtered window contained both light and dark areas. In
this filter window, K = 4 points that are closest to the grey value of pixel 1 are selected
for calculation, which avoids the aliasing averaging of the information of two areas and,
in this way, achieves the goal of protecting the boundary.

Fig. 2. Schematic diagram of K-nearest neighbor mean filtering

2.5 Basic quantum modules

In this section, we will briefly introduce five quantum computing modules and their quan-
tum circuits, including Swap module, Cyclic shift module, Adder module, Comparator
module, and Division-by-two module. These basic quantum computing modules can help
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us construct more complex quantum function modules.

2.5.1 Swap module

The function of the Swap module is to exchange qubit sequences representing different
information, which is composed of quantum Swap gates. In quantum image filtering,∣∣C(Y,X)

〉
and

∣∣C(Y ′,X′)

〉
, which represent two different grayscale values, are processed by

the Swap module, and the grayscale information will be exchanged with each other. Fig.
3 shows the quantum circuit of the module and its schematic diagram.

Fig. 3. Quantum circuit of the Swap module

2.5.2 Cyclic shift module

The function of the Cyclic shift module is to move the entire image in different directions
as a whole, which is a commonly used in the operation of an image. To obtain the
grayscale information of the neighboring pixels, we need to use these four modules:
CSX+, CSX−, CSY + and CSY− [7]. The definitions of these four modules are shown in
Eq. (2).

CSX+|I〉 =
1

2n

2n−1∑
Y =0

2n−1∑
X=0

∣∣C(Y,X′)

〉
|Y 〉 |(X + 1) mod 2n〉

CSX−|I〉 =
1

2n

2n−1∑
Y =0

2n−1∑
X=0

∣∣C(Y,X′)

〉
|Y 〉 |(X − 1) mod 2n〉

CSY +|I〉 =
1

2n

2n−1∑
Y =0

2n−1∑
X=0

∣∣C(Y ′,X)

〉
|(Y + 1) mod 2n〉 |X〉

CSY−|I〉 =
1

2n

2n−1∑
Y =0

2n−1∑
X=0

∣∣C(Y ′,X)

〉
|(Y − 1) mod 2n〉 |X〉

(2)

The quantum circuit of the CSX+ and CSX− is shown in Fig. 4. Similarly, quantum
circuits of CSY + and CSY− can be formed by replacing the inputs |X〉 of CSX+ and
CSX− with |Y 〉.
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Fig. 4. Quantum circuit of the CSX+ module and CSX− module

2.5.3 Adder module

The function of the Adder module is to add two non-negative integers. This paper uses
the Adder module proposed by Steven et al. [24] for mean calculation. This Adder mod-
ule is composed of two sub-modules, UMA and MAJ. Fig. 5 shows the quantum circuit
of the N-bit Adder module.The n-bit Adder module has two inputs a = an−1an−2 . . . a0

and b = bn−1bn−2 . . . b0, and also requires two auxiliary qubits c0 = |0〉 and z = |0〉. It
has three outputs s = sn+11sn . . . s0, b and sn, where s is the sum of the binary sequence
a and b, and sn is the highest carry of s.

Fig. 5. Quantum circuit of the the n-bit Adder module
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2.5.4 Comparator module

The function of the Comparator module is conditional judgment. In this paper, the
Comparator module designed by Xia et al. [25] is used in the K nearest-neighbor pixel
extraction circuit. The Comparator module was designed based on the Adder model. The
difference is that the Comparator module replaces MAJ and UMA with CGC and ICGC,
where ICGC is a reversible circuit of CGC to ensure that the quantum state of the input
will be reserved. Fig. 6 shows the quantum circuit of the N-bit Comparator module. The
N-bit Comparator module has two inputs a = an−1an−2 . . . a0 and b = bn−1bn−2 . . . b0,
and requires two auxiliary qubits c0 = |0〉 and z = |0〉; it has three outputs a, b and cout,
where cout is the comparison result of the binary sequence a and b. If cout = 0, it means
a ≥ b; otherwise, it means a < b .

