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Quantum phase estimation algorithm (PEA) is one of the most important algorithms

in early studies of quantum computation. However, we find that the PEA is not an
unbiased estimation, which prevents the estimation error from achieving an arbitrarily

small level. In this paper, we propose an unbiased phase estimation algorithm (UPEA)
based on the original PEA. We also show that a maximum likelihood estimation (MLE)

post-processing step applied on UPEA has a smaller mean absolute error than MLE

applied on PEA. In the end, we apply UPEA to quantum counting, and use an additional
correction step to make the quantum counting algorithm unbiased.
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1 Introduction

Early quantum algorithms are mostly based on two algorithms, the Grover’s search algo-

rithm [1] and the quantum Fourier transformation (QFT) [2, 3]. The quantum phase esti-

mation algorithm (PEA) [2] is one of the most important applications of QFT, as well as

a key for many other quantum algorithms, such as the quantum counting algorithm [4] and

the Shor’s integer factorization algorithm [3]. The PEA based order finding sub-procedure is

considered as the source of the exponential speedup of the Shor’s algorithm.

Though PEA was proposed over 20 years ago, it is still a research hotspot in recent

years [5, 6, 7]. Phase estimation has also given rise to a more general topic, the amplitude

estimation [8, 9, 10, 11, 12, 13], including maximum likelihood amplitude estimation [10],

iterative amplitude estimation [12] and variational amplitude estimation [13]. Besides, the

iterative phase estimation algorithm (IPEA) [14, 15, 16] is a more NISQ(noise-intermediate

scale quantum)-friendly variant for PEA. With a certain stretagy of selecting ϕ, IPEA is

identical to PEA [14], so we do not discuss IPEA in this paper. The phase estimation and

amplitude estimation have a wide range of applications like quantum chemistry [17, 18, 19]

and machine learning [20, 21].

Given a quantum circuit that performs unitary transformation U , and an eigenstate |ψ⟩
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of U such that

U |ψ⟩ = e2πiφ |ψ⟩ , (1)

the phase estimation algorithm (PEA) [2] provides an efficient way to estimate φ. The QFT-

based form of PEA [2, 3] uses the circuit shown in FIG. 1.

|0⟩ H •

QFT†
...

...
...

|0⟩ H •

|0⟩ H •

|ψ⟩ /n U U2 U2t−1

Fig. 1. The quantum circuit of PEA.

Let the integer-encoded measurement result be s, then

φ̃ =
s

T
(2)

is an estimation of φ, where T = 2t, and t is the number of qubits involved in QFT in FIG. 1.

The result obeys the following distribution [22],

PPEA(φ̃|φ) =
(
sin(Tπ(φ̃− φ))

T sin(π(φ̃− φ))

)2

, φ̃ ∈
{
0,

1

T
,
2

T
, · · · , T − 1

T

}
(3)

In Eq. 3, the estimation is accurate when φ is an integer multiplication of T−1, and

shows the biggest noise when φ is a half integer multiplication of T−1. Using the theoretical

distribution, it is not hard to find that PEA is biased periodically, as shown in FIG. 2. The

bias can prevent the estimation error from reaching an arbitrarily small level by repetitions.

In this paper, we propose an unbiased phase estimation algorithm (UPEA) based on the

original PEA. We also show that a maximum likelihood estimation (MLE) post-processing

step applied on UPEA has a smaller mean absolute error than MLE applied on PEA. In the

end, we apply UPEA to quantum counting, and use an additional correction step to make

the quantum counting algorithm unbiased.

The meanings of UPEA are evident. The inaccuracy of PEA decreases of order T−1.

But on real quantum computers, T is limited by the qubit numbers, decoherence time, gate

fidelity and so on. And the accuracy of simple repetitions of PEA is limited by the bias.

In comparison, repetitions of UPEA can bring down the error to arbitrary level due to the

unbiasedness.

The structure of this paper is as follows. In section 2, we propose the unbiased phase

estimation algorithm (UPEA). In section 3, we show that by repeating the UPEA procedure

for several times and applying maximum likelihood estimation to obtain the final estimation,

the unbiasedness of UPEA is maintained. Then in section 4, we apply UPEA to quantum

counting and point out that the unbiasedness does not hold, but can be maintained by adding

a correction step. Finally, in section 5, we make conclusions.
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Fig. 2. The theoretical expectation of φ̃ deducted from Eq. (3) in which T = 16, when the ground
truth is φ. An unbiased estimation should satisfy E[φ̃|φ] = φ.

|0⟩ H Rz(2
tπθ) •

QFT†
...