Fig. 6. Quantum circuit of the n-bit Comparator module

2.5.5 Division-by-two module

The function of the Division-by-two module is to perform the division-by-two operation
on non-negative integers. In this paper, the Division-by-two module in [17] is used in
the mean calculation. It adds a |0〉 auxiliary qubit to move the lowest position of the
non-negative integer to |0〉, and uses a set of Swap gates to move the |0〉 to the highest
position to complete the non-negative integer division by two. Fig. 7 presents the detailed
quantum circuit. It should be noted that the Division-by-two module will have an error of
0.5 in the division-by-two operation for odd numbers, but it does not affect the calculation
of the grayscale value.
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Fig. 7. Quantum circuit of the Division-by-two module

3 Proposed quantum image filtering

The quantum image K-nearest neighbor mean filtering includes four functional modules:
neighborhood pixels preparation module, distance calculation module, K-nearest neigh-
bor extraction module, and K-nearest neighbor mean calculation module. In this section,
we first designed the quantum circuit for these four quantum functional modules in detail
and then analyzed the complete filtering process and the corresponding quantum state of
the proposed quantum filtering algorithm step by step. Finally, the complete quantum
circuit for quantum image K-nearest neighbor mean filtering is constructed. It should
be noted that the processed object is a 2n × 2n quantum greyscale image based on the
NEQR model, and the grayscale range is [0, 2q−1], and the filtering window is 3× 3.

3.1 Neighborhood pixels preparation module

The function of this module is to bind the grayscale information of the neighboring
pixels and the central pixel to the same quantum state for further computing operations.
The advantage of this image preparation method is that there is no need to prepare
multiple identical quantum images, which can reduce the cost of qubits. Similar to the
neighborhood preparation method proposed by Abdalla et al. [21], we need to prepare
8q qubits to initialize to the |0〉 state.

In this module, 2n+q qubits are used to store the position information and grayscale
information of the original image, and prepared 8q qubits are used to store the grayscale
information of eight neighboring pixels. For preparing the neighborhood pixels, the
Cyclic shift module is used to obtain the position information of the neighborhood pixels;
the NEQR color setting operation (excluding the H gate) is used to bind the grayscale
value of this position to the center pixel. Eq. (3) represents the quantum state after
the preparation of the image and neighborhood pixels. It shows that the neighborhood
pixels share a pair of qubits representing the position with the center pixel. Fig. 8 shows
a specific quantum circuit.

|I〉 = |0〉⊗8q 1

2n

2n−1∑
Y =0

2n−1∑
X=0

|Cneighbor 〉⊗8q
∣∣C(Y,X)

〉
|Y 〉|X〉 (3)
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Fig. 8. Quantum circuit of the theneighborhood pixels preparation module

3.2 Distance calculation module

The K-nearest neighbor mean filtering needs to calculate the distance between the neigh-
bor pixel and the center pixel as a condition for finding the K-nearest neighbor, which
means that the absolute value of the difference between two non-negative integers needs
to be calculated, as shown in Eq. (4).

|d〉 = |Cneighbor − Ccentral| (4)

In general, we can first use the Comparator module to judge the size of two grayscale
values, and then subtract the smaller value from the larger grayscale value, so that the
output result is positive. This operation requires a Comparator and two Controlled
Adder modules, which have high time complexity. We accomplish the same calculation
by adding two sign bits and a controlled CSX+ module, avoiding the extra Comparator
module overhead and reducing the number of quantum gates. Algorithm 1 shows the
specific calculation process. Fig. 9 shows the quantum circuit of the absolute value of
the difference between two numbers calculation module (ADC). This module uses the
quantum inverse circuit of the Adder module to perform the subtraction of integers.

The input of this module is a = an−1an−2 . . . a0, b = bn−1bn−2 . . . b0, and a sequence
of |0〉 qubits ready to store |a − b|, and two sign bits sa and sb added to a and b in
advance. In this module, a set of C-NOT gates is applied to |b〉 to copy its quantum state
to |0〉⊗n, then it input a and b into the inverse circuit of the Adder module to perform
the subtraction. If a ≥ b, according to the function of the Adder module, the quantum
state of |a〉 remains unchanged, and the result after subtraction is the absolute value of
the difference between two non-negative integers, which is stored in |b〉; Otherwise, |b〉
stores the complement code of the absolute value. According to the complement code
principle, a set of C-NOT gates and a controlled CSX+ module is added in the quantum
circuit to ensure that |b〉 stores the absolute value. At this time, if the quantum state
of |sb〉 is set to |1〉, then C-NOT gates will flip all the quantum states of |b〉, and use
the CSX+ module to add one to the flipped qubits to obtain the absolute value of the
difference between the two numbers. At last, a set of Swap gates are used to restore the
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Algorithm 1 Calculate d = |a− b|.
Input: Give two sequences of integers, a sequence of distance, and two auxiliary qubits:

a = an−1an−2 . . . a0,

b = bn−1bn−2 . . . b0,

|d〉 = |0〉⊗n, |0〉⊗2

Output: The absolute value of the difference between two integers |d〉
Step1: Copy the information of |b〉 to |d〉 through the C-NOT gate:

|I〉 = Copy
(
|0〉⊗n|b〉

)
|0〉 ⊗ |a〉|0〉

= |b〉 ⊗ |b〉|0〉 ⊗ |a〉|0〉

Step2: Calculate the absolute value of the difference between two integers:

if a ≥ b then

b⇐ QADD−1(a,b)

else

b⇐ QADD−1(a,b) + 1

end if

Step3: Exchange the information of |b〉 and |d〉 with each other:

|J〉 = Swap(|b〉|d〉)|0〉 ⊗ |a〉|0〉

= |d〉 ⊗ |b〉 ⊗ |a〉

return |d〉
⊗
|b〉
⊗
|a〉;

information of |b〉 and store the calculated value on |0〉⊗n.

With the above module, the grayscale distance between all neighboring pixels and
the central pixel can be calculated, and then we can design the quantum circuit of the
distance calculation module, as shown in Fig. 10. In this module, 8q qubits initialized
to |0〉 need to be prepared to store the distance between the neighborhood pixel and the
central pixel, and Eq. (5) shows the quantum state |I〉 at this time.

|I〉 = |0〉⊗8q ⊗ 1

2n

2n−1∑
Y =0

2n−1∑
X=0

|Cneighbor 〉⊗8q
∣∣C(Y,X)

〉
|Y 〉|X〉 (5)

In addition, this module needs eight of the above modules to calculate the distance of the
neighborhood pixels from the center pixel. For these sub-modules, |Ccentral〉 is the first
input of each module, and |Cother〉 is the second input in turn. Besides, the prepared 8q
qubits also need to be input into these sub-modules equally. Finally, the quantum state



Jingke Xi and Shukun Ran 55

Fig. 9. Quantum circuit of the ADC module

|J〉 shown in Eq. (6) can be obtained.

|I〉 =
1

2n

2n−1∑
Y =0

2n−1∑
X=0

|dneighbor 〉⊗8q |Cneighbor 〉⊗8q
∣∣C(Y,X)

〉
|Y 〉|X〉 (6)

3.3 K-nearest neighbor extraction module

Sorting neighborhood pixels in the order of nearest to farthest distance is a key step in
K-nearest neighbor mean filtering for quantum images, which determines the extraction
of K-nearest neighbor pixels. The Sort module proposed by Li et al. [18] is to sort two
numbers, that is, use a Comparator module to compare the input |a〉 and |b〉, and perform
an ascending operation on |a〉 and |b〉 according to the comparison result. In the process
of extracting the K-nearest neighbor, we need to use the distance between the neighbor
pixels and the center pixel as the sorting condition. Therefore, this paper improved the
Sort module that conforms to this model. As shown in Fig. 11, a Comparator module
is used to compare |x〉 and |y〉, and based on the comparison result, pair (|a〉,|b〉) and
(|x〉,|y〉) perform the swap operation simultaneously.