...
...

|0⟩ H Rz(4πθ) •

|0⟩ H Rz(2πθ) •

|ψ⟩ /n U U2 U2t−1

Fig. 3. The quantum circuit of UPEA.

2 Unbiased Phase Estimation

The key idea of UPEA is intuitive. In each individual run of PEA, we uniformly randomly

choose θ ∈ [0, 1), or θ ∼ U(0, 1). The circuit of UPEA is shown in FIG. 3. The quantum

state right before the QFT† gate is,

T−1∑
j=0

e2πij(φ+θ) |j⟩ |ψ⟩ . (4)

Let s be the measurement result, then s/T is an estimation of the quantity φ+θ in UPEA,

in comparison with φ in PEA. Note that θ is a known classical parameter, our estimation of

φ is given by,

φ̃ =
s

T
− θ. (5)

Different from PEA, the output φ̃ in UPEA is a continuous random variable. Here we

calculate the probability density function ρUPEA(φ̃). A necessary condition for obtaining an

estimation φ̃ is,

θ ∈ 1

T
Z− φ, (6)
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Fig. 4. The bias and MAE of PEA and UPEA by sampling the theoretical distribution for 216

times, with parameter T = 16. The x-axis stands for φ, and the y-axis stands for bias or MAE.

which appears exactly T times in the interval [0, 1). Thus,

ρUPEA(φ̃;φ) =
∑

θ∈ 1
T Z−φ

PPEA(φ̃+ θ|φ+ θ) =
sin2(Tπ(φ̃− φ))

T sin2(π(φ̃− φ))
. (7)

We use bias and mean absolute error (MAE) to quantify the performance of PEA and

UPEA. Using the theoretical distribution in Eq. 3, the bias and MAE of PEA is given by,

BPEA(φ) =
∑
φ̃

d(φ̃, φ)PPEA(φ̃|φ), (8)

MPEA(φ) =
∑
φ̃

|d(φ̃, φ)|PPEA(φ̃|φ), (9)

where the signed circular distance d(φ̃, φ) is defined as the unique element in the set (φ̃− φ+ Z)∩
[−0.5, 0.5). The boundary choice of ±0.5 does not really matter, as PPEA(φ±0.5|φ) is always
zero.

For UPEA, the bias and MAE is the expectation value of d(φ̃, φ) and |d(φ̃, φ)| over θ and

φ̃. If θ is fixed, the bias and MAE is given by BPEA(φ+ θ) and MPEA(φ+ θ), where BPEA

and MPEA are periodically extended from [0, 1] to R. Thus,

BUPEA(φ) =

∫ 1

0

BPEA(φ+ θ) d θ =

∫ 1/2

−1/2

BPEA(θ) d θ, (10)

MUPEA(φ) =

∫ 1

0

MPEA(φ+ θ) d θ =

∫ 1/2

−1/2

MPEA(θ) d θ. (11)

Observing that P (φ̃|φ) = P (−φ̃|−φ) and d(φ̃, φ) = −d(−φ̃,−φ), BPEA(θ) is an odd function

about θ, thus BUPEA(φ) = 0. This proves the unbiasedness of our UPEA algorithm. Also,

MUPEA(φ) is constant over φ. By the way, from the deduction we see that since the function

BPEA has period 1/T , it is sufficient to choose θ ∼ U(0, 1/T ).

We also do numerical experiments for PEA and UPEA. Instead of using quantum simu-

lators, our experiments sample the theoretical distribution function Eq. 3 and Eq. 7 directly
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Fig. 5. A comparison between PEA and UPEA, using maximum likelihood estimation, with
parameters T = R = 16.
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Fig. 6. The error behavior with respect to R, where T = 16.

to simulate the quantum output, which enables us to carry out large-scale numerical experi-

ments. We simulate the UPEA for 216 times for analyzing the bias and MAE, and the results

are illustrated in FIG. 4. Consistent with our theoretical analysis, the bias is close to zero

everywhere, and the MAE is nearly constant.