Based on the improved Sort module and the principle of bubble sorting, the K-
nearest neighbor extraction module is designed in detail. The quantum circuit of this
module is shown in Fig. 12. The module consists of 28 Sort modules, whose input includes
the grayscale value of neighborhood pixels and the corresponding distance. After bubble
sorting, the qubits of the storage distance will be sorted in ascending order, and the
grayscale information will also be moved to the corresponding qubit position. So far, it
is only necessary to select K pixels from top to bottom in order, that is, the extraction
of K-nearest neighbor is completed.
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Fig. 10. Quantum circuit of the distance calculation module

Fig. 11. Quantum circuit of the Sort module
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3.4 K-nearest neighbor mean calculation module

The function of the K-nearest neighbor mean calculation module is to calculate mean of
the K-nearest neighbors, which determines the filtering effect. The module first expands
the grayscale value using |0〉⊗4k qubits to prevent overflow, then uses K − 1 Adder
modules to sum the grayscale value of K-nearest neighbors and stores the result at the
K-neighbor pixel location. Let Ui denote the unitary matrix of the Adder module in the
Hilbert space, |Ck〉|Ck−1〉 . . . |C2〉|C1〉 denote the extended K-nearest neighbors, then the
calculation step is as shown in Eq. (7).

QADD (|Ck〉 |Ck−1〉 . . . |C2〉 |C1〉) = U⊗k−1
i |Ck〉 |Ck−1〉 . . . |C2〉 |C1〉

= |Csum 〉
∣∣C ′k−1

〉
. . . |C ′2〉 |C ′1〉

(7)

Next, it is necessary to divide |Csum〉 by K to complete the calculation of the mean value.
Due to the high time complexity of the existing quantum divider, this module selects
the Division-by-two module to complete K = 2i(i = 0, 1, 2), such as K = 4. Let Uj

denote the unitary matrix of the Division-by-two module in the Hilbert space, then the
calculation step is as shown in Eq. (8).

QDIV
(
|Csum 〉

∣∣C ′k−1

〉
. . . |C ′2〉 |C ′1〉

)
= U

⊗ k
2

j |Csum 〉
∣∣C ′k−1

〉
. . . |C ′2〉 |C ′1〉

= |Ck− mean 〉
∣∣C ′k−1

〉
. . . |C ′2〉 |C ′1〉

(8)

The specific quantum circuit is shown in Fig. 13.

Fig. 13. Quantum circuit of the K-nearest neighbor mean calculation module

3.5 Detailed analysis of the proposed filtering

In this section, the proposed quantum filtering process is analyzed step by step. Then
the proposed functional module is used to design the complete quantum filtering circuit.
The steps are as follows:
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Step1: Prepare an original image, that is, the quantum image preparation module based
on the NEQR model prepares the classical image into the corresponding quantum
state, and prepares 16 initial qubit sequences |0〉⊗q. Eq. (9) gives the quantum
state after |I〉 preparation.

|I〉 = |0〉⊗8q ⊗ |0〉⊗8q ⊗ 1

2n

2n−1∑
Y =0

2n−1∑
X=0

∣∣C(Y,X)

〉
|Y 〉|X〉 (9)

Step2: Prepare neighborhood pixels, that is, the neighborhood pixels preparation module
is used to obtain the grayscale information of the neighborhood pixels and store
them on |0〉⊗8q. At this time, the neighborhood pixels and the central pixel share
the same pair of qubit sequences |Y 〉|X〉 for storing position information. Eq.
(10) gives the quantum state after this step |J〉.

|J〉 = |0〉⊗8q ⊗ 1

2n

2n−1∑
Y =0

2n−1∑
X=0

∣∣C(Y−1,X+1)

〉 ∣∣C(Y−1,X)

〉 ∣∣C(Y−1,X−1)

〉 ∣∣C(Y,X−1)

〉∣∣C(Y +1,X−1)

〉 ∣∣C(Y +1,X)

〉 ∣∣C(Y +1,X+1)

〉 ∣∣C(Y,X+1)

〉∣∣C(Y,X)

〉
|Y 〉|X〉

(10)

Step3: Calculate distance, that is, the remaining |0〉⊗8q and the set of neighbor pixels
is input into the distance calculation module. After calculating the distance
between all the neighbor pixels and the center pixel, the distance information will
be stored in these eight |0〉⊗q qubit sequences. Eq. (11) gives the quantum state
|K〉 processed by the distance calculation module.

|K〉 =
1

2n

2n−1∑
Y =0

2n−1∑
X=0

∣∣d(Y−1,X+1)

〉 ∣∣d(Y−1,X)

〉 ∣∣d(Y−1,X−1)

〉 ∣∣d(Y,X−1)

〉∣∣d(Y +1,X−1)

〉 ∣∣d(Y +1,X)

〉 ∣∣d(Y +1,X+1)

〉 ∣∣d(Y,X+1)

〉∣∣C(Y−1,X+1)

〉 ∣∣C(Y−1,X)

〉 ∣∣C(Y−1,X−1)

〉 ∣∣C(Y,X−1)

〉∣∣C(Y +1,X−1)

〉 ∣∣C(Y +1,X)

〉 ∣∣C(Y +1,X+1)

〉 ∣∣C(Y,X+1)

〉∣∣C(Y,X)

〉
|Y 〉|X〉

(11)

Step4: Extract K-nearest neighbors, that is, the distance and grayscale value is input
into the K-nearest neighbor extraction module. The Comparator module and the
Swap module will sort the grayscale values in ascending order of distance. Eq.
(12) gives the quantum state |L〉 processed by the K-nearest neighbor extraction
module.

|L〉 =
1

2n

2n−1∑
Y =0

2n−1∑
X=0

|d〉⊗8 |C8〉 |C7〉 |C6〉 |C5〉 |C4〉 |C3〉 |C2〉 |C1〉 |C0〉 |X〉‖Y 〉 (12)

The nearest neighbor pixel sequence |C8〉 . . . |C2〉|C1〉is the nearest neighbor pixel
to the farthest neighbor pixel from right to left. |d〉⊗8 represents an ascending
sequence of distances.
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Step5: Calculate mean value, that is, |Ck〉 . . . |C2〉|C1〉 is input into the K-nearest neigh-
bor mean calculation module to calculate its mean, and the calculation result
|Ck−mean〉 will be saved on |Ck〉.

Step6: Replace center pixel, that is, the Swap module is used for replacing |Ck−mean〉
with |C(Y,X)〉, Eq. (13) gives the output quantum state |I ′〉.

|I ′〉 =
1

2n

2n−1∑
Y =0

2n−1∑
X=0

∣∣C ′(Y−1,X+1)

〉 ∣∣C ′(Y−1,X)

〉 ∣∣C ′(Y−1,X−1)

〉 ∣∣C ′(Y,X−1)

〉∣∣C ′(Y +1,X−1)

〉 ∣∣C ′(Y +1,X)

〉 ∣∣C ′(Y +1,X+1)

〉 ∣∣C ′(Y,X+1)

〉
|Ck−mean〉 |Y 〉|X〉

(13)

Step7: Finally, the quantum image can be retrieved or directly used as the input of other
quantum image algorithms.

The complete quantum circuit for quantum image K-nearest neighbor mean filtering is
shown in Fig. 14.

Fig. 14. The complete circuit of proposed quantum image filtering

4 Time complexity analysis

The time complexity of the quantum algorithm is correlated with the number of quantum
gates used in the quantum circuit. According to the calculation method proposed in [26],
we calculate the time complexity of the entire algorithm from bottom to top.