3 Maximum Likelihood Phase Estimation

As is introduced, UPEA shows more of its power when we allow repeating it for several

times. Suppose we have repeated PEA or UPEA for R times, and get a set of estimation

{φ̃1, φ̃2, · · · , φ̃R}. The estimation φ̃ is obtained by maximizing the likelihood function,

L(φ̃; {φ̃j}) =
R∏

j=1

(
sin(Tπ(φ̃j − φ̃))

T sin(π(φ̃j − φ̃))

)2

. (12)
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Here we prove that the unbiasedness of UPEA still holds. The bias is,

BUPEA(φ;R)

=

∫ 1

0

ρUPEA(φ̃1;φ) d φ̃1 · · ·
∫ 1

0

ρUPEA(φ̃R;φ) d φ̃R · d
(
argmax

φ′
L(φ′; {φ̃j}), φ

)
(13)

Observing that,

argmax
φ′

L(φ′; {φ̃j − φ}) = argmax
φ′

L(φ′; {φ̃j})− φ, (14)

we can deduce that,

BUPEA(φ;R)

=

∫ 1

0

ρUPEA(φ̃1 − φ; 0) d φ̃1 · · ·
∫ 1

0

ρUPEA(φ̃R − φ; 0) d φ̃R · d
(
argmax

φ′
L(φ′; {φ̃j − φ}), 0

)
(15)

=

∫ 1−φ

−φ

ρUPEA(φ̃1; 0) d φ̃1 · · ·
∫ 1−φ

−φ

ρUPEA(φ̃R; 0) d φ̃R · d
(
argmax

φ′
L(φ′; {φ̃j}), 0

)
(16)

Finally, using the period-1 and oddity of ρUPEA(φ̃j) and argmaxφ′ L(φ′; {φ̃j}), we con-

clude that BUPEA(φ;R) = 0.

We do simulation experiments on PEA and UPEA with R = T = 16, and the results are

shown in FIG. 5 (a) (b). We also fix T = 16 and study the bias and MAE behavior with

respect to R, as shown in FIG. 6. In summary,

• The maximum likelihood estimation algorithm maintains the unbiasedness of UPEA;

• For R ≥ 3, there is a sudden decrement of error for both PEA and UPEA;

• For R ≥ 3, UPEA has a smaller MAE than PEA.

We conclude that UPEA behaves even better than PEA when combined with the maximum

likelihood estimation.

4 Application in Quantum Counting

The quantum counting algorithm (QCA) is an important application of PEA. Given a Boolean

function f : {0, 1, · · · , N − 1} → {0, 1}, where N = 2n(n ∈ Z+), the quantum counting

algorithm can estimate the quantity,

M =

N−1∑
j=0

f(j). (17)

The key idea of quantum counting is that the uniform superposition state,

|u⟩ = 1√
N

N−1∑
j=0

|j⟩ , (18)
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Fig. 7. The bias and MAE of quantum counting, with parameter T = 16. The x-axis stands for

m, and the y-axis stands for bias or MAE.

is on a plane spanned by two eigenvectors |ψ±⟩ of the Grover’s iteration [1, 22] Gf for Boolean

function f , with eigenvalues e±2πiφ, where

M = N sin2(πφ). (19)

To be specific,

|u⟩ = 1√
2

(
eiπφ |ψ+⟩+ e−iπφ |ψ−⟩

)
. (20)

Applying PEA to Gf and |ψ⟩, the output φ̃ = s/T obeys the distribution 1
2 [P (φ̃|φ) +

P (φ̃| − φ)]. Finally, the result of QCA is,

M̃ = N sin2(πφ̃). (21)

If we replace the PEA step in quantum counting with UPEA, then s/T is an estimation

of φ+ θ or −φ+ θ with equal probability. Similarly, the estimation is given by

M̃ = N sin2
[
π
( s
T

− θ
)]
. (22)

For convenience, we define m =M/N and m̃ = M̃/N . Though our estimation about φ or

−φ is unbiased, the nonlinear mapping from φ to m will break the unbiasedness, as confirmed

by our simulation experiments in FIG. 7. Here the bias and MAE is defined as,

BQCA(m) =
∑
M̃

(m̃−m)PQCA(m̃|m), (23)

MQCA(m) =
∑
M̃

|m̃−m|PQCA(m̃|m), (24)

where PQCA(m̃|m) = PPEA(φ̃|φ). In FIG. 7, the quantity BUQCA(m) shows a linear rela-

tionship with m.
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Theoretically, the bias of UQCA is,

BUQCA(m) =

∫ 1

0

(m̃−m)ρUQCA(m̃|m) d m̃

=

∫ 1

0

[sin2(πφ̃)− sin2(πφ)]ρUPEA(φ̃|φ) d φ̃, (25)

where ρUQCA(m̃|m) is the probability density function of obtaining an estimation m̃ using

UQCA when the ground truth is m, and ρUPEA(φ̃|φ) is the probability density function of

obtaining an estimation φ̃ using UPEA when the ground truth is φ. Then,

BUQCA(m) =

∫ 1

0

[sin2(πφ̃)− sin2(πφ)]
sin2(Tπ(φ̃− φ))