• Swap module. This module has q Swap gates (q refers to the number of qubits
representing the greyscale information). A Swap gate can be composed of three
C-NOT gates. Therefore, the time complexity of the Swap module is O(3q).
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• Cyclic shift module. The time complexity of this module is O(n2) given in [7].
• Adder module. This module has two sub-modules, UMA and MAJ. Both UMA

and MAJ can be split into two C-NOT gates and one Toffoli gate. For the input of
q-bit qubit sequences, this module needs to use q pairs of UMA and MAJ modules
and one C-NOT gate. Its time complexity is O(14q + 1).
• Comparator module. This module uses the CGC and ICGC modules. Like the

Adder module, the time complexity is O(14q + 1).
• Division-by-two module. The q-bit Division-by-two module has two C-NOT

gates and q − 1 Swap gates. Its time complexity is O(3q − 1).
• ADC module. This module consists of a (q + 1)-bit subtractor (obtained by the

inverse operation of the Adder module), 2q C-NOT gates, q Swap gates, and one
q-bit Cyclic shift module, and its time complexity is O(14(q+1)+1+2q+3q+q2) =
O(q2 + 19q + 15).
• Sort module. It consists of a q-bit Comparator module and two q-bit Swap

modules, and its time complexity is O(20q + 1).

In Fig. 17, the quantum circuit of the proposed method includes a total of ten Cyclic
shift modules, eight ADC modules, twenty-eight Sort modules, k−1 Adder modules, and
log2 k,(k=2,4,8) Division-by-two modules. Therefore, the total time complexity does not
exceed O(10n2 + 8(q2 + 19q + 15) + 28(20q + 1) + (k − 1)(14q + 1) + log2 k(14q + 1)) ≈
O(n2 + q2). The corresponding classical filtering algorithm needs to process each pixel
individually, and its time complexity does not exceed O(22n). It can be seen that the
time complexity of our proposed quantum image filtering algorithm is only a second-order
polynomial function of n. Therefore, our proposed quantum image filtering algorithm
highly reduces the time complexity of classical filtering tasks.

5 Simulation experiments and analysis

The number of available qubits of the existing programmable quantum computer is not
enough to realize the proposed quantum image filtering algorithm. We use classical
computer simulation to complete the quantum image K-nearest neighbor mean filtering,
and the experimental environment is supported by MATLAB R2014b. In the numerical
simulation experiment, we selected the five 512R512 test images shown in Fig. 15 for
image processing, and the grayscale range is [0, 27].

Firstly, salt and pepper noise with a density of 0.1 and Gaussian noise with a mean
value of 0 and variance of 0.01 are added to the original image respectively, and then the
above gray image is filtered by quantum K-nearest neighbor mean filter and corresponding
classical filtering when K = 4 and the filter window is 3×3. Fig. 16 and Fig. figfig17 show
the effects of different filtering algorithms on images contaminated by salt and pepper
noise and Gaussian noise, respectively. As can be seen in Fig. 16, the quantum image
filtering algorithm proposed in this paper can significantly filter salt and pepper noise,
protect the boundaries of the image, and improve clarity.

The above is based on the intuitive effect of human vision that is not necessarily able
to distinguish specific details. Next, we analyze the noise reduction performance of the
quantum image K-nearest neighbor filtering proposed from the aspect of image quality
by calculating the peak signal-to-noise ratio PSNR of the original image and the denoised
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(a) Lenna (b) Boat (c) Babara (d) Baboon (e) Goldhill

Fig. 15. The complete circuit of proposed quantum image filtering

image. Peak Signal-to-Noise Ratio (PSNR) is a commonly used measure of image quality
in image processing. It is based on the grayscale value of image pixels to analyze the
effect before and after image processing. Eq. (14) gives the calculation method of PSNR.

PSNR = 10 log10

(
2552

1
22n

∑2n

i=0

∑2n

j=0 [I0(i, j)− IP (i, j)]
2

)
(14)

In Eq. (14), IO and IP represent the original image and the processed image, respectively,
and Table 1 gives the PSNR data of the five color images before and after the experiment.

In Table 1, Pi(i = 0, 1, 2) represents the PSNR value calculated by the noise image,
the image after the quantum filtering proposed, and the image after the correspond-
ing classical filtering. After the quantum filtering proposed in this paper processes the
salt and pepper noise image with a noise density of 0.1, the average PSNR value in-
creases by 11.2785db, while the classical scheme increases by 10.9072db. The difference
is only 0.3713db. After the quantum filtering deals with the image polluted by Gaussian
noise with a mean value of 0 and variance of 0.01, the average PSNR value increases
by 3.8887db, while the classical scheme increases by 3.8518db. The difference is only
0.0369db. It shows that the quantum image filtering proposed in this paper has a very
obvious effect on the salt and pepper noise of the image, and also has a certain suppression
effect on the Gaussian noise.

The reason for the above results is that the filtering scheme proposed in this paper
inherits the advantages of the statistical sorting filter and the linear filter. The gray
average of the K-nearest neighbor of the central pixel can effectively filter out the extreme
value of pixels generated by the salt and pepper noise. At the same time, because the K-
nearest neighbor belongs to the same region, it can ensure that the edge pixels are still in
the region after processing, which can preserve the boundary point. For images polluted
by Gaussian noise, the Gaussian noise is distributed on each pixel. The filtering scheme
proposed in this paper selects K-neighbor pixels for the gray average, which can also
suppress the Gaussian noise to a certain extent. However, because not all neighborhood
pixels are selected, the Gaussian noise suppression effect will be reduced to a certain
extent compared with the weighted mean filter.

Compared with the classical K-nearest neighbor filtering, the quantum filter pro-
posed in this paper has basically the same PSNR value after processing the same image.
The reason for the slight difference is that the Cyclic shift module used in this paper
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(a-1) (b-1) (c-1) (d-1) (e-1)

(a-2) (b-2) (c-2) (d-2) (e-2)

(a-3) (b-3) (c-3) (d-3) (e-3)

Fig. 16. The effect of salt and pepper noise pollution and filtering, where (a-1, b-1, c-1, d-1, e-1)

is the image after adding salt and pepper noise with a density of 0.1, (a-2, b-2, c-2, d-2, e-2) is

the image processed by the classical K-nearest neighbor mean filtering, (a-3, b-3, c-3, d-3, e-3) is

the image processed by the proposed method.
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can fill the edge pixels of the images, and then can filter the edge pixels, while the
corresponding classical filtering generally does not process the edge pixels.

(a-1) (b-1) (c-1) (d-1) (e-1)

(a-2) (b-2) (c-2) (d-2) (e-2)

(a-3) (b-3) (c-3) (d-3) (e-3)

Fig. 17. The effect of Gaussian noise pollution and filtering, where (a-1, b-1, c-1, d-1, e-1) is the

image after adding Gaussian noise with a mean value of 0 and variance of 0.01, (a-2, b-2, c-2,

d-2, e-2) is the image processed by the corresponding classical filtering, (a-3, b-3, c-3, d-3, e-3)

is the image processed by the proposed method.

6 Conclusion and future work

As an emerging interdisciplinary subject integrating quantum computing and image pro-
cessing, quantum image processing can make full use of the excellent acceleration char-
acteristics of quantum computing and will have a profound impact on image process-
ing. This paper studied the boundary-preserving filtering based on quantum images and
proposed a quantum image K-nearest neighbor mean filtering. And we designed the
quantum circuit of the distance calculation module, the K-nearest neighbor extraction
module, and the K-nearest neighbor mean calculation module. Then the time complexity
of the proposed quantum algorithm is analyzed, and the time complexity is calculated
to be O(n2 + q2), which verifies the acceleration performance of the quantum algorithm.
Finally, we carried out a simulation experiment. The relevant indicators show that the
quantum image K-nearest neighbor mean filtering has the same effect as the classical
K-nearest neighbor mean filtering. However, due to the properties of quantum superpo-
sition and quantum entanglement, in terms of processing speed and efficiency of image
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filtering, quantum image K-nearest neighbor mean filtering is better than classical K-
nearest neighbor mean filtering.
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