T sin2(π(φ̃− φ))
d φ̃

=
1

T

∫ 1/2

−1/2

[sin2(π(φ+ ϕ))− sin2(πφ)]
sin2(Tπϕ)

T sin2(πϕ)
dϕ

=
1

T
cos(2πφ)

∫ 1

0

sin2(Tπϕ) dϕ

=
1

2T
cos(2πφ)

=
1− 2m

2T
. (26)

Therefore, QCA cannot be made unbiased by simply replacing PEA with UPEA. Indeed,

we can add an extra correction step,

m′ =

(
1− 1

T

)−1 (
m̃− 1

2T

)
, (27)

and output m′ instead of m̃ to make it unbiased. But such correction step can bring a little

cost in MAE, as shown in FIG. 7, since the error is amplified (1− 1/2T )−1 times along with

m′.

Similarly, if we repeat UPEA for R times and obtain {φ̃1, φ̃2, · · · , φ̃R}, we can use maxi-

mum likelihood estimation to make the result more robust. The bias is,

BUQCA(m;R)

=

∫ 1

0

ρUPEA(φ̃1;φ) d φ̃1 · · ·
∫ 1

0

ρUPEA(φ̃R;φ) d φ̃R ·
[
sin2

(
π argmax

φ′
L(φ′; {φ̃j})

)
− sin2(πφ)

]
=

∫ 1

0

ρUPEA(φ̃1; 0) d φ̃1 · · ·
∫ 1

0

ρUPEA(φ̃R; 0) d φ̃R ·
[
sin2

(
πφ+ π argmax

φ′
L(φ′; {φ̃j})

)
− sin2(πφ)

]
=

∫ 1/2

−1/2

ρUPEA(φ̃1; 0) d φ̃1 · · ·
∫ 1/2

−1/2

ρUPEA(φ̃R; 0) d φ̃R·[
sin2

(
π argmax

φ′
L(φ′; {φ̃j})

)
cos(2πφ) +

1

2
sin

(
2π argmax

φ′
L(φ′; {φ̃j})

)
sin(2πφ)

]
=BUQCA(0;R) cos(2πφ)

=BUQCA(0;R)(1− 2m), (28)
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Fig. 8. The bias and MAE of quantum counting, with parameter T = 16 and R = 3.

where the second term in Eq. (28) vanishes because of its oddity.

Thus, the bias of UQCA with R repetitions is also linear about m. The only thing left

for the correction formula is BUQCA(0;R), which can be pre-calculated by simulation. To be

specific, for Ntest times, draw R random numbers with probability density function,

ρ(x) =
sin2(Tπx)

T sin2(πx)
, (29)

says {{xj,k}Rk=1}
Ntest
j=1 , then the estimated of BUQCA(0;R) is,

b =

Ntest∑
j=1

argmax
x

L(x; {xj,k}Rk=1). (30)

Before performing correction for UQCA with parameters T and R, one should first run sim-

ulations to calculate the corresponding b, then the correction formula is,

m′ =
m̃− b

1− 2b
, (31)

where m̃ is the result of maximum likelihood estimation, and m′ is the correction output. For

example, by simulating UQCA with m = 0, T = 16, R = 3 for 216 times we get b ≈ 0.004775.

Then we do experiments to compare UQCA with or without correction, as shown in FIG. 8.

We also do experiments for UQCA with or without correction for T = 16 and different R.

The results in FIG. 9 shows that the extra error brought by the correction decays significantly

as R grows.

5 Conclusion

The original form of phase estimation algorithm suffers a periodical bias, which prevents

its accuracy from reaching an arbitrary level. We propose an unbiased phase estimation

algorithm, by introducing a uniformly distributed variable θ to the original phase estimation

algorithm. We also show that a maximum likelihood estimation post-processing step can
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Fig. 9. The MAE of UQCA with or without correction for T = 16 and different R.

make UPEA more robust when R ≥ 3, as it keeps the unbiasedness and reduce the MAE

quickly.

Finally, we apply UPEA to quantum counting. We point out that a direct substitution of

UPEA for PEA cannot make quantum counting unbiased, and there is a linear relationship

between the bias and m, the ground truth of quantum counting. By applying a correction

step, the bias can vanish, with an extra cost of MAE in the meantime. Moreover, by repeating

for R times and using maximum likelihood estimation, we prove that the linear relationship

still holds, and the extra cost decays quickly while the unbiasedness is maintained.
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